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Outline:

• Free Electron Laser by finger physics

• Free Electron Laser:  Low Gain

• Free Electron Laser: High Gain, Start-up from noise (SASE)

• Experimental realization, technical challenges, future plans
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Peak (instantaneous) power of accelerated charge q
is Lorentz-invariant:
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Free-Electron Laser:
Provides mechanism to concentrate electrons into bunches of length < lrad

recovers factor N in power ! 

Schematic of a (single-pass) free electron laser (FEL)
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Basic principle of a
Free-Electron Laser (FEL)

A) Due to oscillation in undulator field, 
electron velocity receives 
(transverse) component parallel to 
electric field vector of e.m. wave
electrons may loose or gain energy, 
depending on relative phase between 
electron oscillation and e.m. wave.
For a certain combination of 
parameters, this effect is stationary 
within the electron bunch   
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B) Modulation of electron energy leads 
to longitudinal density modulation of 
electron bunch at the optical 
wavelength. Thus, radiation starts to 
scale ~ N2 , eventually leading to 
exponential growth of rad. power.
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Basic theory of free electron laser
1) Low gain approximation = 
we assume an initial, external e.m. field that changes only slightly
(few % in power) during FEL process

Step 1: electron motion in undulator
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One solution (prove it!) is a periodic, helical motion:
longitudinal motion: v =const.,    z  v t ct= = β (1)

( )i x x i xexp cos sin⋅ = + ⋅
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External electromagnetic wave moving parallel to electron beam (i.e. in z-direction):
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Change of electron energy in presence of undulator and wave:
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The energy dE is taken from or transferred to the radiation field. For most frequencies, dE/dt
oscillates very rapidly. A significant energy transfer will only be accumulated if the
phase difference      between particle motion and e.m. wave stays constant with time.
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We have seen what happens on resonance. 
For particles slightly off resonance energy, the phase      will slip. By how much?
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This is a pendulum equation in the
phase space:

electrons with little deviation from 
synchronous phase or from resonance 
energy perform periodic oscillation. 

Identical to synchrotron oscillation, 
but „bucket“ length is now the optical wavength!
Particles within separatrix get bunched
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Gain (or loss) in field energy 
per undulator passage,depending 
on where to start in phase space

∆γ =
γ-γres

Interpretation of separatrix: 
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Solution by iteration:   Ansatz:  z = z z  ,where z  is the higher order term.
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Madey-Theorem

To first order in the iteration, there is no net gain (G=0), because motion in phase space is 
(almost) symmetric: As many particles move up as down.
In second order it is seen however that, for positive ∆γ , the motion of particles with positive
phase goes more rapidly downwards than the motion of the others goes upwards.  

The line shape function of low gain FEL emission is 
the derivative of the line shape of spontaneous undulator radiation 
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Ψ

∆γ =
γ-γres

∆γ

Gain

e.m. field is amplified if electron energy is slightly above resonance

Phase space simulation of low gain FEL 
E slightly above resonance 
See electron bunch losing energy in averave
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For applications, a few % power gain (i.e. a low gain FEL) don’t seem to be of interest.
However, with a pair of mirrors, one can multiply the gain, if on each round trip of radiation
there is a fresh electron bunch available.
After N round trips, Gtotal = GN , and the e.m. field is so strong that microbunching is almost
perfect.  saturation

Very nice scheme. 
But what if we want wavelength < approx. 200nm where no good mirrors exist?

courtesy R. Bakker

Only few % of radiation
intensity is extracted per
electron passage (mirror
reflectivity) to keep stored
field high
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Reflectivity of most surfaces at normal incidence drops drastically
at wavelengths below 100 – 200 nm.
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2)  High gain FEL = 
we take into account that the initial, external e.m. field changes during FEL process

Maxwell equations
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e.m. fields are generated by charges and currents.

For a purely transverse e.m. field we get:
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The term 4 ⊥π∇ ρ can be neglected, because its 
contribution to radiation generation is small in all 
practical cases see Ref. 5, Chapter 4.1.
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A)  What can we say about the e.m. field     ?
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Closely following Ref. 3 Saldin et al.
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Electromagnetic field amplitude is generated by time dependent current
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Maxwell Eq.

purely transv.

slowly varying
ampl. & phase (6)

Kinematic 
Eqs. in γ/Ψ

Vlasov Liouville

Space 
charge

Evolution of 
current density (8)

Maxwell Eq.: 
Space charge Ez j1 Etrans

Eq.         ff:
self-consistent integro-differential Eq.
For arbitrary inital energy distribution

Cold beam

3rd order differential Eq.

Major steps to derive the 3rd order Diff. Eq. for High Gain FEL

(10)

equation

approximation step
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df f f f= 0  (also called Vlasov equation)
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∂ ∂ ∂Ψ ∂ ∂γ
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A consequence of Hamiltonian mechanics is Liouville's Theorem, 
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B) What can we say about the current density     ?j⊥

is determined by initial charge distribution and its evolution in presence of e.m. and undulator field.
We know that electron dynamics is governed by Hamiltonian 
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Applying a canonical transformation we can change from canonical pair of coordinates, z/p  to  

H p z t p c q q A m cAA
 A  A

q
.

/

/

( , , )
,

⊥

Ψ γ

 = − + + + +  φ
φ

( )L L
u L L

2
02 2

0 0

(actually  but  is constant)  k k z t  m  kinetic energy of electron.
m m

, c
c c

/ , ,
ω ω

Ψ γ Ψ = + − ω γ⋅



2-9 July 2003 J. Rossbach: CERN acc.school, Brunnen: Linac FELs 20

0 1 0Ansatz: f(z, , ) f f z   i.e. we assume a density modulation at the optical wavelength, 
growing with z (in a way to be calculated).

( ) ( , )cos( )γ Ψ = γ + γ Ψ + ψ

1 1 010 0f fi i i i
1 0 2 2

i
z z s z

f i
12 f z e e e C C e C C

Similar for space charge f
From here on, we keep all expressions on space charge in 

orce:  E
blu

C

f

e

e

z

z

z C

Ψ+ψ − Ψ+ψ Ψ Ψ

Ψ

ψγ Ψ + ψ = + = + = +

= Ψ + ψ = +

γ( ) ( )( , )cos( ) . . . .

E ( )cos( ) E ( ) . .

( , )

%

%

e color.

( )E E

0
E2

0 0

i i i i1 1
1 1

z
2

0

i i
z z

2
L

3
0

2
L

3

i i i0

0

2
0 1

2
0 0 0

q Kf f f(
z m c

f f
e e ( i

1 KC
c

1 KC
c

q

m c

q e e
m

f e if e
z z

q K f f fi e e e
2m cc

( ) ( )

E) ( sin E

(E E

( ) )

)( )

E )

∗
Ψ − Ψ Ψ ∗ − Ψ

Ψ +ψ − Ψ +ψ Ψ ∗ − Ψ Ψ

∂ ∂ ∂
+ + − Ψ + ψ + =

∂ ∂Ψ ∂γγ

∂ ∂
+ + − +

∂ ∂

  ∂ ∂ ∂
+ − + + + 

∂γ ∂γ γ

ω +
+ ∆



γ
γ

ω +
+ ∆


+

γ
γ

% %
% %

%
%

%
% E

E E i i
z

ii1
0 0

i ii 0
2

L 0 01 1
1 2 2

0 0 0
z z2 2

0
3
0 0 0

e          (use e

q K f q Kf f
e i( f i i e e

z 2m c 2m
q q e e

c

c

1 KC
c c m

c

c

0

m
( ) ( )E ) (E E )

E E )

E E) ( ( )

. .

∗

Ψ ∗ − Ψ

ψ− Ψ

Ψ +ψ − Ψ +ψΨ

 
  = =
 ∂γ 

  ∂∂ ∂ + + + + − + +  ∂ ∂γ ∂γ γ γ  

ω +
+

+

+∆
γ 

=

γ % % %

%

%% %
%

{ }
0

0 0
2

L
3
0

2
0

1 z
1

2
0

Thus,  0
q

m
q K ff i( f i 0

z 2m
C

c
1

c
K

c
E) E( )= ≈

ω ++ ∆
∂∂

γ
γ

+ + + =
∂ ∂γγ

%%
% %
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f

ψ

E

f(z, , )γ Ψ
2

o
12

example density function:

f f
2

( )exp cos
γ

γ − γ
= + Ψ

σ

[ ]

2
L

3
0

001
z21 2

0 0
z

0

0

1

q z Kf z df(z)f z i 0 is a diff. eq. in z of the type f
f

g zz
z dz2m c

A solution is  f(z)= z z dz   (prove it!)

Thu

q z

s: f z

1 K

g

m c

z

i(C i
c

i

∂ γ
+ γ + + = + =

∂ γ
ω +

+ ∆γ
  ∂ γ
  ∂γ 

′

α
γ

′ ′−α∫

E ( )( , ) ( , ) ( )

exp (

(

( ) )

(

() ) ) )E (%
%%

%

%
z

0
12

0 00
z 3

0
2

0

2
0 Lqq z K

dz i z z  ;    f z1 K c c
2m

i(Cz
m c c

f
c

∗  ∂ γ
+  ∂γ

′  
′ ′γ = − γ = γ 

ω +
+′ γ


∆

γ∫
E ( ), ) exp ( ) () , )E . .(( ) )%
%

%

i i i i
z z 0 1 0 11 1

We can now calculate the current density  
j v c qc f( f zz, , )d qc f d e qc e qc f j j e j ed z d( ,( ) ( , )) Ψ − Ψ ∗ Ψ ∗ − Ψ= ρ ≈ ρ = γ Ψ γ = γ γγ γ + + = + +γ γ∫ ∫ ∫ ∫ %% % %

( )

( )

( ) ( )

u L L

i i
0 1 1i iz

L 0 0 0
0 0

1

i i
0 L 1 L 1

0

k k z t

j j e j ejK KWith this definition, Eq.(6) reads 2k z  e  e  
z t t

(use  and note that j  is "almost" independent of time) 
K i j e i j e

Ψ ∗ − Ψ

∗ Ψ Ψ

Ψ ∗ − Ψ

Ψ = + − ω

∂ + +∂∂ − = µ = µ = ∂ γ ∂ γ ∂ 

≈ µ − ω + ω
γ

E ( )
% %

%

%

% % ( )

( )

i 2iL L
0 1 1 0 1

0 0

L
0 1 L 0

0

K K
e i j e j i j   

K
                                             and equally:   i j 2k z

z

Ψ Ψ ∗ ∗ω ω  = µ − + ≈ µ  γ γ

ω ∂
µ =

γ ∂

,

E

% % %

%% (10)

(9)
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2
0 0

0 1 1
0 0 1

z2 2
0 0 0 L

2 3
0 0 0 01 0

z2
0

cK Kqc
z i j i f z d

z 2 2

Kqc q z K f 1 Ki d dz i i(q z
m

C z z
2 c2m c c
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E ( ) ( ) exp )( )E ( )

∞

∞

µ µ∂
= = γ γ =

∂ γ γ

 ′  µ ∂ γ ω +′ ′γ + + ∆γ −   γ ∂γγ γ 
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∫

∫ ∫
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%
%

( )

( ) ( ) ( )

i
z z

2
0

z 1
L

2
0 z z 0 zz

 

For our assumption on the space charge field:  long. component of 1st Maxwell Eq.rez e C C  ,

i c
 z j .

ads 

(note = =0)    H 0 j   or    z c j     thus:  
x y t t

With 

   

Ψ

∂ ∂ ∂ ∂

= +

µ
≈ −∇ × = = + ε = −

∂ ∂ ω
µ

∂ ∂
E

E E .

E

.

E

%

% %

( ) ( )0
0

1 0
0

0
z

L

2
Eq. (10), this is related to the transverse e.m. field: j i z  thus

2 c
z z

K
 

cK zz
γ ∂

≈ −
ω ∂

γ ∂
= −

µ ∂
E ( )E , E% %%%

( )
z2 2 2 2

0
2
0

02
0 L

0 02 2 3
01 L0 0 0

q K c f 1 Kz i d dz i
4 c

zz i(C z z
z c4 c zKm

( )E ( ) E ( ) exp (E ) )
∞ γ ∂ ′

′
   µ ∂ γ ω∂ +′ ′ ′= γ − + ∆γ −   ∂ ∂γγ γ ∂ω  

∫ ∫% % %

This is an integro-differential equation for the complex amplitude of the e.m. field. 
Only for few non-trivial model functions of the initial energy distribution f0, 
the solution can be found analytically, using Laplace-transform technique.

Most simple case: monoenergetic („cold“) beam: 

0 0 0 0 0 0 0 0f n ,  i.e. =0,   with charge density n  i.e. j qc n d qcn( ) ( ) , ( )
∞

−∞

γ = δ γ − γ ∆γ = δ γ − γ γ =∫
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[ ]0
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1 1

2 2
0 0

0 0 0 02
0 0 1
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L

Integration over energy can then be executed, using partial integration:

d dFF d F d    thus:
d d

n q K
z i dz d i 4 c z

zK
z

z 4 m

( ) ( )( ) ( ) ( ) ( ) ,

E ( ) ( ) E )( ) E (

∞ ∞
∞

∞

δ γ − γ γ
γ γ = δ γ γ − δ

γ ∂ ′
′∂ω

γ − γ γ
γ γ

µ∂ ′ ′= γδ γ − γ −
∂ γ

∫ ∫
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dz i z z z iC4 c z z

4 m c
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z
z
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k

( ) exp )( )
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    ω ω+ +′ ′− + ∆γ − =     γ γ     
 µ + ω
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′ ′ ′−Γ − − 
 

γ ∂ ′
′∂ω

∂ ′
′Γ ∂

∫

∫

∫

%

%

%

% [ ]z z

with abbreviations:

)′ −

0

A

0

2 2 2 2 2
3 0 0 L 0 L

5

2 2
2 30
p p 3 2

5
0 0 A 0

A 0 L

4 m c
(I 17kA "Alven current"

q

n q K 1 K j K 1 K
    is called gain 

4 j 1 K 4 ck      k is wave number of longitudinal plasma oscillatio

parameter.
4

K

c c

.

I

n
I

m
)

( ) (

( )

) π
= =

µ

µ + ω π + ω
Γ =

π + γ
= = Γ

γ

= Γ
γ γ

ω
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2

d z dz i z z z iC z z
dz

d d dDeriving one more time:  Prove it, using dz g(z)h(z g(z) dz h(z ) = g(z) dz h(z )+g(z)h(z)
dz dz dz

d  =-
d

k d

z

z
dz

E ( ) E ( ) ( )exp ( )E ( )

)

E
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and once more:

d d =-iC

k d z
dz

k kd dz z
d

i z iC dz i z iC z z
dz dz

d       

z d

    =-iC

z

E E ( ) expE ( )
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∫
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2 2 22
3 3 2
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d d d di z iC iC -2iC i z C
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or rea

k kd

rrang

dz z

:

dz

ing
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E E ( ) ( E E ) E E (E ( ) E ( )) E

   
+ Γ − − + = + Γ − +   

    Γ Γ 
% % % % % %% % %

( )
3 2

2
p

2 3
0 0 0 03 2

A linear third-order differential equation for the complex field amplitude

d d d2iC + C i z
dzdz dz

.

kE E E E ( ),+ − = Γ% % % %

We have ended with an ordinary integro-differential equation:

(11)
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( ) ( )

( ) ( )
( ) ( )

2
3 2

2 3
0 0 0 03 2

3 2 2 3

22 2
p

3

p

2
p

2 2
p

d d d2iC + C i z   
dzdz dz

Ansatz:    A z      characteristic equation:   +2iC + C =i

2iC C iC i

This equation has 3 roots, and the general

k

k

k

 solutio

k

n

E E E E

E exp

+ − = Γ

= Λ → Λ Λ − Λ Γ

 Λ Λ + Λ − + = Λ Λ + + = Γ 

% % % %

( ) ( ) ( )1 1 2 2 3 3

1,2,3

 of Eq.(11) is constructed from three independent partial solutions:

z A z A z A z
The amplitudes A  are determined by the initial conditions.

most simple case: No detuning C 0, an

E( ) exp exp exp= Λ + Λ + Λ

=

%

2
2 0
p 03

A

3 3
1 2 3

0

4 j 1 K
k 0 (i.e. very high beam enerd negligible space charge :  

i 3 i 3 i

gy )
I

i
2 2

( )

; ;+ −
Λ = Γ ⇒ Λ = −

π +
= → γ

γ

Γ Λ = Γ Λ = Γ

( )1 2 3
i 3 i 3The general solution is thus:  z A i z A z A z

2 2
E( ) exp exp exp

   + −
= − Γ + Γ + Γ      

   
All contributions to solution oscillate or vanish, except for:

For an undulator much longer than  1/Γ , this part of solution dominates.

( ) ( ) ( )
2

0 0 0 0 1 02

The most practical ways to specify the intial conditions (in fact we have to determine 3 independent conditions!) 
d d dis to specify z 0 z 0 z 0  or using Eq. 11:  j :  z
dz dzdz

E , E , E , E E = = = ∝ = 
 

% % % % %% ( ) ( ) ( )1 1
d0 j z 0 j z 0
dz

, ,= =% %

(12)



2-9 July 2003 J. Rossbach: CERN acc.school, Brunnen: Linac FELs 26

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 3 3

1 1 2 2 3 3 1 1

We write z A z A z A z  in the form 
dz A z A z A z   with  z z  ,  etc. and write , etc.
dz

E( ) exp exp exp

E E E E E exp E E

= Λ + Λ + Λ

′= + + = Λ =

%

% % % % % % %

With these initial condition, the amplitudes A1,2,3, can be calculated as follows:

1 2 3 1

1 2 3 2 1 2 3

31 2 3z z

The general solution is written in the form

A
  A    Since  are known from characteristic Eq., all matrix elem

A

          ′ ′ ′ ′= ⋅ Λ             ′′ ′′ ′′ ′′     

, ,

E E E E
E E E E
E E E E
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1 2 31
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ents are known.. 
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A
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%
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−
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Thus the General Solution is
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1

Λ Λ Λ + Λ
−
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1 2z

dIn this case:  z 0 = , j z 0 0  j z 0 =0 (i.e. no current modulation at the beginning)   0
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2

2
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The  is given by (prove it!)

1

power gain

coupli

3 3 3G 1 4 z z z
9 2 2 2

1(for z 1/ ):   G 3 z
9

The factor 1/9 describes the 

E( ) E exp

E
cosh cosh cos

E

exp

 +
Γ = Γ  

 

  
= = + Γ Γ + Γ      

→ Γ = Γ

%�

%

�

 of
 the incoming e.m. field to FEL gain p

ng
rocess

(use 1+i 3 2 i  )
3

exp π
=

0 1 2 3 4 5
1

0

1

2

3

44

1−

log g Γz( )( )( )

log h Γz( )( )

50 Γz

(14)

First example: Seeding by input e.m. wave
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( )rad in

1
5 3 2

A
G L 02 2 2 2

0 L u r

1
3 2 3

A r u
G 2

1P P 3 z  .   
9

I c1 1 4 c I L  or,  using    and j  ,  
j K 1 K 1 K3 3

I1 L   is called power gain length.
4 IK3

exp

ˆ
( ) ( )

ˆ

= Γ

 γ π γ
= = ω = ≈ π + ω λ + πσΓ  

 γ σ λ
=  

π 

Phase space simulation 
of SASE FEL

parameter"-FEL"  
4

  :used widely Also u

π
Γλ

=ρ u

G G a in

1 1 1
L N4 3 4 3
λ

ρ = =
π π

1

0

1 0

j
Our treatment was based on the assumption 1. 

j

When j  approaches j  (full modulation), e.m. field cannot further grow and our linear approximati

 needs numerical

on breaks dow

 simulatio

n.

 El c
n

e tr
→

%
�

%

ons lose quickly so much energy that, due to particle motion in phase space, 
e.m. field may even pump some energy back to electron beam. 
Also, the energy spread of the electron beam increases (thus th

undulator tapering
e frequence spread).

Potential cure: 
Detailed numerical analysis needed.

Saturation

(15)

Bunching at SASE FEL
seen in y/z coordinatesPerseo/L. Gianessi

SASE phase space
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ph sat

The typical saturation length is approx. 22 * (power gain length). 
For 0 1  nm, L  may be as long as 200 m..λ = Peak power 1 GW

( )

( ) ( )

1 0 0 0 1
0

0 g 0 g g 0 0 g
0

d cKWe assume j =j  (full modulation). Using Eq. (10) z = i j , we estimate
dz 2

d cKz L L L j L   i.e. major part of radiation is generated i
dz 2

Very rough estimate of saturation power:

µ
γ

= ≈ × ≈ µ
γ

E

E E

%% %

% %

g

u r sat

sat

2
32 22 2r u0 0 0 A

sat sat
r

Note: P  does not depend on beam e

n last gain length.

Plug in L  and get 

 

typical numbers: 

I 1000 A, K=1, 0 03 m,  0 1 mm  P 2 

nergy!

c c c I I KP E Area E
2 2 120

 


= λ = σ =


 


≈



→

ε ε σ µ λ
= × ≈ ≈

σ

ˆ . .

ˆ

sat sat
2

beam o 0

GW

What is the power efficiency? Use Eqs. 15 and 16 to see:

Note: This is the gain of the amplifier, it is NOT the gain compared to the spontaneous emission power. 
The total po

P P=
P m c I q

≈ ρ
γ ˆ /

satwer of spontaneous radiation may be almost as big as P !!

(16)
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SASE FELs:
State of the art

TTF-FEL
DESY

80-120 nm

TTF-FEL
DESY

80-120 nm

LEUTL
APS/ANL
385 nm

LEUTL
APS/ANL
385 nm

September 2000 September 2000 

VISA
ATF/BNL
840 nm

VISA
ATF/BNL
840 nm

March 2001 September 2001

All observations agree with 
theor. expectations/ 
computer models
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TTF FEL

LEUTL

Peak brilliance
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Second example:  NO seeding, but density modulation at undulator entrance

( ) ( ) ( )

( ) ( ) ( )

1 1

0 0 1 0 1
0 0

z 0

dz 0 =0,  j z 0 0 (current modulation at the beginning), j z 0 =0 (modulation is stationary at beginning)  
dz

0
cK cK z 0 = i j z 0 ,  z 0 0        i j
2 2

0

E

E
E E E E

E
=

= = ≠ =

   
′ ′ ′′ ′→ = = µ = = = = µ 

γ γ  ′′  

% % %

%

% % % %% %

%
0

z 0

2

1 2 3

1 2 3 2

1 2 3z z

2

0

0

1 i 1
3 3 3
1 1 1i i
3 3 6 33
1 1 1i i
3 3 6 33

E

E E E E
E E E E exp exp
E E E E

exp exp

=

      ′=         

 
− 

Γ Γ     
     π π   ′ ′ ′ ′= ⋅ − −        Γ Γ           ′′ ′′ ′′ ′′     − π π   

     Γ Γ    

%

% % % %

% % % %

% % % %

( ) ( ) ( ) ( )

0

1 2 3

0 1 2 3 0

1 2 3z 0 z
0

0 1 2 2

i
30

1 i
3 6

0
1 i

3 6

1z = i z i z i z
3 6 6

E
E E E

E E E E exp E
E E E

exp E

E E exp exp exp exp exp

=

 
′ 

Γ    
     π ′ ′ ′ ′ ′⋅ = −      Γ        ′′ ′′ ′′     π  ′−     Γ   

 π π   ′→ Λ + − Λ − Λ   Γ    

%
% % %

% % % % %�

% % %

%

% %

( )2 2
1 1again: For z , solution prevails: z z  .E exp


 
 

 ′Λ − ∝ Λ Γ Γ 
%� �

We don't need any input ("seeding") e.m. wave, current modulation at optical, resonant wavelength is as gi.e. ood!
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Resonance width

p

1. Maximum gain occurs for ON-resona

Analysis of Eq.(12) with k 0, but C 0

nce operation (i.e. for C=0) - in 

 is straight-

contrast to l

forward algebra. It is see

ow gain!

2. Gain drops sign

n

i

 t

f

hat

icantl

= ≠

ph

ph
ph 2

1Because

y when C  is incr

 of  , this means

eased to values corresponding to

 the bandwidth of a High-Gain FEL is 

 

2 2λ ∝

∆γ
= ρ

γ

∆λ ∆γ
= =

λ γγ
ρ

All particles outside this energy 
window don‘t contribute to the gain 
process constructively

(uncorrelated, slice) energy spread
should be 

Serious challenge for short λph, low ρ

High-Gain FEL acts as a narrow-band
amplified with bandwidth 

∆γ
≤ ρ

γ

2∆ω
≤ ρ

ω
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Start-up from noise = 
SASE (self-amplified spontaneous emission
Assume a perfectly smooth initial beam current, i.e.
• no initial current modulation 
• Bunch longer than slippage of radiation w.r.t. electrons per gain length, i.e.
If, in addition, there is no initial e.m. field,  Eq. (13) tells us that E = 0 forever, 
because there is nothing to be amplified. 
BUT:

ph
z

λ
σ >>

ρ

There is still current modulation in the electron beam, because is consists of 
many individual electrons randomly distributed in space and time.
PROOF: Intensity of spontaneous synchrotron radiation.
Eq

( ) ( )
N

0 k
k 1

uvalent current modulation at undulator entrance is given by that 
part of current noise spectrum that falls into the FELamplifies bandwidth.

electron beam current in time domain:  I t q t t   (N =
=

= δ −∑

( ) ( )
N

0 k
k 1

number of electrons)

In frequency domain: I q t , i.w. white noise.

Thus, within the FEL bandwidth, there will also be a white noise of 
current modulation frequencies. FEL amplifier is linear

exp
=

ω = ω∑

 
 all frequency components within bandwidth will be 

amplified in parallel  (linear superposition).
 We expect noisy spectrum at output.

→

→

Exponential growth of 
power at SASE FEL
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ph
coh

coh

While the radiation is amplified, wave packages develop of length l  (coherence length)

They add up with arbitrary phases, but the correlation length remains l

 In time domain, we expect M

λ
≈

πρ

→

.

.

( )bunch

bu h

coh

nc

 wavepackages, with 

2 c We expect M spectral spikes of width 
l

The effective input power of sh

l FWHMbunchlength
M  number

ot noise can be estimate

 

d

o

 

at (Ref. 5, Eq.

f l

 (6.9

ong. modes

5

l
= =

π
→ ∆ω ≈ .

sh beam
c c

c

sat beam
c c

sh sh

3)):  P P . 
N N

with N  0.5 number of electrons within coherence length.
Thus, the SASE power gain is 

P P 1 G= N N
P P 3

it is roughly given by the number of electrons in the coope

≈ ρ
π

×

ρ
= ≈ π

ln

ln ,

sat

Note: This is the gain of the amplifier, it is NOT the gain compared to the spontaneous emission power. 
The total power of spontaneous radiation may be almost as bi

ration length

g as P

. 

!!

What is the frequency width of spikes?

TTF FEL with
M=6 modes  τrad ≈ 100 fs

94 95 96 97 98 99
0

5

10

15

20

Wavelength [nm]
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numerical 
simulation

Equivalent shot noise 
input energy 0.3 pJ

SA
SE

 p
ow

er
 g

ai
n 

~1
0^

8
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We can equivalently say, (a coherent part of) the spontaneous radiation from 
the first part of the undulator serves as input signal.

Self-Amplified Spontaneous Emission (SASE) mode of operation
Most attractive for (short) wavelengths where no mirrors and no 
good (= powerful and tunable) input laser are available.

If you want to seed by external source (e.g. in order to improve
long. Coherence, i.e. to avoid spikes), make sure your input 
power exceeds the equivalent input power of shot noise!

Present world record w.r.t. short wavelengths (100 nm): 
Power gain Prad /Pin = 108 demonstrated at DESY
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3D-Effects
Key issue: Permanent, perfect overlap of e.m. wave and electron beam

Genesis simulation of 3D UCLA

A) Diffraction

2
r r

R
ph R r

Opening angle due to diffraction is described by Rayleigh-Length:
2

L          Diffraction less critical for short wavelengths.
L 2

Alternative approach: Transverse phase space volume of

πσ σ λ
= → σ ≈ ≈

λ σ�

ph
r

ph

r
10

ph r

1This is much smal

 coh. source: 
2

     

ler than  30 

    
2

Example: LCLS:  10 m, 30 m,

rad!

  2 rad

Note: 

Reason: FEL-radiation is no single-charge radiation but has dire

−

≈ µ

λ
σ ⋅ σ =

λ
→ σ =

σ

λ ≈ σ ≈ µ → σ ≈

γ

µ

�

�

�

For SASE, transv. coherence develops during gain process:
It starts with many transverse modes, but the axia

ctional characteristics li

l one has highest gain and

ke array of a

 reaches satu

ntenna

rat

s.

ion first.
At saturation, "normally" almost full transv. coherence. 

LR

rσ
r2σ
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B) 3D-properties of electron beam

i) Electron trajectory straightness must be perfect 
to ensure permanent overlap with e.m. wave.
Very challenging due to small beam size. Tolerance for XFEL: few microns
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( )

( ) ( )

2

2
èff

2 2

2 2

èff

(factor 2 makes sure

   (  is the Twiss parameter of electron focusing)
1 K

We know the condition  which keeps all particles inside amplifier bandwidth.

1 K 1 K
Thus:  . 

2

∆γ γ ε
≈ β

γ β +

∆γ
< ρ

γ

β + β +∆γ
ε ≈ < ρ

γγ γ

2
r

R g
ph ph

 the emittance contributes max. 50% of budget) ( )

From the diffraction effect there comes another condition:
Maintaining complete overlap AND maximum possible gain requires 

1L L   
4 3

⊗

λπσ πβε
≈ → = ≈

λ λ π
u

ph ph

ph
ph is a rather challenging condition for  in the nanometer ran

  ( )

Eliminating  from ( ) and ( ) yields 
44 3

What helps (a little) is that  is conser

ge.
4

ved in linac acceleratio

⊗ ⊗
ρ

λ λ
ρ ⊗ ⊗ ⊗ ε < ≈

π

π

π

εγ

λ
ε < λ

1n, so    .ε ∝
γ

ii) Emittance introduces longitudinal velocity spread, much like energy spread does. 
So in terms of FEL gain emittance is equivalent to additional energy spread: 
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What are the challenges?Overview
Electron beam parameters needed for Self-Amplified-Spontaneous Emission (SASE)

Energy:

für  λem= 1 Å: E ≈ 20 GeV

Energy width:

Narrow resonance σE/E ≤ ρ∼10-4

⇔ Small distortion by wakefields
⇒ super conducting linac ideal!

Gain Length:
3/1

2

23

0 ˆ
2

3
1









=

IKe
mcL ur

g
λσγ

µ








+=

2
1

2

2

2
Ku

em γ
λ

λ

Beam size:
σr ≈ 40 µm ⇔ high electron desity for 
maximum interaction with radiation field
Emittance ε ≤ λ/4π
need special electron source to accelerate the 
beam before it explodes due to Coulomb forces

Peak current inside bunch:
Î > 1 kA
feasible only at ultrarelativistic energies, 
otherwise ruins emittance ⇒ bunch compressor

Straight trajectory in undulator:
ultimately < 10 µm over 100 m
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What are the challenges? RF gun
TESLA FEL photoinjector for small and short electron bunches 
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Layout of integrated injector/compressor for TTF2 and TESLA FEL
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What are the challenges? Bunch compression
Beware of 
coherent synchrotron radiation (CSR)Magnetic bunch compression

very powerful microwave radiation
with >~ bunch length if 
bunch length << size of vacuum chamber

λ 

radiation from 
tail goes straight and 
can catch up with head of bunch

Beam dynamics simulation must take into account combined 
space charge and e.m. radiation in near-field.      e.g.: TRAFIC4 by A. Kabel/SLAC

Section

Bending Magnet Quadrupole Triplett

Instrumentation
Section

Bending Magnet Quadrupole Triplett

Tail particle, more momentum
Head particle, less momentum
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