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Main Characteristics of an Accelerator

ACCELERATION is the main job of an accelerator.
•The accelerator provides kinetic energy to charged particles, hence increasing their 
momentum.
•In order to do so, it is necessary to have an electric field E, preferably along the 
direction of the initial momentum.

eE
dt
dp

=

BENDING is generated by a magnetic field perpendicular to the plane of the 
particle trajectory. The bending radius ρ obeys to the relation : 

ρB
e
p

=

FOCUSING is a second way of using a magnetic field, in which the bending 
effect is used to bring the particles trajectory closer to the axis, hence 
to increase the beam density.



CAS Brunnen 2-9 July 2003 6

Radio-Frequency Acceleration

Cylindrical electrodes separated by gaps and 
fed by a RF generator, as shown on the Figure, 
lead to an alternating electric field polarity

Synchronism condition             L = v T/2 
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Radio-Frequency Acceleration (2)

L = vT/2  (π mode)                         L = vT (2π mode)

Single Gap                                 Multi-Gap
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Energy Gain

Newton-Lorentz Force Ee
dt
pd rr
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Relativistics Dynamics
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Let’s consider a succession of accelerating gaps, operating in the 2π mode, 
for which the synchronism condition is fulfilled for a phase Φs .

For a 2π mode, 
the electric field 
is the same in all 
gaps at any given 
time.

sVeseV Φ= sinˆ is the energy gain in one gap for the particle to reach the next
gap with the same RF phase : P1 ,P2, …… are fixed points.

Principle of Phase Stability

If an increase in energy is transferred into an increase in velocity, M1 & N1 
will move towards P1(stable), while M2 & N2 will go away from P2 (unstable).
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Transverse Instability
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Longitudinal phase stability means : 

The divergence of the field is
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External focusing (solenoid, quadrupole) is then necessary

A Consequence of Phase Stability
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The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF 
phase for which the energy gain fits the increase of the magnetic field at each 
turn. That implies the following operating conditions:
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Variable magnetic field

If v = c, ωr hence ωRF remain constant (ultra-relativistic e- )
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Energy ramping is simply obtained by varying the B field:

v

BRe
rTBeturnpBe

dt
dp

eBp
′

=′=∆⇒′=⇒=
ρπ

ρρρ
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seVBRturnWturnE Φ=′=∆=∆ sin2)()( πρ

•The number of stable synchronous particles is equal to the harmonic 
number h.  They are equally spaced along the circumference.
•Each synchronous particle satifies the relation p=eBρ. They have the 
nominal energy and follow the nominal trajectory.

The Synchrotron (2)
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Dispersion Effects in a Synchrotron

E+δE

E

If a particle is slightly shifted in 
momentum it will have a different 
orbit:

dp
dR

R
p=α

This is the “momentum compaction” 
generated by the bending field.

If the particle is shifted in momentum it will 
have also a different velocity. As a result of 
both effects the revolution frequency changes:

dp
df

f
p r

r
=ηp=particle momentum

R=synchrotron physical radius

fr=revolution frequency

cavity

Circumference

2πR
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Dispersion Effects in a Synchrotron (2)
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The elementary path difference 
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D
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< >m means that 
the average is 
considered over 
the bending 
magnet only
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Dispersion Effects in a Synchrotron (3)
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Phase Stability in an Electron Synchrotron 

01
2 <−≅−= ααγη

In an electron synchrotron γ is generally very large and:

(since α>0 in most cases)

Hence dp>0 translates into dfr<0, which is a consequense of a 
longer orbit while the velocity remains constant=c.

A delayed particle with respect to the synchronous one will 
get closer to it if it gets a smaller energy increase when 
going through the cavity, since then it will go faster around 
the machine because of a smaller path.

Consequently the stable synchronous phase has to sit on the 
negative slope of the RF voltage ( π-φs )
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Phase Stability in an Electron Synchrotron (2)
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Longitudinal Dynamics

It is also often called “ synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled 
variables, the energy gained by the particle and the RF 
phase experienced by the same particle. Since there is a 
well defined synchronous particle which has always the same 
phase φs, and the nominal energy Es, it is sufficient to follow
other particles with respect to that particle. So let’s 
introduce the following reduced variables:

revolution frequency :             ∆fr = fr – frs

particle RF phase     :              ∆φ = φ - φs

particle momentum   :              ∆p = p - ps

particle energy         :              ∆E = E – Es

azimuth angle            :              ∆θ = θ - θs
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First Energy-Phase Equation
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Second Energy-Phase Equation

The energy gained by a particle at each turn is: φsinV̂e
and when compare to the reference one: ( ) ( )sturn VeE φφ sinsinˆ −=∆

The rate of relative energy gain can be approximated to first order:

( ) ( ) )sin(sinˆ
2 srsturn VeR
cfEdt

Ed φφπ −=∆≅∆

leading to the second energy-phase equation:
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Small Amplitude Oscillations

( ) φπ
φφφπ ∆≅−=





 ∆

s

s
s

ss RE
Vce

RE
Vce

E
E

dt
d

2
cosˆ

sinsin2
ˆ






 ∆=⇒==∆

srss E
E

dt
d

R
hc

hc
R

dt
d

hE
E αφφα

φ
αω

&&&1

(for small ∆φ)

By combining the two equations one gets a second order linear 
differential equation:
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Since α>0,stable oscillations mean cos φs<0, which correspond to 
the negative slope of the RF as mentioned already ( π/2 < φs < π )
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Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the 
second order differential equation is non-linear:

( ) 0sinsincos
2

=−Ω+ s
s

s φφφφ&& (Ωs as previously defined)

Multiplying by   and integrating gives an invariant of the motion:φ&

( ) Is
s

s =+Ω− φφφφ
φ sincoscos2

22&

which for small amplitudes reduces to:

( ) Is =∆Ω+ 22
2

2
2 φφ& (the variable is ∆φ and φs is constant)

Similar equations exist for the second variable : ∆E∝dφ/dt
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Large Amplitude Oscillations (2)
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Second value φm where the separatrix crosses the horizontal axis:

Equation of the separatrix:

When φ reaches π-φs the force goes 
to zero and beyond it becomes non 
restoring. Hence π-φs is an extreme 
amplitude for a stable motion which 

in the phase space(            ) is shown 

as closed trajectories. 

φφ ∆Ω ,
s
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Energy Acceptance

From the equation of motion it is seen that    reaches an extremum
when        , hence corresponding to        .

Introducing this value into the equation of the separatrix gives:   

φ&
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( ){ }sss φπφφ tan222 22
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That translates into an acceptance in energy:
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This “RF acceptance” depends strongly on φs and plays an important role 
for the electron capture at injection, and the stored beam lifetime.
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RF Acceptance versus Synchronous Phase 

As the synchronous phase 
gets closer to 90º the 
area of stable motion 
(closed trajectories) gets 
smaller. These areas are 
often called “BUCKET”.

The number of circulating 
buckets is equal to “h”.

The phase extension is 
maximum close to 180º 
but the synchronous phase 
will be slightly different 
to compensate for 
radiation losses. The RF 
acceptance will increase 
with the RF voltage.
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From Synchrotron to Linac

In the linac there is no bending magnets, hence there is no 
dispersion effects on the orbit and α=0.

Provided the cavities are periodically spaced to fulfill the 
synchronism condition, the longitudinal dynamics treatment remains 
valid and one ends up with a phase oscillation frequency Ωs=0. In 
other words the distance in phase between particles is frozen while 
energies change which is a consequence of constant velocities c.

Hence in an ultra-relativistic electron linac it is important to inject 
a short bunch on the crest of the RF voltage such that the bunch
length will stay short and the relative energy spread small.

However when the particle energy is too low (v«c), the factor 1/γ2
in η is no more negligible and energy and phase are coupled 
together again leading to a longitudinal oscillation with Ωs∝γ-3. Note 
that in the case of a linac, the term c/R which appears in the 
writing of Ωs is directly related to the RF angular frequency. 
Moreover in a linac the equivallent h will be equal to 1. 
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Adiabatic Damping

Though there are many physical processes that can damp the 
longitudinal oscillation amplitudes, one is directly generated by the 
acceleration process itself. It will happen in the electron synchrotron 
when ramping the energy but not in the ultra-relativistic electron 
linac which does not show any oscillation. 

As a matter of fact, when Es varies with time, one needs to be more 
careful in combining the two first order energy-phase equations in 
one second order equation:
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