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Dielectrics
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Dielectrics and electric field
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Polarization
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For homogeneous isotropic dielectrics

dielectric susceptibility

polarization  number of electric dipole moment
per volume

electric field “in” the dielectric



Example
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Field internal to the capacitor
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relative permettivity

Material

Vacuum 1

Mica 3-6

Glass 4.7

water 80

Calcium 
copper 
titanate

250000



Electric Displacement
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Field E0 depends only on free charges 

We give a special name: electric displacement

first Maxwell equation

Free charges



Bounded current

3/10/16 G. Franchetti 10

-

-

-

-

+

+

+

+

Suppose that E
is turned on in the 
time 

The polarization changes with time



Bounded current
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The polarization changes with time
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Density of current 
due to bounded charges

It has to be included in the 
Maxwell equation

= number of dipole moments 
Per volume

It is already in the definition 
of 

Single electric 
dipole moment



Magnetic field in matter
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As there are no magnetic charges

Magnetic phenomena are due to “currents”



Magnetic moment
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torque acting 
on the coil

Magnetic moment



Example
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The effect of the magnetic field is to create a torque on the coil

I

A



Magnetic moments in matters
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Orbits of electrons



Intrinsic magnetic moments: 
ferromagnetism
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Spin of electrons



Without external magnetic field
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Random orientation (due to thermal motion)



Without external magnetic field
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dipoles moment of atoms orientates according to the external magnetic field



Magnetization
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B is the macroscopic magnetic 
field in the matter

This surface current produces the magnetic field produced by 
magnetized matter

sheet current

= magnetic susceptibility



Non uniform magnetization
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Non uniform magnetization
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Free currents and bounded currents

3/10/16 G. Franchetti 23

The bounded currents are given by 

This current should be included in Ampere’s Law

Define



Magnetic susceptibility
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this field depends 
on all free and bounded 
currents: NOT PRACTICAL

this field depends
only on the current
that I create

relative permeability

Material

Vacuum 0 1 4π × 10−7

water −8.0×10−6 0.999992 1.2566×10−6

Iron (pure) 5000 6.3×10−3

Superconductors -1 0 0



Maxwell equation in matter
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Summary of quantities
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Boundary conditions
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Boundary conditions
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1

2

Stokes



Summary boundary conditions
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Waves
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At  t=0
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Waves
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x

sin(x-3)
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At time  t

the wave travels of 

wave
velocity



Waves
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At fixed x

y oscillates with period 

sin(x)
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Wave equation
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The vector gives the direction of propagation of the wave

the velocity of propagation is 



Electromagnetic waves
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Maxwell equations in vacuum

speed of 
light !!



Planar waves
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From 1st equation

The electric field is orthogonal to the direction of 
wave propagation

Starting ansatz
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From 3rd equation

This satisfy the 2nd equation, in fact

Integrating over time 
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The 4th equation is satisfied too



Planar wave solution
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Sinusoidal example

3/10/16 G. Franchetti 39

with

-1

-0.5

0

0.5

1

-2 0 2 4 6 8 10



Poynting vector
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What is the flux of energy 
going through the surface A ?
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Electric field 
density energy

Magnetic field 
density energy

Energy through A in time Dt



Energy flux: Poynting vector
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Energy flux

But for EM wave 

Poynting vector
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Interaction with conductors
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EM wave in a conducting media
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Similar relation is found for H

Ohm’s Law
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Starting ansatz



Wave propagation
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It depends on 

If then

wave is un-damped

Bad conductor

if then

Good conductor



Skin depth
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(drawing for not ideal conductor)
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consider copper which has an electrical
conductivity , 
and  

f δ

60 Hz 8530 μm

1 MHz 66.1 μm

10 MHz 20.9 μm

100 MHz 6.6 μm

1 GHz 2.09 μm



Transmission, Reflection
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E0i

H0i

E0rH0r

MaterialVacuum

E0t

H0t
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At the interface between the two region the boundary condition are
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Perfect conductor

Perfect dielectric

Perfect dielectric Perfect conductor



Snell’s Law
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1
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EM in dispersive matter
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+
-

s

Response to “external” electromagnetic field needs “time”

Electric field Magnetic field
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Wave velocity depends on The relation for  k and 

becomes more complicated because
v depends on omega

Waves at different frequencies travels with different velocity  they “spread” 

Usually a pulse of electromagnetic wave is composed by several waves of different
frequency -



Phase velocity and group velocity
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A general wave can be decomposed in sum of harmonics

If is independent from the wave does not get “dispersed”

If is peaked  around k0 then can be expanded around 
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Fast wave Slow wave modulating the
fast wave

Speed 



Example
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15 harmonics: 
each with different 
wave number, and 
wavelength

Wave packet

is the “group velocity”.  
The speed of the wave packet
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Waveguides
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Walls: 
Perfect conductor

Inside the guide: 
Perfect dielectric

Boundary condition at the walls 
x

y

z

Ex(0,x,z) = 0
Ex(x,a,z) = 0

Ey(0,y,z)=0 
Ey(b,y,z)=0

a

b



In the perfect dielectric
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Maxwell equations Working
ansatz

Dispersion 
relation



In the perfect dielectric
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Only  E0z, and H0z are in the partial derivatives:  special solutions

Transverse electric wave TE  E0z = 0 Transverse magnetic wave TM  H0z = 0



TE waves
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Equations

If you know H0z, then you know everything

These eqs. + 

Automatically 

Is satisfied



Boundary conditions: modes
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Ex(0,x,z) = 0
Ex(x,a,z) = 0

Ey(0,y,z)=0 
Ey(b,y,z)=0

Search for the solution

Boundary conditions



Cut-off frequency
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Only if k > 0 the wave can propagate without attenuation

Speed of 
wave

Cut-off frequency

Given the fix frequency of a wave, only a certain number of modes can 
exists in the waveguide

Dispersion
relation
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If a > b consider the TE10 mode
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If a > b consider the TE10 mode
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visually TE
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E0y

H0x

k
H0z

kx

E0y

ky

E0x

H0z

Standing 
wave

Standing 
wave
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Cavity
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Walls: 
Perfect conductor

Inside the guide: 
Perfect dielectric

Boundary condition at the walls 
x

y

z

In every wall the 
tangent electric field Is zero

a

b

c



Cavity (rectangular)
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Standing 
wave

Standing 
wave

Boundary condition

Normal modes are only standing waves



Electromagnetic standing waves
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Dispersion relation



Final Observations
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Potential vector was here presented for static field

However one can also re-write the Maxwell equation in terms of  
the potential vector, and find electromagnetic wave of ”A”

Potential vector

Internal degree of freedom: Gauges

Electric potential 

( A is defined not 
In unique way)

( V is not unique)
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Reference frame ?

I

v

F
I

v

F

v

The particle
does not move..
Is there a force F ?
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Reference frame ?

v

Maxwell equations
tells me the speed 
is c

E0i

H0i

Maxwell equations
tells me the speed 
is c ( but I move, mm)
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