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 The „ not so ideal world “   

IV.) Scaling Laws, Mini Beta Insertions, 
and all the rest 



17.) Quadrupole Errors    
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go back to Lecture I, page 1 
 

        single particle trajectory  

Quadrupole Errors 

Definition: phase advance  
of the particle oscillation  
per revolution in units of 2π  
is called  tune 
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Transfer Matrix from point „0“ in the  
lattice to point „s“:  

For one complete turn the Twiss parameters  
have to obey periodic bundary conditions:  
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Matrix in Twiss Form 



Quadrupole Error in the Lattice 
  

        optic perturbation described by thin lens quadrupole 

rule for getting the tune 

ideal storage ring quad error 
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remember the old fashioned trigonometric stuff and assume that the error is small !!!  

1≈ ψ≈ Δ

and referring to Q instead of ψ: 
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    !     the tune shift is proportional to the β-function  
        at the quadrupole 
 

  !!    field quality, power supply tolerances etc are  
        much tighter at places where β is large 
 

  !!!    mini beta quads: β ≈ 1900 m  
        arc quads: β ≈ 80 m  
 

  !!!!    β is a measure for the sensitivity of the beam 
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a quadrupol error leads to a shift of the tune: 

Example: measurement of β in a storage ring: 
                 tune spectrum 
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β

Quadrupole error: Beta Beat  
                                  

( proof: see appendix ) 
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18.) Chromaticity:  
           A Quadrupole Error for Δp/p ≠ 0 

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  
 

   

dipole magnet 

focusing lens gk p
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definition of chromaticity: 

gk p
e

=

Chromaticity: Q' 

in case of a  momentum spread: 

… which acts like a quadrupole error in the machine and leads to a tune spread: 
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Where is the Problem ? 



Tunes and Resonances  

avoid resonance conditions:  

m Qx+n Qy+l Qs = integer 

… for example: 1 Qx=1 



Problem: chromaticity is generated by the lattice itself !! 
 
Q' is a number indicating the size of the tune spot in the working diagram,  
Q' is always created if the beam is focussed  
   ! it is determined by the focusing strength k of all quadrupoles 

k = quadrupole strength 
β = betafunction indicates the beam size … and even more the sensitivity of   
      the beam to external fields 

Example: LHC 
 
                     Q' = 250  

      Δ p/p = +/- 0.2 *10-3 

        Δ Q = 0.256 … 0.36 
                  

à Some particles get very close to  
    resonances and are lost  
 
    in other words: the tune is not a point 
                          it is a pancake 

… and now again about Chromaticity: 
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Tune signal for a nearly  
uncompensated cromaticity 
( Q' ≈ 20 )  

Ideal situation: cromaticity well corrected, 
( Q' ≈ 1 ) 



Tune and Resonances 

m*Qx+n*Qy+l*Qs = integer 

Qx =1.0 Qx =1.3 

Qy =1.0 

Qy =1.3 

Qx =1.5 

Qy =1.5 HERA e Tune diagram up to 3rd order 

… and  up to 7th order 

Homework for the operateurs:  
find a nice place for the tune  
where against all probability  
the beam will survive 



Correction of Q': 

 Need: additional quadrupole strength for each momentum deviation Δp/p 

1.) sort the particles acording to their momentum 

… using the dispersion function 

2.) apply a magnetic field that rises quadratically with x (sextupole field)  

linear amplitude dependent  
„gradient“:  



N 

Sextupole Magnets:  

Correction of Q': 

S 

S N 

k1 normalised quadrupole strength  

k2 normalised sextupole  strength  
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Q'= − 1
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k1(s)β(s)ds∫ + k2 *D(s)β(s)ds∫{ }

Combined effect of „natural chromaticity“ and Sextupole Magnets:  

You only should not forget to correct Q‘ in both planes ...  
 and take into account the contribution from quadrupoles of both polarities.  
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considering an arc built out of single cells:  



25.) Particle Tracking Calculations 

particle vector: ⎟⎟
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and continue with the linear matrix transformations  

" 

Idea:    calculate the particle coordiantes x, x´ through the linear lattice 
             … using the matrix formalism. 
             if you encounter a nonlinear element (e.g. sextupole): stop 
             calculate explicitly the magnetic field at the particles coordinate  



Installation of a weak ( !!! ) sextupole magnet 

The good news: sextupole fields in accelerators  
cannot be treated with conventional methods. 
! no equatiuons; instead: Computer simulation 
„ particle tracking “  

● 



! Catastrophy !  

● 

Effect of a strong ( !!! ) Sextupole … 

„dynamic aperture“ 



      20.) Insertions  



 Insertions 

 ... the most complicated one: the drift space 

Question to the audience: what will happen to the beam parameters  
      α, β, γ if we stop focusing for a while …? 
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β-Function in a Drift: 

let‘s assume we are at a symmetry point in the center of a drift.  
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At the end of a long symmetric drift 
space the beta function reaches its 
maximum value in the complete lattice.  
-> here we get the largest beam 
dimension.  
 
-> keep l as small as possible  



... clearly there is another problem !!! 

Example: Luminosity optics at LHC: β* = 55 cm 
                for smallest βmax we have to limit the overall length   
              and keep the distance “s” as small as possible. 

But: ... unfortunately ... in general  
         high energy detectors that are  
         installed in that drift spaces  
         are a little bit bigger than a few centimeters ... 



p2-Bunch 

p1-Bunch 
IP 

± σ  
10 11 particles 

10 11 particles 

21.) Luminosity 
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   High Light of the HEP-Year 2012 / 13 naturally the HIGGS   

ATLAS event display: Higgs => two electrons & two muons 



Overall cross section of the  Higgs: 

Problem: Our particles are VERY small !! 

€ 

Σreact ≈1pb

1b =10−24cm2

1pb = 10−12 *10−24cm2 =1/mio*1/mio*1/mio*1/mio*1/mio*1/10000 mm2

The particles are “very small” The only chance we have: 
compress the transverse beam size … at the IP 

LHC typical:  
 

σ = 0.1 mm   !  16 µm   



Mini-β Insertions: some guide lines

  * calculate the periodic solution in the arc 
 

     * introduce the drift space needed for the insertion device (detector ...) 
 

  * put a quadrupole doublet (triplet ?) as close as possible 
 

  * introduce additional quadrupole lenses to match the beam  parameters 
     to the values at the beginning of the arc structure 

 
 

 
 

parameters to be optimised & matched to the periodic solution: 

, ,
, ,
x x x x

y y x y

D D
Q Q

α β

α β

ʹ′

8 individually  
powered quad  
magnets are  
needed to match   
the insertion  
( ... at least) 



Mini-β Insertions: Betafunctions

A mini-β insertion is always a kind of special symmetric drift space. 
 àgreetings from Liouville 

at a symmetry point β is just the ratio of beam dimension and beam divergence. 
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question: main contribution to Q' in a lattice … ?                                       

… and now back to the Chromaticity 

mini beta insertions 



Resume´: 
 

quadrupole error:  tune shift  

 beta beat  

chromaticity  
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a change of quadrupole strength in a synchrotron leads to tune sift: 
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tune spectrum ...  

tune shift as a function of a gradient change 
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 Quadrupole Error and Beta Function 

But we should expect an error in the β-function as well … 
                  … shouldn´t  we ??? 

Appendix: 



Quadrupole Errors and Beta Function 

split the ring into 2 parts, described by two matrices 
A and B  

ABMturn *=

a quadrupole error will not only influence the oscillation frequency … „tune“  
 … but also the amplitude … „beta function“ 
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the beta function is usually obtained via the matrix element „m12“, which is in  
Twiss form for the undistorted case 

Qm πβ 2sin012 =

kdsabababm Δ−+= 121222121211
*
12

and including the error:  
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    Nota bene:  !  the beta beat is proportional to the strength of the 
     error Δk 

 
  !! and to the β function at the place of the error , 

 
  !!! and to the β function at the observation point,  

            (… remember orbit distortion !!!) 
   
  !!!! there is a resonance denominator 

 
         


