## Kickers, septa and beam transfer lines

- Beam transfer devices
  - Kickers
  - Septa
  - Protection devices
- Beam transfer lines
  - Distinctions between transfer lines and circular machines
  - Linking machines/experiments together
  - Emittance blow-up from mismatch
  - Measure beam parameters (measurement lines)

Matthew Fraser, CERN (TE-ABT-BTP) based on lectures by M.J. Barnes, W. Bartmann, J. Borburgh, B. Goddard, V. Kain and M. Meddahi

# Bibliography

- M.J. Barnes, L. Ducimetiére, T. Fowler, V. Senaj, L. Sermeus, "Injection and extraction magnets: kicker magnets"
  - CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009, arXiv:1103.1583 [physics.acc-ph]
- M.J. Barnes, J. Borburgh, B. Goddard, M. Hourican, "Injection and Extraction Magnets: Septa"
  - CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009, arXiv:1103.1062 [physics.acc-ph]
- V. Kain, "Beam Transfer and Machine Protection"
  - USPAS 2014: Beam Loss and Accelerator Protection (2014) Lectures

## Reminder: injection, septum and kicker



- Kickers produce fast pulses, rising their field within the particle-free gap in the circulating beam (**temporal separation**)
- Septa compensate for the relatively low kicker strength, and approach closely the circulating beam (**spatial separation**)

#### Reminder: extraction, septum and kicker



- Kickers produce fast pulses, rising their field within the particle-free gap in the circulating beam (**temporal separation**)
- Septa compensate for the relatively low kicker strength, and approach closely the circulating beam (**spatial separation**)

#### **Kickers**



#### Magnets – design options

• Type: "lumped inductance"



- simple magnet design
- magnet must be nearby the generator to minimise inductance
- exponential field rise-time:

$$I = \frac{V}{Z} (1 - e^{-t/\tau}) \qquad \tau = \frac{L_{mag}}{Z}$$

• slow: rise-times ~ 1  $\mu$ s

## Magnets – design options

• Type: "lumped inductance" or "distributed inductance" (transmission line)



- simple magnet design
- magnet must be nearby the generator to minimise inductance
- exponential field rise-time:

$$I = \frac{V}{Z}(1 - e^{-t/\tau}) \qquad \tau = \frac{L_{mag}}{Z}$$

• slow: rise-times ~ 1  $\mu$ s

complicated magnet design

Cell 1... Cell *n* - 1 ... Cell *n* 

- impedance matching important
- field rise-time depends on propagation time of pulse through magnet:

$$\tau = n\sqrt{L_{cell} \cdot C_{cell}} = n\frac{L_{cell}}{Z} = \frac{L_{mag}}{Z}$$

fast: rise-times << 1 µs</li>

## Magnets – design options

• Type: "lumped inductance" or "distributed inductance" (transmission line)



- simple magnet design
- magnet must be nearby the generator to minimise inductance
- exponential field rise-time:

$$I = \frac{V}{Z}(1 - e^{-t/\tau}) \qquad \tau = \frac{L_{mag}}{Z}$$

- slow: rise-times ~ 1  $\mu$ s
- Other considerations:
  - Machine vacuum: kicker in-vacuum or external
  - Aperture: geometry of ferrite core
  - Termination: matched impedance or short-circuit

- Cell 1... Cell *n* 1 ... Cell *n*
- complicated magnet design
- impedance matching important
- field rise-time depends on propagation time of pulse through magnet:

$$\tau = n\sqrt{L_{cell} \cdot C_{cell}} = n\frac{L_{cell}}{Z} = \frac{L_{mag}}{Z}$$

fast: rise-times << 1 µs</li>



- Main sub-systems ("components") of kicker system;
  - RCPS = Resonant Charging Power Supply
  - **PFL** = Pulse Forming Line (coaxial cable) or **PFN** = Pulse Forming Network (lumped elements)
  - Fast high power switch(es)
  - **Transmission line(s)**: coaxial cable(s)
  - Kicker Magnet
  - Terminators (resistive)



- PFL/PFN charged to voltage V<sub>0</sub> by the RCPS
- Main switch is closed...

...voltage pulse of  $V_0/2$  flows through kicker

- Once the pulse reaches the (matched) terminating resistor full-field has been established in the kicker magnet
- Pulse length controlled between t = 0 and  $2T_p$  with dump switch



- Pulse forming network or line (PFL/PFN) charged to voltage V<sub>0</sub> by the resonant charging power supply (RCPS)
  - RCPS is de-coupled from the system through a diode stack



- Pulse forming network or line (PFL/PFN) charged to voltage V<sub>0</sub> by the resonant charging power supply (RCPS)
  - RCPS is de-coupled from the system through a diode stack
- At t = 0, main switch is closed and current starts to flow into the kicker



- At t =  $\tau_{fill}$ , the voltage pulse of magnitude V<sub>0</sub>/2 has propagated through the kicker and nominal field achieved with a current V<sub>0</sub>/2Z
  - typically  $\tau_p >> \tau_{fill}$  (schematic for illustration purposes)



• PFN continues to discharge energy into kicker magnet and matched terminating resistor



- PFN continues to discharge energy into kicker magnet and matched terminating resistor
- At t ≈ τ<sub>p</sub> the negative pulse reflects off the open end of the circuit (dump switch) and back towards the kicker



- PFN continues to discharge energy into matched terminating resistor
- At t ≈ τ<sub>p</sub> the negative pulse reflects off the open end of the circuit and back towards the kicker



• At t  $\approx 2\tau_{D}$  the pulse arrives at the kicker and field starts to decay



 A kicker pulse of approximately 2τ<sub>p</sub> is imparted on the beam and all energy has been emptied into the terminating resistor



- Kicker pulse length can be changed by adjusting the relative timing of dump and main switches:
  - e.g. if the dump and main switches are fired simultaneously the pulse length will be halved and energy shared on dump and terminating resistors

#### Reflections

#### • A simplified pulse forming circuit:



Match impedances to avoid reflections!

• When the switch is fired the voltage is divided as:

$$V_L = V \cdot \left(\frac{Z_L}{Z_0 + Z_L}\right) = \alpha V$$

#### Reflections

#### • A simplified pulse forming circuit:



$$Z_0 = Z_L \qquad \alpha = \frac{1}{2}, \ \beta = 0$$

• Mismatches will ring in the circuit causing ripples on the pulse, or post-pulse.



### Reflections

#### • A simplified pulse forming circuit:



Match impedances to avoid reflections!

• When the switch is fired the voltage is divided as:

$$V_L = V \cdot \left(\frac{Z_L}{Z_0 + Z_L}\right) = \alpha V$$

• In the matched case:

$$Z_0 = Z_L \qquad \alpha = \frac{1}{2}, \ \beta = 0$$

• Mismatches will ring in the circuit causing ripples on the pulse, or post-pulse.



- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground

- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View
    Side View





- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View





- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View
    Side View



- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View
    Side View



- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View
    Side View



- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View
    Side View



- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View
    Side View



- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View



- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Ferrite C-cores are sandwiched between HV plates
  - Grounded plates are interleaved to form a capacitor to ground
    End View
    S



- Today's fast (rise-times of < few hundred ns) kicker magnets are generally ferrite loaded transmission lines:
  - Kicker magnets consists of many, relatively short, cells to approximate a broadband coaxial cable



## Magnets – lumped inductance

- Lumped inductance kicker magnets are robust and reliable, and suitable for applications where the rise-time is typically > 1 µs:
  - e.g. LHC beam dump extraction and dilution kicker magnets



## Magnets – lumped inductance

- Lumped inductance kicker magnets are robust and reliable, and suitable for applications where the rise-time is typically > 1 µs:
  - e.g. LHC beam dump extraction and dilution kicker magnets



A damped series RLC circuit (switch closed after capacitor charged) ABT Introductory Lectures – CERN Accelerator School, Budapest, Hungary, 2016 Cross-section of MKBH (horizontal dilution magnet)

## Magnets – lumped inductance

- Lumped inductance kicker magnets are robust and reliable, and suitable for applications where the rise-time is typically > 1 µs:
  - e.g. LHC beam dump extraction and dilution kicker magnets


# Magnets – lumped inductance

- Lumped inductance kicker magnets are robust and reliable, and suitable for applications where the rise-time is typically > 1 µs:
  - e.g. LHC beam dump extraction and dilution kicker magnets



Generators nearby in gallery next to LHC tunnel



MKB dilution magnets in the LHC tunnel

## Magnetic parameters



- Dimensions  $H_{ap}$  and  $V_{ap}$  specified by beam parameters at kicker location
- Ferrite ( $\mu_r \approx 1000$ ) reinforces magnetic circuit and uniformity of the field in the gap
- For fast rise-times the inductance must be minimised: typically the number of turns, N = 1
- Kickers are often split into several magnet units, powered independently

# PFL/PFN

#### **Pulse Forming Line (PFL)**

- Low-loss coaxial cable
- Fast and ripple-free pulses
- Attenuation (droop ~1%) becomes problematic for pulses > 3 µs
- Above 50 kV SF6 pressurized PE tape cables are used
- Bulky: 3 µs pulse ~ 300 m of cable



Reels of PFL used at the PS complex (as old as the photograph!) ABT Introductory Lectures – CERN Accelerator School, Budapest, Hungary, 2016

#### Pulse Forming Network (PFN)

- Artificial coaxial cable made of lumped elements
- For low droop and long pulses > 3 µs
- Each cell individually adjustable: adjustment of pulse flat-top difficult and time consuming.



SPS extraction kicker (MKE) PFN (17 cells)

# Switches

#### Thyratrons

- Deuterium gas thyratrons are commonly used
- Hold off 80 kV and switch up to 6 kA
- Fast switching ~ 30 ns (~150 kA/µs)
- Erratic turn-on: use with RCPS to reduce hold-off time

#### **Power semiconductor switches**

- Suitable for scenarios where erratic turn-on is not allowed
- For example, LHC beam dump kickers held at nominal voltage throughout operation (>10h) ready to fire and safely abort at any moment.
- Hold off up to 30 kV and switch up to 18 kA
- Slower switching > 1 µs (~18kA/µs)
- Low maintenance





Stack of high-power semiconductor switches (GTOs)

Thyratron

- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



- Short-circuiting the termination offers twice the kick (for a given kicker magnet):
  - Fill time of kicker magnet is doubled
  - Diode as dump switch provides solution for fixed pulse length



#### An example of reflections



ABT Introductory Lectures - CERN Accelerator School, Budapest, Hungary, 2016

Beam-based kicker measurements at higher intensities, V. Forte BT + PS injection kicker meeting, CERN (15<sup>th</sup> August 2016)

# Other topics and considerations

- **Ripple:** cells of a transmission line kicker have a cut-off frequency that introduces dispersion in pulse: Entrance HV plate Measurements on AGS kicker
  - Cut-off frequency:

$$\omega_{c} = \frac{1}{\sqrt{L_{cell}C_{cell}}} = \frac{Z}{L_{cell}}$$



- In vacuum: aperture dimensions ( $H_{ap}$  and  $V_{ap}$ ) minimised if in vacuum:
  - For given B, lower I and L can be achieved with smaller  $H_{ap}$  and  $V_{ap}$
  - Machine vacuum is a reliable dielectric, recovers after flashover
  - Costly and time consuming to construct/maintain (cleanliness, bake-out)
- Beam coupling impedance: kickers are a source of beam impedance in accelerators (wakefields and beam instabilities)
  - Ferrite is shielded from beam with beam screens or serigraphy by permitting a smooth conducting path for beam induced image charges
  - Beam induced heating of ferrite yoke can heat it above the Curie temp.

Septa



# Septa

- Two main types:
  - Electrostatic septa (DC)
  - Magnetic septa (DC and pulsed):
    - Direct drive septum
    - Eddy current septum (pulsed only)
    - Lambertson septum (deflection parallel to septum)



#### Electrostatic septum



- Thin septum ~ 0.1 mm needed for high extraction efficiency:
  - Foils typically used
  - Stretched wire arrays provide thinner septa and lower effective density
- Challenges include conditioning and preparation of HV surfaces, vacuum in range of 10<sup>-9</sup> – 10<sup>-12</sup> mbar and in-vacuum precision position alignment

#### Electrostatic septum

- At SPS we slow-extract 400 GeV protons using approximately 15 m of septum split into 5 separate vacuum tanks each over 3 m long:
  - Alignment of the 60 100 μm wire array over 15 m is challenging!



# **DC** direct drive magnetic septum



Cooling

- Continuously powered, rarely under vacuum
- Multi-turn coil to reduce current needed but cooling still an issue:
  - Cooling water circuits flow rate typically at 12 60 l/min
  - Current can range from 0.5 to 4 kA and power consumption up to 100 kW!

# Direct drive **pulsed** magnetic septum



#### Bake-out lamps for UHV

#### Beam screen

Septum

Beam "monitor"
In vacuum, to minimise distance between circulating and extracted beam

- Single-turn coil to minimise inductance, bake-out up to 200 °C (~10<sup>-9</sup> mbar)
- Pulsed by capacitor discharge (third harmonic flattens the pulse):
  - Current in range 7 40 kA with a few ms oscillation period
  - Cooling water circuits flow rate from 1 80 l/min

# Eddy current septum



- In or out of vacuum, single-turn coil
- Pulsed by capacitor discharge (third harmonic flattens the pulse):
  - Current ~10 kA fast pulsed with ~ 50 µs oscillation period
  - Cooling water circuits flow rate from 1 10 l/min

- Coil removed from septum and placed behind C-core yoke:
  - Coil dimension not critical
  - Very thin septum blade
- Magnetic field pulse induces eddy currents in septum blade
- Eddy currents shield the circulating beam from magnetic field
- Return box and magnetic screen reduce fringe field seen by circulating beam

#### Lambertson septum





- Magnetic field in gap orthogonal to previous examples of septa:
  - Lambertson deflects beam orthogonal to kicker: dual plane injection/extraction
- Rugged design: conductors safely hidden away from the beam
- Thin steel yoke between aperture and circulating beam however extra steel required to avoid saturation, magnetic shielding often added

#### Two plane injection with Lambertson



#### Lambertson septum

- At SPS we use Lambertson septa to split the 400 GeV slow-extracted proton spill (~ seconds) to different target stations simultaneously:
  - These devices are radioactive: critical that coils are located away from the septum



#### **Protection devices**

- When things go wrong...!
  - SPS extraction septum power supply tripped during setting-up of LHC beam, 25<sup>th</sup> October 2004:



- Septum field dropped by 5% in 11 ms
- 3.4 x 10<sup>13</sup> protons at 450 GeV, i.e. 2.5 MJ of beam energy dissipated on the aperture of the transfer line
- Vacuum chamber and quadrupole magnet damaged requiring replacement
- Upgraded fast interlock system was implemented to protect against such fast failures

#### **Protection devices**

- When beam energy exceeds damage limit for machine equipment one has to design for certain failure scenarios
- Critical beam transfer systems have redundancy and multiple layers of protection:
  - Passive protection devices form the last layer of this security
- Protection devices are designed to dilute and absorb beam energy safely
- Failures associated with beam transfer equipment are typically very fast and difficult to catch, for example:
  - No turn-on of kicker: injection protection
  - Erratic turn-on of kicker: sweep circulating beam in the machine
  - Flash-over (short-circuit) in kicker: impart the wrong kicker angle
  - Transfer line magnet failure: steering beam onto aperture of downstream machine

 LHC has a dedicated injection dump (TDI) to protect against fast failures on the injection kicker



In reality the LHC injection is dual plane: Lambertson septum kick orthogonal to kicker

- LHC has a dedicated injection dump (TDI) to protect against fast failures on the injection kicker
  - No turn-on of kicker: beam steered safely onto absorber:



In reality the LHC injection is dual plane: Lambertson septum kick orthogonal to kicker

- LHC has a dedicated injection dump (TDI) to protect against fast failures on the injection kicker
  - No turn-on of kicker: beam steered safely onto absorber
  - Erratic turn-on of kicker: circulating beam steered safely onto absorber:



In reality the LHC injection is dual plane: Lambertson septum kick orthogonal to kicker

- LHC has a dedicated injection dump (TDI) to protect against fast failures on the injection kicker
  - No turn-on of kicker: beam steered safely onto absorber
  - Erratic turn-on of kicker: circulating beam steered safely onto absorber
  - Flash-over (short-circuit) in kicker: "worst-case" gives twice deflection:



In reality the LHC injection is dual plane: Lambertson septum kick orthogonal to kicker
SPS has a dedicated absorber (TPSG) to protect the extraction septum in case of fast failures of the extraction kicker



- SPS has a dedicated absorber (TPSG) to protect the extraction septum in case of fast failures of the extraction kicker
  - Erratic turn-on of kicker: asynchronous timing with particle-free gap and circulating beam swept across TPSG into transfer line:



- SPS has a dedicated absorber (TPSG) to protect the extraction septum in case of fast failures of the extraction kicker
  - Erratic turn-on of kicker: asynchronous timing with particle-free gap and circulating beam swept across TPSG into transfer line
  - Flash-over (short-circuit) in kicker: worst-case amplitude places the extracted beam onto the absorber jaw:



 SPS has a dedicated absorber (TPSG) to protect the extraction septum in case of fast failures of the extraction kicker



TPSG and MSE (magnetic septum) installed at HIRADMAT irradiation test facility in 2012:impacted with LHC nominal intensity (288b and 1.1×10<sup>11</sup> p/b): both devices survived!ABT Introductory Lectures – CERN Accelerator School, Budapest, Hungary, 2016

## Extraction protection: e.g. TPSG

- SPS has a dedicated absorber (TPSG) to protect the extraction septum in case of fast failures of the extraction kicker
  - Diluter made of graphite, 2D carbon composite, titanium alloy and nickel based alloy:



 Designed to protect downstream septum from direct impact of 450 GeV LHC ultimate beam (288 bunches at 1.7×10<sup>11</sup> protons per bunch, 3.5 MJ)

Water cooling channel

#### **Absorber blocks**

**TPSG assembly without vacuum tank** ABT Introductory Lectures – CERN Accelerator School, Budapest, Hungary, 2016



Absorber blocks inspected after impact of HIRADMAT test #6: survived and re-installed

Comment: small emittance (high beam brightness) can be just as much a concern as the total intensity for thermo-mechanical stresses during beam impact

• SPS to LHC transfer lines have dedicated transfer line collimators (TCDIH and V) in case of fast failures to protect LHC aperture:



- SPS to LHC transfer lines have dedicated transfer line collimators (TCDIH and V) in case of fast failures to protect LHC aperture:
  - Magnet power supply trips at time *t* after the last extraction interlock check: beam steered onto collimator
  - Current (field) error depends on circuit:



- SPS to LHC transfer lines have dedicated transfer line collimators (TCDIH and V) in case of fast failures to protect LHC aperture:
  - Magnet power supply trips at time *t* after the last extraction interlock check: beam steered onto collimator
  - Current (field) error depends on circuit:

 $\Delta I_{error}(t) = I_{nom}(1 - e^{-t/\tau}) \qquad \tau = \frac{L_{mag}}{R}$ 

 Erratic turn-on of extraction kicker: sweep (asynchronous with particle-free abort gap)





- SPS to LHC transfer lines have dedicated transfer line collimators (TCDIH and V) in case of fast failures to protect LHC aperture:
  - Magnet power supply trips at time *t* after the last extraction interlock check: beam steered onto collimator
  - Current (field) error depends on circuit:

 $\Delta I_{error}(t) = I_{nom}(1 - e^{-t/\tau}) \qquad \tau = \frac{L_{mag}}{R}$ 

 Erratic turn-on of extraction kicker: sweep (asynchronous with particle-free abort gap)





- SPS to LHC transfer lines have dedicated transfer line collimators (TCDIH and V) in case of fast failures to protect LHC aperture:
  - Magnet power supply trips at time *t* after the last extraction interlock check: beam steered onto collimator
  - Current (field) error depends on circuit:

 $\Delta I_{error}(t) = I_{nom}(1 - e^{-t/\tau}) \qquad \tau = \frac{L_{mag}}{R}$ 

 Erratic turn-on of extraction kicker: sweep (asynchronous with particle-free abort gap)





- SPS to LHC transfer lines have dedicated transfer line collimators (TCDIH and V) in case of fast failures to protect LHC aperture:
  - Magnet power supply trips at time *t* after the last extraction interlock check: beam steered onto collimator
  - Current (field) error depends on circuit:

 $\Delta I_{error}(t) = I_{nom}(1 - e^{-t/\tau}) \qquad \tau = \frac{L_{mag}}{R}$ 

- Erratic turn-on of extraction kicker: sweep (asynchronous with particle-free abort gap)
- Flash-over (short-circuit) in kicker:





- SPS to LHC transfer lines have dedicated transfer line collimators (TCDIH and V) in case of fast failures to protect LHC aperture:
  - Magnet power supply trips at time *t* after the last extraction interlock check: beam steered onto collimator

0-60-120 degree

 $4.5\sigma + 1.4\sigma$ 

\_HC aperture

to protect at

120°

a<sub>max</sub> 6.9 σ

collimators

- Current (field) error depends on circuit:

 $\Delta I_{error}(t) = I_{nom}(1 - e^{-t/\tau}) \qquad \tau = \frac{L_{mag}}{R}$ 

- Erratic turn-on of extraction kicker: sweep (asynchronous with particle-free abort gap)
- Flash-over (short-circuit) in kicker







- Beam transfer lines
  - Functional requirements
  - Distinctions between transfer lines and circular machines
  - Linking machines/experiments together
  - Emittance blow-up from mismatch
  - Measurement of beam parameters (measurement lines)

Transfer lines transport beams between accelerators (extraction of one to injection of the next) and on to experimental targets and beam dumps

- Requirements:
  - Geometric link between machines/experiment
  - Match optics between machines/experiment
  - Preserve emittance
  - Change particles' charge state (stripping foils)
  - Measure beam parameters (measurement lines)
  - Protect downstream machine/experiment

#### **General transport**

Beam transport: moving from  $s_1$  to  $s_2$  through *n* elements, each with transfer matrix  $M_i$ 



The transfer matrix  $(M_i)$  can be expressed using the Twiss formalism:

$$\mathbf{M}_{1\to2} = \begin{bmatrix} \sqrt{\beta_2/\beta_1} (\cos \Delta \mu + \alpha_1 \sin \Delta \mu) & \sqrt{\beta_1\beta_2} \sin \Delta \mu \\ \sqrt{\beta_1\beta_2} [(\alpha_1 - \alpha_2) \cos \Delta \mu - (1 + \alpha_1\alpha_2) \sin \Delta \mu] & \sqrt{\beta_1/\beta_2} (\cos \Delta \mu - \alpha_2 \sin \Delta \mu) \end{bmatrix}$$

#### **Circular Machine**



- The solution is *periodic*
- Periodicity condition for one turn (closed ring) imposes  $\alpha_1 = \alpha_2$ ,  $\beta_1 = \beta_2$ ,  $D_1 = D_2$
- This condition *uniquely* determines  $\alpha(s)$ ,  $\beta(s)$ ,  $\mu(s)$ , D(s) around the whole ring
  - i.e. a single matched ellipse exists for each given location, s

#### **Circular Machine**

At a location with matched ellipse (α, β) a mismatched injected beam (α<sup>\*</sup>, β<sup>\*</sup>) with emittance ε<sub>0</sub>, generates (via filamentation) a larger ellipse with the matched α, β, but larger emittance: ε > ε<sub>0</sub>



#### **Transfer line**



- No periodic condition exists
- The Twiss parameters are simply propagated from beginning to end of line
- At any point in line,  $\alpha(s) \beta(s)$  are functions of  $\alpha_1$  and  $\beta_1$

## **Transfer line**

• Initial  $\alpha$ ,  $\beta$  are defined for a transfer line by the beam shape at the entrance



- Propagation of this beam ellipse depends on the line
- <u>A transfer line optics is different for different input beams:</u>
  - Synchrotrons are often multi-purpose, accelerating different beams but extracting through a common line transfer line: optics must switch to match the input and output conditions for each beam type

## Transfer line

- On a single pass of a finite transfer line there is no regular motion from entrance to exit
  - Periodicity is not enforced: it's actually a design choice
  - Infinite number of possible starting ellipses are transported to an infinite number of final ellipses



#### **Optics Matching**



## Linking Machines

- Beams have to be transported from extraction of one machine to injection of the next machine:
  - Trajectory must be matched in all 6 geometric degrees of freedom (x,y,z,θ,Φ,ψ)
- Other important constraints can include:
  - Minimum bend radius, maximum quadrupole gradient, magnet aperture, cost, geology or other obstacles, etc.



An example of how geology can influence transfer line design

#### **Linking Machines**



The Twiss parameters can be propagated when the transfer matrix **M** is known

$$\begin{bmatrix} x_2 \\ x_2' \end{bmatrix} = \mathbf{M}_{1 \to 2} \cdot \begin{bmatrix} x_1 \\ x_1' \end{bmatrix} = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_1' \end{bmatrix}$$

$$\begin{bmatrix} \beta_2 \\ \alpha_2 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} C^2 & -2CS & S^2 \\ -CC' & CS' + SC' & -SS' \\ C'^2 & -2C'S' & S'^2 \end{bmatrix} \cdot \begin{bmatrix} \beta_1 \\ \alpha_1 \\ \gamma_1 \end{bmatrix}$$

## Linking Machines

- Linking the optics is a complicated process:
  - Parameters at start of line have to be propagated to matched parameters at the end of the line (injection to another machine, fixed target etc. )
  - Need to "match" 8 variables ( $\alpha_x$ ,  $\beta_x$ ,  $D_x$ ,  $D'_x$  and  $\alpha_y$ ,  $\beta_y$ ,  $D_y$ ,  $D'_y$ )
  - Matching done with number of independently power ("matching") quadrupoles
  - Maximum  $\beta$  and D values are imposed by magnetic apertures
  - Other constraints exist:
    - Phase conditions for collimators
    - Insertions for special equipment like stripping foils
    - Low beam energy (β<<1) re-bunching cavities might be necessary,</li>
      i.e. RF gymnastics in the transfer line
- Matching with computer codes and relying on mixture of theory, experience, intuition, trial and error.

## **Optical Mismatch at Injection**

• Filamentation fills larger ellipse with same shape as matched ellipse



• Dispersion mismatch at injection will also cause emittance blow-up

- Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch
- Filamentation will produce an emittance increase
- In normalised phase space, consider the matched beam as a circle, and the mismatched beam as an ellipse Mismatched



- Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch
- Filamentation will produce an emittance increase
- In normalised phase space, consider the matched beam as a circle, and the mismatched beam as an ellipse Mismatched
- The emittance after filamentation:

$$\varepsilon_{diluted} = \frac{\varepsilon_{matched}}{2} \left( \lambda^2 + \frac{1}{\lambda^2} \right) \text{ where } \lambda = \sqrt{b/a}$$



- Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch
- Filamentation will produce an emittance increase
- In normalised phase space, consider the matched beam as a circle, and the mismatched beam as an ellipse Mismatched
- The emittance after filamentation:

$$\varepsilon_{diluted} = \frac{\varepsilon_{matched}}{2} \left( \lambda^2 + \frac{1}{\lambda^2} \right) \text{ where } \lambda = \sqrt{b/a}$$

 Writing λ as a function of the matched and mismatched Twiss parameters is an exercise in geometry:

$$\varepsilon_{diluted} = \frac{1}{2} \left( \frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left( \alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2 + \frac{\beta_2}{\beta_1} \right) \varepsilon_{matched}$$

#### See appendix for derivation



- A numerical example...
- Consider *b* = 3*a* for the mismatched ellipse:

$$\lambda = \sqrt{b/a} = \sqrt{3}$$

$$\varepsilon_{diluted} = \frac{\varepsilon_{matched}}{2} \left( \lambda^2 + \frac{1}{\lambda^2} \right)$$

$$=1.67\varepsilon_{matched}$$

## See appendix for blow-up from dispersion mismatch



### Optics measurement with screens

- A profile monitor is needed to measure the beam size
  - e.g. beam screen (luminescent) provides 2D density profile of the beam
- Profile fit gives transverse beam size: σ
- If optics (Twiss parameters) are known, ε can be calculated from a single screen:



ABT Introductory Lectures – CERN Accelerator School, Budapest, Hungary, 2016

#### **Optics measurement with 3 screens**

- Assume 3 screens in a dispersion free region and that the emittance is constant along the line:  $\varepsilon = \frac{\sigma_0^2}{\beta_0} = \frac{\sigma_1^2}{\beta_1} = \frac{\sigma_2^2}{\beta_2}$
- Measurements of  $\sigma$  at s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub> plus knowledge of the two transfer matrices M<sub>12</sub> and M<sub>13</sub> allows determination of  $\epsilon$ ,  $\alpha$  and  $\beta$



## Summary

- Depending on the injection/extraction concept we chose a dedicated combination of septa (spatial separation of fields) and kickers (temporal separation of fields)
- Transfer lines present interesting challenges and differences from circular machines:
  - No periodic condition mean optics is defined by transfer line element strengths <u>and by initial beam ellipse</u>
  - Matching is subject to many constraints
  - Emittance blow-up is an important consideration, and arises from several sources: mis-steering, mismatch (betatron and dispersion)
  - Measurement of beam parameters is important for ensuring beams are well matched between machines and/or experiments

## Summary

- Depending on the injection/extraction concept we chose a dedicated combination of septa (spatial separation of fields) and kickers (temporal separation of fields)
- Transfer lines present interesting challenges and differences from circular machines:
  - No periodic condition mean optics is defined by transfer line element strengths <u>and by initial beam ellipse</u>
  - Matching is subject to many constraints
  - Emittance blow-up is an important consideration, and arises from several sources: mis-steering, mismatch (betatron and dispersion)
  - Measurement of beam parameters is important for ensuring beams are well matched between machines and/or experiments

# Thank you for your attention

## **Bibliography for Septa**

- M.J. Barnes, J. Borburgh, B. Goddard, M. Hourican, "Injection and Extraction Magnets: Septa", CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009, arXiv:1103.1062 [physics.acc-ph].
- J. Borburgh, M. Crescenti, M. Hourican, T. Masson, "**Design and Construction of the LEIR Extraction Septum**", IEEE Trans. on Applied Superconductivity, Vol. 16, No. 2, June 2006, pp289-292.
- M.J. Barnes, B. Balhan, J. Borburgh, T. Fowler, B. Goddard, W.J.M. Weterings, A. Ueda, "Development of an Eddy Current Septum for LINAC4", EPAC 2008.
- J. Borburgh, B. Balhan, T. Fowler, M. Hourican, W.J.M. Weterings, "Septa and Distributor Developments for H- Injection into the Booster from Linac4", EPAC 2008.
- S.Bidon, D.Gerard, R.Guinand, M.Gyr, M.Sassowsky, E.Weisse, W.Weterings, A.Abramov, A.Ivanenko, E.Kolatcheva, O.Lapyguina, E.Ludmirsky, N.Mishina, P.Podlesny, A.Riabov, N.Tyurin, "Steel Septum Magnets for the LHC Beam Injection and Extraction", Proc. of EPAC 2002, Paris.
- J.M. Cravero & J.P. Royer, "The New Pulsed Power Converter for the Septum Magnet in the PS Straight Section 42", CERN PS/PO/ Note 97-03, 1997.
- J.P. Royer, "High Current with Precision Flat-Top Capacitor Discharge Power Converters for Pulsed Septum Magnets", CERN/PS 95-13 (PO), 1995.
# **Bibliography for Kickers**

- M.J. Barnes, L. Ducimetiére, T. Fowler, V. Senaj, L. Sermeus, "Injection and extraction magnets: kicker magnets", CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009, arXiv:1103.1583 [physics.acc-ph].
- D. Fiander, K.D. Metzmacher, P.D. Pearce, "**Kickers and Septa at the PS complex**, CERN", Prepared for KAON PDS Magnet Design Workshop, Vancouver, Canada, 3-5 Oct 1988, pp71-79.
- M.J. Barnes, G.D. Wait, I.M. Wilson, "Comparison of Field Quality in Lumped Inductance versus Transmission Line Kicker Magnets", EPAC 1994, pp2547-2549.
- G. Kotzian, M. Barnes, L. Ducimetière, B. Goddard, W. Höfle, "Emittance Growth at LHC Injection from SPS and LHC", LHC Project Report 1116.
- J. N. Weaver et al., "Design, Analysis and Measurement of Very Fast Kicker Magnets at SLAC," Proc of 1989 PAC, Chicago, pp. 411–413.
- L. Ducimetière, N. Garrel, M.J. Barnes, G.D. Wait, "The LHC Injection Kicker Magnet", Proc. of PAC 2003, Portland, USA, pp1162-1164.
- L. Ducimetière, "Advances of Transmission Line Kicker Magnets", Proc. of 2005 PAC, Knoxville, pp235-239.
- W. Zhang, J. Sandberg, J. Tuozzolo, R. Cassel, L. Ducimetière, C. Jensen, M.J. Barnes, G.D. Wait, J. Wang, "An Overview of High Voltage Dielectric Material for Travelling Wave Kicker Magnet Application", proc. of 25th International Power Modulator Conference and High Voltage Workshop, California, June 30-July 3, 2002, pp674-678.
- J. Bonthond, J.H. Dieperink, L. Ducimetikrre, U. Jansson, E. Vossenberg, "**Dual Branch High Voltage Pulse Generator for the Beam Extraction of the Large Hadron Collider**", 2002 Power Modulator Symposium, Holloywood, USA, 30 June-3 July 2002, pp114-117.

### Example parameters for kickers at CERN

| Kicker<br>Location | Beam<br>momentum<br>(GeV/c) | #<br>Magnets | Gap Height<br>[V <sub>ap</sub> ] (mm) | Current<br>(kA) | Impedance<br>(Ω) | Rise<br>Time<br>(ns) | Total<br>Deflection<br>(mrad) |
|--------------------|-----------------------------|--------------|---------------------------------------|-----------------|------------------|----------------------|-------------------------------|
| CTF3               | 0.2                         | 4            | 40                                    | 0.056           | 50               | ~4                   | 1.2                           |
| PS Inj.            | 2.14                        | 4            | 53                                    | 1.52            | 26.3             | 42                   | 4.2                           |
| SPS Inj.           | 13/26                       | 16           | 54 to 61                              | 1.47/1.96       | 16.67/12.5       | 115/200              | 3.92                          |
| SPS Ext.<br>(MKE4) | 450                         | 5            | 32 to 35                              | 2.56            | 10               | 1100                 | 0.48                          |
| LHC Inj.           | 450                         | 4            | 54                                    | 5.12            | 5                | 900                  | 0.82                          |
| LHC Abort          | 450 to 7000                 | 15           | 73                                    | 1.3 to 18.5     | 1.5 (not T-line) | 2700                 | 0.275                         |

#### Example parameters for septa at CERN

| Septum<br>Location          | Beam<br>momentum<br>(GeV/c) | Gap Height<br>(mm) | Max.<br>Current (kA)   | В (Т)      | Deflection<br>(mrad) | Septum<br>thickness<br>(mm) |
|-----------------------------|-----------------------------|--------------------|------------------------|------------|----------------------|-----------------------------|
| LEIR/AD/CTF<br>(13 systems) | Various                     | 25 to 55           | 1 DC to<br>40 pulsed   | 0.5 to 1.6 | up to 130            | 1.7 - 19.2                  |
| PS Booster<br>(6 systems)   | 1.4                         | 25 to 60           | 28 pulsed              | 0.1 to 0.6 | up to 80             | 1 – 15                      |
| PS complex<br>(8 systems)   | 26                          | 20 to 60           | 2.5 DC to 33<br>pulsed | 0.2 to 1.2 | up to 55             | 3 - 11.2                    |
| SPS Ext.                    | 450                         | 20                 | 24                     | 1.5        | 2.25                 | 4.2 - 17.2                  |

ABT Introductory Lectures – CERN Accelerator School, Budapest, Hungary, 2016

#### Blow-up from betatron mismatch

• General betatron motion:

$$x_2 = \sqrt{a_2\beta_2}\sin(\varphi + \varphi_o), \quad x'_2 = \sqrt{a_2/\beta_2}\left[\cos(\varphi + \varphi_o) - \alpha_2\sin(\varphi + \varphi_o)\right]$$

• Applying the normalisation transformation for the matched beam...

$$\begin{bmatrix} \overline{\mathbf{X}}_{2} \\ \overline{\mathbf{X}'}_{2} \end{bmatrix} = \sqrt{\frac{1}{\beta_{1}}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_{1} & \beta_{1} \end{bmatrix} \cdot \begin{bmatrix} x_{2} \\ x'_{2} \end{bmatrix}$$

...an ellipse is obtained in normalised phase space:

## Blow-up from betatron mismatch

From general ellipse properties one can write:

$$a = \frac{A}{\sqrt{2}} \left( \sqrt{H+1} + \sqrt{H-1} \right), \quad b = \frac{A}{\sqrt{2}} \left( \sqrt{H+1} - \sqrt{H-1} \right) \quad \text{where} \quad H = \frac{1}{2} \left( \gamma_{new} + \beta_{new} \right)$$

Giving:

$$\lambda = \frac{1}{\sqrt{2}} \left( \sqrt{H+1} + \sqrt{H-1} \right),$$
$$\frac{1}{\lambda} = \frac{1}{\sqrt{2}} \left( \sqrt{H+1} - \sqrt{H-1} \right)$$

The co-ordinates of the mismatched beam can be expressed:

$$\overline{\mathbf{X}}_{new} = \lambda \cdot \mathbf{A} \sin(\phi + \phi_1), \qquad \overline{\mathbf{X}}_{new} = \frac{1}{\lambda} \mathbf{A} \mathbf{C}$$





ABT Introductory Lectures - CERN Accelerator School, Budapest, Hungary, 2016

### Blow-up from betatron mismatch

• We can evaluate the square of the distance of a particle from the origin as:

$$\mathsf{A}_{new}^2 = \overline{\mathsf{X}}_{new}^2 + \overline{\mathsf{X}'}_{new}^2 = \lambda^2 \cdot \mathsf{A}_0^2 \sin^2(\phi + \phi_1) + \frac{1}{\lambda^2} \mathsf{A}_0^2 \cos^2(\phi + \phi_1)$$

 The new emittance is the average for all particles with positions Ai over all phases:

$$\varepsilon_{diluted} = \frac{1}{2} \left\langle \mathbf{A}_{new}^{2} \right\rangle = \frac{1}{2} \left( \lambda^{2} \left\langle \mathbf{A}_{0}^{2} \sin^{2}(\varphi + \varphi_{1}) \right\rangle + \frac{1}{\lambda^{2}} \left\langle \mathbf{A}_{0}^{2} \cos^{2}(\varphi + \varphi_{1}) \right\rangle \right)$$

$$= \frac{1}{2} \langle \mathbf{A}_{\mathbf{0}}^{\mathbf{2}} \rangle \left( \lambda^{2} \langle \sin^{2}(\varphi + \varphi_{1}) \rangle + \frac{1}{\lambda^{2}} \langle \cos^{2}(\varphi + \varphi_{1}) \rangle \right) = \frac{1}{2} \varepsilon_{0} \left( \lambda^{2} + \frac{1}{\lambda^{2}} \right)$$

• If we're feeling diligent, we can substitute back for  $\lambda$ :

$$\varepsilon_{diluted} = \frac{1}{2}\varepsilon_{matched} \left(\lambda^2 + \frac{1}{\lambda^2}\right) = H\varepsilon_{matched} = \frac{1}{2}\varepsilon_{matched} \left(\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2}\right)^2 + \frac{\beta_2}{\beta_1}\right)$$

where subscript 1 refers to the matched and 2 refers to mismatched cases

ABT Introductory Lectures – CERN Accelerator School, Budapest, Hungary, 2016

# Blow-up from dispersion mismatch

- Dispersion mismatch will also introduce emittance blow-up through filamentation much like optical mismatch
- Introducing normalised dispersion:
- With a momentum error of  $\delta = \frac{\Delta p}{p}$ the mismatch is:  $\overline{X} = \overline{X} + \Delta D_n \delta$   $\overline{X}' = \overline{X}' + \Delta D'_n \delta$
- Rotating the reference frame to a convenient reference (see plot):

$$\overline{Y} = \overline{Y} + \sqrt{\Delta D_n^2 + \Delta D_n^2} \delta \qquad \overline{Y}' = \overline{Y}'$$

• And averaging over a distribution of particles, one can write the emittance blow-up as:

$$\varepsilon_{diluted} = \varepsilon_{matched} + \frac{\Delta D_n^2 + \Delta D_n'^2}{2} \delta_{rms}^2$$

$$D_n = \frac{D}{\sqrt{\beta}}$$
  $D'_n = \frac{\alpha}{\sqrt{\beta}}D + \sqrt{\beta}D'$ 



### Optics measurement with 3 screens

• Remember how we propagate Twiss parameters from  $s_0$  to  $s_1$ :

$$\begin{bmatrix} \beta_{1} \\ \alpha_{1} \\ \gamma_{1} \end{bmatrix} = \begin{bmatrix} C_{1}^{2} & -2C_{1}S_{1} & S_{1}^{2} \\ -C_{1}C_{1}' & C_{0}S_{0}' + S_{0}C_{0}' & -S_{1}S_{1}' \\ C_{1}'^{2} & -2C_{1}'S_{1}' & S_{1}'^{2} \end{bmatrix} \cdot \begin{bmatrix} \beta_{0} \\ \alpha_{0} \\ \gamma_{0} \end{bmatrix}$$

• Giving us three simultaneous equations and three unknowns  $\varepsilon_0$ ,  $\alpha_0$  and  $\beta_0$ :

$$\beta_{0} = C_{0}^{2} \cdot \beta_{0} - 2C_{0}S_{0} \cdot \alpha_{0} + S_{0}^{2} \cdot \gamma_{0}$$

$$\beta_{1} = C_{1}^{2} \cdot \beta_{0} - 2C_{1}S_{1} \cdot \alpha_{0} + S_{1}^{2} \cdot \gamma_{0}$$

$$\beta_{2} = C_{2}^{2} \cdot \beta_{0} - 2C_{2}S_{2} \cdot \alpha_{0} + S_{2}^{2} \cdot \gamma_{0}$$

$$\times \mathbf{\epsilon}$$

$$\sigma_{0}^{2} = \beta_{0}\varepsilon$$

$$\sigma_{0}^{2} = \beta_{0}\varepsilon$$

$$\sigma_{1}^{2} = C_{1}^{2} \cdot \beta_{0}\varepsilon - 2C_{1}S_{1} \cdot \alpha_{0}\varepsilon + S_{1}^{2} \cdot \frac{(1 + \alpha_{0}^{2})}{\beta_{0}}\varepsilon$$

$$\sigma_{1}^{2} = C_{1}^{2} \cdot \beta_{0}\varepsilon - 2C_{1}S_{1} \cdot \alpha_{0}\varepsilon + S_{1}^{2} \cdot \frac{(1 + \alpha_{0}^{2})}{\beta_{0}}\varepsilon$$

$$\sigma_{2}^{2} = C_{2}^{2} \cdot \beta_{0}\varepsilon - 2C_{2}S_{2} \cdot \alpha_{0}\varepsilon + S_{2}^{2} \cdot \frac{(1 + \alpha_{0}^{2})}{\beta_{0}}\varepsilon$$

• After a bit of algebra... we find:

$$\alpha_{0} = -\frac{\beta_{0}}{2}W \qquad W = \frac{\left(\sigma_{2}/\sigma_{0}\right)^{2}/S_{2}^{2} - \left(\sigma_{1}/\sigma_{0}\right)^{2}/S_{1}^{2} - \left(C_{2}/S_{2}\right)^{2} + \left(C_{1}/S_{1}\right)^{2}}{\left(C_{1}/S_{1}\right) - \left(C_{2}/S_{2}\right)}$$

ABT Introductory Lectures – CERN Accelerator School, Budapest, Hungary, 2016

## Optics measurement with 3 screens

 Some (more) algebra with the above equations and we can finally express the beta function at the first screen:

$$\beta_0 = 1 / \left| \sqrt{\left( \sigma_2 / \sigma_0 \right)^2 / S_2^2 - \left( C_2 / S_2 \right)^2 + W \left( C_2 / S_2 \right)^2 - W^2 / 4} \right|$$

• And therefore also the emittance and the divergence of the beta function:

$$\varepsilon = \frac{\sigma_0^2}{\beta_0} \qquad \qquad \alpha_0 = \frac{\beta_0}{2} W$$

- Other methods of emittance measurement:
  - Extension of the above method to multiple screens: tomography
  - Quad scan: same as above but use one screen and change M<sub>guad</sub> screen
  - Direct measurements (lower intensity/energy beams):
    - slit-grid or pepper-pot, laser "wire" for H- beams