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Beam Gas Scattering

Why is Vacuum Important for Synchrotron Light Sources

Residual gas contributes mainly by elastic and inelastic scattering
on nuclei fo beam losses.

Elastic Scattering Inelastic Scattering
2 p.p 1 1
L Z BB p 2P
2 2 T
z-Elast y H iz P/ P
P = Residual gas pressure
. . . . Z = Residual gas atomic number
To achieve beam lifetimes in the |, - Lorentz factor
range of 10 hours a residual gas | - Vertical half aperture
pressure in the level of 1 nTorr is | 5 - Average beta function
required. B = Beta function at aperture
Ap/p =  Momentum acceptance
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Classification of Vacuum Systems
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- The main gas sources of vacuum systems are desorption, permeation,
vaporization and leaks.

* In the UHV regime special designs for the vacuum chambers are required
(all metal techniques) to avoid permeation, vaporization and leaks.

*  Inawell designed UHV system the pressure is determined by residual gas
molecules which are desorbed from all inner parts of the vacuum
chamber.
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Desorption

Thermal and Photon Induced Desorption

Beam Current and Pressure vs Time, SLS Sector 03, 24th March 2002 Pressure vs Beam Current, SLS Sector 03, 24th March 2002
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+ The gas pressure in a synchrotron light source is dominated by the
synchrotron radiation induced desorption.

- The photons of the synchrotron radiation hit the vacuum chamber
walls and create photoelectrons.

- These photoelectrons can desorb residual gas molecules twice, once
when leaving the chamber surface and once when striking the

vacuum chamber again.
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Desorption

Thermal Desorption

The surfaces of the vacuum chambers are covered with several
layers of molecules of different gas species which are chemically or
physically adsorbed.

Om=q-4 .

Specific desorption rate

Vacuum chamber surface area

The thermal desorption rates are depending on the chamber
material, his history, and how the surfaces are cleaned.

For clean stainless steel chambers specific outgassing rates of
q=1-10"12 Torr | s't cm-2 are achieved after bake-out at 250°C. (In
unbaked systems the rate is 5 to 10 times higher).
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Desorption

Photon Induced Desorption

Q, =kTn,T

Photon stimulated desorption yield

Photon flux

Boltzmann constant

Temperature

Total Photon Flux from all Dipole Magnets

[ photons/s|=8.06-10 - E|GeV' |- 1| A]

Linear Photon Flux Density

dl’ A6
1ﬂLin: ]
do AL

CAS Rriinnen 2-O hilv 2002 Vacinim A<csnecte | Schiilz

AD

AL

Beam energy
Beam current

Horizontal opening angle

Length of SR illuminated vacuum
chamber
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Desorption

Photon Desorption Yield Measurements

Maoleculas | Photon

Maolecules [ Photon
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PSD yields for different materials have bee
measured in dedicated beam line
experiments in several research centers.

AL shows at the beginning a higher
desorption.

At higher doses all the values of material
came more or less to the same results.

1998
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Desorption

PSD Yield Model for CO

~ 001
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O.B. Malyshev, et al, Pressure Distribution

for Diamond Storage Ring, EPAC 2002
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UHV Pumps

UHV Pumps for Synchrotron Light Sources

Capture pumps dominate the UHV and HV region of
accelerator vacuum systems.

Principal pumping mechanism based on chemical
transformation.

Physisorption or gettering produce pumping action.
Titanium is the most used evaporable getter.
Zr and Zr alloys are the most used non-evaporable getters

(NEG).
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UHV Pumps

Sputter Ion Pumps
Magnet

Dy

Ea=
Control Unit
Ti-Cathode
-_----\}f:';_'.'

Anode
.y Penning Cell

CAS Rriinnen 2-O hilv 2002 Vacinim A<csnecte | Schiilz

Sputter-ion pumps use chemical
and ionization pumping effects.

Common designs based on a
Penning cell.

On the cathode impacting ions
sputter away cathode material.

Sputtered titanium flies away
from the cathode onto the
neighboring surfaces and forms
there a getter film.

Stable chemical compound
between getter film and reactive
gas particles (CO, CO2, H2, N2,
02).

The current from the control
unit is proportional to the
pressure.
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UHV Pumps

Sputter Ion Pumps

Standard Diode

Highest pumping speed per unit volume.
Low pumping speed for noble gases (<5% for Ar).

Ti-Calliles

Noble Diode
h H A part of the cathode material is replaced with Tantalum

to achieve a higher pumping speed for noble gases.

Noble gas ions are neutralized and "bounced back" on the
cathode and buried in other parts of the pump.

Energetic neutrals have far greater penetrating depth.

. Triode
h j H Cathode plates are replaced with grids of Ti-strips
Number of neutrals due to glancing incidence is increased.
Cuth i/‘ - HV [ 1 pyumping speed for noble gases of 20-25%.

CAS Rriinnen 2-O hilv 2002 Vacinim A<csnecte | Schiilz Page 11



UHV Pumps

Titanium Sublimation Pump

Ti-filament periodically heated
with high currents.

llament - Ti evaporates and generate a
getter film on the chamber wall
or cooled screen.

Active gas molecules react with
the getter film.

Progressive saturation and
reduction of pumping speed with
time.

Chamber wall
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UHV Pumps

Non Evaporable Getter Pumps
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Gas molecules can be sorbed by a
chemical reaction when they
impinge on the clean metal
surface of the getter material.

To achieve a clean metal surface
the oxide layer must be removed
In an activation process.

For that the getter must be
heated to a certain temperature.

During activation the passivating
layer diffuses into the bulk
material.

The metal surface saturates with
cumulative sorption of gas
molecules and a new oxide layer
will be created.

To achieve the full pumping
speed the NEG must be

reactivated.
Paae 13



UHV Pumps

NEG Strips

water cooling electron channel

APS 5 mm Undulator chamber
ST707 NEG strips
350-450°C activation temperature

High pumping speed and pumping capacity

E. Trakhtenberg, priv. communication
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UHV Pumps

NEG Coatin +  Extruded vacuum chamber (AL)
9 + NEG coating of electron channel

water cooling

water cooling electron channel NEG coating

Dose [photons m ']

10"* 10* 10" 10 1072 1o
i 1 - - i 1

L \ ] * NEG Coating, Ti-Zr-V, 2um

| * Activation temperature 200 °C

! i - High pumping speed and low
desorption rate.

Effective desarption yield
|malecules photon ']

P. Chiggiato, R. Kersevan, Synchrotron
‘ : ~wst—d | radiation-induced desorption from a

Gl L ' NEG-coated vacuum chamber

Vacuum 60, (2001) pp 62 - 72

Diose [mA h)

CAS Rriinnen 2-O hilv 2002 Vacinim A<csnecte | Schiilz Paae 15



Pressure Distribution

Llnear‘ Pump DIS'l'r‘I bUt'O" Linear gas load Q [Torr I/s], with specific molecular
—> x conductance w [m I/s], specific gas load q [Torr I/s m
and specific surface area A [m] .
dP dQ
3 3 0(x) = —w = 4q

S L S dx dx

combination of both formulas  boundary condition:
Longitudinal Pressure Distribution (A=1650 cm2/m, q=5E-12 Torr l/s/cm2, W=11 m l/s) 2

10E-07 T g . Wd P :_Aq d_P 0 P _ﬂ
P3 (5=300 l's; L=8 ) de x| FL = x=0 — S

with L[m]=distance of pumps, S[I/s]=pumping speed
P2 (3=150 Is; L=4 rr}
1.0E-08

Pressure distribution

_ 2
P(x) = Aq(—szwx + %]
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Chamber Design

Materials
Stainless Steel | Aluminum Copper
316 LN Al Mg 4.5 Mn | OFHC/Glidcop™
Yield stress [MNm-2] 63 /55
20°¢/250°C 3157200 e1s 332/ 255
1K1
Thfrm. Cond. [Wm-1K] 15 109 391 / 345
20°C
Electr. Cond. [10-Qm]
20°C 14 36 58/54
Moodulus of Elast. [6Nm-2] 200 7 117/126
20°C
Chamber fabrication S extrusions (extrusions)
edge bending solid blocks
TIG welding brazin
Joining technique e- beam welding TIG welding .
e- beam welding
very easy

CAS Rriinnen 2-O hilv 2002 Vacinim A<csnecte | Schiilz

Paae 17




Chamber Design

Combined Chamber Design

Ante chamber
Crotch photon absorber  Distributed photon absorber

in the bendinc

l\\ KXI \ magnet.
L / \ . Distributed
b = [J / e\ - photon

Ty fam]

pr—— absorber in
=]

\H H — @‘j/ (=] f the straights.

| \\‘\ // : /ﬂﬁ,ﬁ”f |

s o
Lumped pumps

Straight Chamber with

Crotch Absorber Longitudinal Photon Absorber

5 e water. coolinc

Cu absorber
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Chamber Design

Full Ante Chamber Design

Photon flux is
Photon absorber concentrated on
lumped absorbers.

Pumps can be
installed close to
photon absorbers
(the main source o
the gas load).

Dipole Chamber with Cu-shield Straight Chamber

ante chamber e- channel
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Cleaning

Cleaning Steps for Stainless Steel Vacuum Chambers

UHy

,{'lh'l't'inl‘"
= -

u ng
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Wash with a high pressure hot water
(approx. 80°C) jet using a detergent.

Ultrasonically agitated bath of clean ho
solvent.

Vapor wash in solvent vapor.

Cleaning of the chambers in an hot
(60°C) ultrasonic bath with detergent.

Vacuum firing at 950 °C at p < 1-10-5 Tort

Bake-out at 200 °C for a minimum of
24 hours.
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Conditioning

In-Situ Bake-Out or Pre-Bake?

Vacuum chamber

P~

heater and thermal
insulation
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A classical in-situ bake-out system
consists of resistive heaters and
thermal insulation.

Larger magnet gaps are required.

High costs for in-situ bake-out system
and magnets.

Improvements mostly in the start up
phase of a light source.

Special pre-bake system at SLS, and
CLS.
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Conditioning

SLS Bake-Out Procedure

- A

* Vacuum sections assembled outside the storage ring in a clean room and baked at 250 °
in an oven.

At room temperature each vacuum section typically reached within one day a base
pressure in the low 10-1° mbar range.

+  Installation of complete vacuum sections into the ring under vacuum.

*  The straight sections are pumped down in the tunnel and baked-out with a modular oven
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