CERN Accelerator School Lecture on : Insertion Devices

Pascal ELLEAUME
European Synchrotron Radiation Facility

Content of the Lecture

- Thursday $3^{\text {rd }}$ July
- Part I: Radiation from Insertion Devices
- Saturday $5^{\text {th }}$ July Morning
- Part II: Effect on the electron beam
- Part III : Technology of Insertion Devices
- Saturday $5^{\text {th }}$ July Afternoon
- Part IV : Variable Polarisation Insertion Devices
- Part V : Undulator for FELs

Part I
 Radiation from Insertion Devices

Pascal ELLEAUME
European Synchrotron Radiation Facility, Grenoble

Short Bibliography

- J.D. Jackson, Classical Electrodynamics, Chapter 14, John Wiley
- Kim K.J., Characteristics of Synchrotron Radiation, AIP Conference Proceedings 184, vol. 1 p567 (American Institute of Physics, New York, 1989).
- Walker R.P., CAS - CERN Accelerator School: Synchrotron Radiation and Free Electron Lasers, Grenoble, France, 22 - 27 Apr 1996 , CERN 98-04 p 129.
- "Undulators, Wigglers and their Applications", Editors : H. Onuki, P. Elleaume, Publisher : Taylor and Francis, 2003, ISBN 0-415-28040-0.
- And References therein

Table of Contents

- Generalities on Synchrotron Radiation
- Radiation from a Bending Magnet
- Radiation from an Undulator
- Radiation from a Wiggler

Bending Magnet Radiation

(a)
ρ : Radius of Curvature
Lorentz Force in Field $B: \quad \gamma m \frac{d \vec{v}}{d t}=e \vec{v} \times \vec{B} \Rightarrow \frac{1}{\rho}=\frac{e B}{\gamma m c}$

$$
\tau_{A B}=\frac{2 \rho}{\gamma c}, \quad \frac{t_{A B}}{\tau_{A B}} \approx \frac{1}{\gamma^{2}} \Rightarrow t_{A B} \approx \frac{\rho}{\gamma^{3} c} \Rightarrow h \omega \approx \frac{\gamma^{3}}{\rho} \approx \gamma^{2} B
$$

Critical Energy of Bending Magnet Radiation

Electric Field in the Time Domain

Angular Flux in Frequency Domain

Computed for $6 \mathrm{GeV}, \mathrm{I}=200 \mathrm{~mA}, \mathrm{~B}=1$ tesla

$$
E_{c}=\frac{3 h c}{4 \pi} \frac{\gamma^{3}}{\rho}=\frac{3 h e}{4 \pi m} \gamma^{2} B
$$

$$
E_{c}[\mathrm{keV}]=0.665 E^{2}[\mathrm{GeV}] B[T]
$$

Polarization of Bending Magnet Radiation

Electron Trajectory in a General Insertion Device

Consider Ortogonal Frame Oxzs
Electron velocity $\vec{v}=\left(v_{x}, v_{z}, v_{s}\right)$
Electron position $\vec{R}=(x, z, s)$
Magnetic field $\vec{B}=\left(B_{x}, B_{z}, B_{s}\right)$

Lorentz Force: $\gamma m \frac{d \vec{v}}{d t}=e \vec{v} \times \vec{B}$
$\Rightarrow \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=$ Cst
$=\gamma \gamma m \frac{d v_{x}}{d t}=-e\left(v_{s} B_{z}-v_{z} B_{s}\right)$
Assume: $v_{x}, v_{z} \ll v_{s} \approx c$

$$
\begin{aligned}
& \frac{v_{x}(s)}{c}=-\frac{e}{\gamma m c} \int_{-\infty}^{s} B_{z}\left(s^{\prime}\right) d s^{\prime} \\
& x(s)=-\frac{e}{\gamma m c} \int_{-\infty}^{s} \int_{-\infty}^{s^{\prime}} B_{z}\left(s^{\prime \prime}\right) d s^{\prime \prime} d s^{\prime}
\end{aligned}
$$

and similar expression for $v_{z}(s)$ and $z(s)$

Electron Trajectory in a Planar Sinusoidal Undulator

$$
\text { Consider } \vec{B}=\left(0, B_{0} \sin \left(2 \pi \frac{s}{\lambda_{0}}\right), 0\right)
$$

$$
\begin{aligned}
& \frac{v_{x}}{c}=\frac{K}{\gamma} \cos \left(2 \pi \frac{s}{\lambda_{0}}\right) \\
& x=-\frac{\lambda_{0}}{2 \pi} \frac{K}{\gamma} \sin \left(2 \pi \frac{s}{\lambda_{0}}\right) \\
& v_{z}=0, z=0
\end{aligned}
$$

with

$$
K=\frac{e B_{0} \lambda_{0}}{2 \pi m c}=0.0934 B_{0}[T] \lambda_{0}[\mathrm{~mm}]
$$

K is a fundamental parameter also called "Deflection Parameter" Example: ESRF, Energy $=6 \mathrm{GeV}$, Undulator $\lambda_{0}=35 \mathrm{~mm}, B_{0}=0.7 \mathrm{~T}$ $\Rightarrow K=2.3, \quad \frac{K}{\gamma}=200 \mu \mathrm{rad}, \quad \frac{\lambda_{0}}{2 \pi} \frac{K}{\gamma}=1.1 \mu \mathrm{~m}!!$

Longitudinal Velocity in a Planar Sinusoidal Undulator

$$
\begin{aligned}
& \frac{1}{\gamma^{2}}=1-\frac{v_{x}^{2}}{c^{2}}-\frac{v_{s}^{2}}{c^{2}}-\frac{v_{z}^{2}}{c^{2}} \\
& \frac{v_{x}}{c}=\frac{K}{\gamma} \cos \left(2 \pi \frac{s}{\lambda_{0}}\right) \\
& v_{z}=0
\end{aligned}
$$

$$
\Rightarrow \frac{1}{\gamma^{2}}+\frac{K^{2}}{\gamma^{2}} \cos ^{2}\left(2 \pi \frac{s}{\lambda_{0}}\right)=1-\frac{v_{s}^{2}}{c^{2}} \cong 2\left(1-\frac{v_{s}}{c}\right)
$$

Averaging over one undulator period

$$
\frac{v_{s}}{c} \cong 1-\frac{1}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

K can be understood as a measure of how much the longitudinal velocity is slowed down due to the undulator magnetic field

Radiation Field from a Planar Undulator in time Domain

$$
\lambda=c\left(\frac{\lambda_{0}}{v_{s}}-\frac{\lambda_{0}}{c} \cos \theta\right) \cong \lambda_{0}\left(1-\frac{v_{s}}{c}+\frac{\theta^{2}}{2}\right) \cong \frac{\lambda_{0}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)
$$

Wavelength of the Harmonics

$$
\lambda_{n}=\frac{\lambda_{0}}{2 n \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2}\left(\theta_{x}^{2}+\theta_{z}^{2}\right)\right)
$$

In an equivalent manner, the energy E_{n} of the harmonics are given by

$$
E_{n}[\mathrm{keV}]=\frac{9.5 n E^{2}[\mathrm{GeV}]}{\lambda_{0}[\mathrm{~mm}]\left(1+\frac{K^{2}}{2}+\gamma^{2}\left(\theta_{x}^{2}+\theta_{z}^{2}\right)\right)}
$$

λ_{n}, E_{n} :Wavelength, Energy of the $n^{\text {th }}$ harmonic
$n=1,2,3, . \therefore$ Harmonic number
$\lambda_{0}:$ Undulator period
$E=\gamma m c^{2}$: Electron Energy
K : Deflection Parameter $=0.0934 B_{0}[T] \lambda_{0}[\mathrm{~mm}]$
$\theta_{x}, \theta_{z}:$ Direction of Observation

Electric Field and Spectrum vs K

$\mathrm{K}=2$

Computed for 6 GeV , $\mathrm{I}=200 \mathrm{~mA}, 35 \mathrm{~mm}$ period

Even harmonics are generated off-axis

If $\theta_{x}=\theta_{z}=0$, only harmonics $n=1,3,5$ are generated In general all harmonics $\mathrm{n}=1,2,3,4,5$ are generated

Undulator Emission by a Filament Electron Beam

Flux in a Pinhole

n : Harmonic number
N : Number of Periods
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{E}{m c^{2}}$

Angular spectral flux

$\left|h_{n}\left(\theta_{x}, \theta_{z}\right)\right|^{2}$ of planar undulator

- For a monoenergetic filament electron beam, the angular spectral flux on-axis is given by :
$\frac{d \Phi_{n}}{d \theta_{x} d \theta_{z} \frac{d \lambda}{\lambda}}\left(\theta_{x}, \theta_{z}, \lambda\right)=\alpha \frac{I}{e} \gamma^{2} N^{2}\left|h_{n}\left(\theta_{x}, \theta_{z}\right)\right|^{2}\left(\frac{\sin \left(\pi N n\left(\frac{\lambda_{n}}{\lambda}-1\right)\right)}{\pi N n\left(\frac{\lambda_{n}}{\lambda}-1\right)}\right)^{2}$

$$
\begin{aligned}
& \text { If } \theta_{x}=\theta_{z}=0 \text { and } \lambda=\lambda_{n} \quad \Rightarrow \\
& \frac{d \Phi_{n}}{d \theta_{x} d \theta_{2} \frac{d \lambda}{\lambda}}(0,0, \lambda)=\alpha \frac{I}{e} N^{2}\left|h_{n}(0,0)\right|^{2}=\alpha \frac{I}{e} N^{2} \gamma^{2} F_{n}(K) \\
& \text { with } F_{n}(K)=\frac{n^{2} K^{2}}{\left(1+\frac{K^{2}}{2}\right)^{2}}\left[J_{\frac{n-1}{2}}\left(\frac{n K^{2}}{4+2 K^{2}}\right)-J_{\frac{n+1}{2}}\left(\frac{n K^{2}}{4+2 K^{2}}\right)\right]^{2}
\end{aligned}
$$

In usefull Units

$$
\frac{d \Phi_{n}}{d \theta_{x} d \theta_{z} \frac{d \lambda}{\lambda}}(0,0, \lambda)\left[\mathrm{Phot} / \mathrm{s} / .1 \% / \mathrm{mrad}^{2}\right]=1.744 \times 10^{14} N^{2} E^{2}[\mathrm{GeV}] I[A] F_{n}(K)
$$

7 Angular spectral flux produced by a filament beam as a function of the horizontal and vertical angles $\gamma \theta_{x}$ and $\gamma \theta_{z}$ for two frequencies ω. The undulator is made up of 50 periods with a deflection parameter $K=1.5$. Each ring is associated to a single harmonic of the spectrum. This ring pattern is typical of the undulator radiation.

Figure 3.9 Angular spectral flux produced by a 6 GeV electron beam with horizontal (vertical) rms divergence of $10(4) \mu \mathrm{rad}$. The frequencies and the undulator parameters are those of Figure 3.7.

Sensitivity to Emittance and Energy Spread of an ESRF Undulator

Sensitivity to Emittance and Energy Spread of an ESRF Undulator

Undulator : K $=2.2$, Period $=35 \mathrm{~mm}$, Length $=3.2 \mathrm{~m}$
Energy $=6 \mathrm{GeV}$, Emittance $=4 \& 0.04 \mathrm{~nm}$ Energy Spread $=0.1 \%$
Collection Aperture : a $10 \times 10 \mu \mathrm{~m}$

Collecting Undulator Radiation in a Variable Aperture

Angle Integrated Flux

$\mathrm{K}=0.5$

$\mathrm{K}=1$

$\mathrm{K}=2$

Maximum Spectral Flux on-axis on odd harmonics

$$
\begin{aligned}
& \frac{d F_{n}}{\frac{d \lambda}{\lambda}}=\int \frac{d \Phi_{n}}{d \theta_{x} d \theta_{z} \frac{d \lambda}{\lambda}}\left(\theta_{x}, \theta_{z}, \lambda_{n}\right) d \theta_{x} d \theta_{z}=\pi \alpha \frac{I}{e} N Q_{n}(K) \\
& F_{n}[P h / \mathrm{sec} / 0.1 \%]=1.43110^{14} N I[A] Q_{n}(K)
\end{aligned}
$$

N : Number of Undulator Periods
I : Ring Current
n : Harmonic Number

(Spectral) Brilliance or Brightness

The (spectral) brilliance or equivalently (spectral) brightness is the equivalent of the photon density in 4D phase space.
It can be rigorously defined using Wigner Distribution Functions.
Its expression is in general complicated but at the energy of an odd harmonic n observed on-axis, it is approximated according to:

$$
\begin{array}{cc}
B_{n}=\frac{F_{n}}{(2 \pi)^{2} \Sigma_{x} \Sigma_{x}^{\prime} \Sigma_{z} \Sigma_{z}^{\prime}} & \Sigma_{x}=\sqrt{\sigma_{x}^{2}+\sigma_{R}^{2}}, \\
\Sigma_{x}^{\prime}=\sqrt{\sigma_{x}^{\prime 2}+\sigma_{R}^{\prime 2}}, & \sigma_{R}=\frac{\sqrt{\lambda_{n} L}}{2 \pi} \\
\sigma_{R}^{\prime}=\frac{\lambda_{n}}{2 L} \\
\sum_{x}, \sum_{z}: \text { Photon beam sizes } \\
\sum_{x}^{\prime}, \sum_{z}^{\prime}: \text { Photon beam divergences } &
\end{array}
$$

Limiting Cases of Brilliance

$$
B_{n}=\frac{F_{n}}{(2 \pi)^{2} \Sigma_{x} \Sigma_{x}^{\prime} \Sigma_{z} \Sigma_{z}^{\prime}}
$$

i/ $\quad \sigma_{x}, \sigma_{z} \ll \frac{\sqrt{\lambda_{n} L}}{2 \pi}$ and $\sigma_{x}^{\prime}, \sigma_{z}^{\prime} \ll \sqrt{\frac{\lambda_{n}}{2 L}} \Rightarrow B_{n}=\frac{F_{n}}{\left(\lambda_{n} / 2\right)^{2}} \quad$ Diffraction Limit
ii/ $\quad \sigma_{x}, \sigma_{z} \gg \frac{\sqrt{\lambda_{n} L}}{2 \pi}$ and $\sigma_{x}^{\prime}, \sigma_{z}^{\prime} \gg \sqrt{\frac{\lambda_{n}}{2 L}} \Rightarrow B_{n}=\frac{F_{n}}{4 \pi^{2} \varepsilon_{x} \varepsilon_{z}}$
iii/ Intermediate with Optimum Beta Function \Rightarrow

$$
B_{n}=\frac{F_{n}}{4 \pi^{2}\left(\varepsilon_{x}+\frac{\lambda_{n}}{4 \pi}\right)\left(\varepsilon_{z}+\frac{\lambda_{n}}{4 \pi}\right)}
$$

In all cases the brilliance grows like the number N of undulator periods

Some Difficulties with Brilliance

- Brilliance is very often assimilated as photon density in 4D phase space $B\left(\omega, x, x^{\prime}, z, z^{\prime}\right)=>$ Not a Physical quantity in the sense of Quantum Mechanics. Nevertheless, it is possible to mathematically define such brilliance using Wigner Distribution Functions so that:

$$
\begin{aligned}
& \text { Flux } F(\omega)=\iiint \int B\left(\omega, x, x^{\prime}, z, z^{\prime}\right) d x d z d x^{\prime} d z^{\prime} \\
& \text { Angular Flux } \frac{d F}{d \Omega}(\omega)=\iiint \int B\left(\omega, x, x^{\prime}, z, z^{\prime}\right) d x d z
\end{aligned}
$$

- Such brilliance can be negative for some $\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{z}, \mathrm{z}^{\prime}, \omega$!!
- The spatial and angular distribution of the single electron emission are not Gaussian $=>$ There exists different definitions of σ_{R} and σ_{R}^{\prime}
- There is no simple way to include energy spread except performing a complicated convolution that nobody has ever tried to do numerically

The expression of the planar undulator brilliance on an odd harmonic on-axis is nevertheless widely used and is one of the most important figures of merit for a light source. It combines the requirements of: large flux, small divergence and small beam sizes

Brilliance vs Photon Energy

Power and Power Density

$$
\operatorname{Power}[k W]=0.633 \hat{B}^{2}[T] E^{2}[\mathrm{GeV}] I[A] L[\mathrm{~m}]
$$

$$
\frac{\text { Power }}{\text { Solid Angle }}\left[\mathrm{W} / \mathrm{mr}^{2}\right]=10.84 \hat{B}[T] E^{4}[\mathrm{GeV}] I[\mathrm{~A}] N G(\mathrm{~K})
$$

For an undulator $:$ Length $=5 \mathrm{~m}$, Field $=0.75 \mathrm{~T}$, Period $=35 \mathrm{~mm}$

Ring	Energy	Current	Power	Power Density
				$@ 10 \mathrm{~m}$ on-axis
	$[\mathrm{GeV}]$	$[\mathrm{A}]$	$[\mathrm{kW}]$	$[\mathrm{kW} / \mathrm{mm} 2]$
SuperACO	0.8	0.5	0.57	0.0023
SLS	2.4	0.3	3.08	0.11
ESRF	6	0.2	12.82	2.96

Power Density Profile

$\frac{\text { Power }}{\text { Solid Angle }}\left(\theta_{x}, \theta_{z}\right)=\frac{\text { Power }}{\text { Solid Angle }}(0,0) f_{K}\left(\gamma \theta_{x}, \gamma \theta_{z}\right)$

Planar field undulators produce only linearly polarized radiation.

On-axis :

- Single electron emission is 100% linearly polarized
- With emittance (and energy spread) some small depolarisation is generated

Ellipsoidal Undulator

Magnetic field : $\vec{B}=\left(\hat{B}_{x} \sin \left(2 \pi \frac{s}{\lambda_{0}}+\varphi\right), \hat{B}_{z} \sin \left(2 \pi \frac{s}{\lambda_{0}}\right), 0\right)$
Electron velocity: $\vec{v}=\left(\frac{K_{x}}{\gamma} \cos \left(2 \pi \frac{s}{\lambda_{0}}\right), \frac{K_{z}}{\gamma} \cos \left(2 \pi \frac{s}{\lambda_{0}}+\varphi\right), 1\right)+o\left(\frac{1}{\gamma}\right)$
with: $K_{x}=\frac{e \hat{B}_{z} \lambda_{0}}{2 \pi m c^{2}}$ and $K_{z}=\frac{e \hat{B}_{x} \lambda_{0}}{2 \pi m c^{2}}$

Like the planar undulator, it generates an harmonic spectrum with peaks at :

$$
\lambda=\frac{\lambda_{0}}{2 n \gamma^{2}}\left(1+\frac{K_{x}^{2}}{2}+\frac{K_{y}^{2}}{2}+\left(\gamma \theta_{x}\right)^{2}+\left(\gamma \theta_{y}\right)^{2}\right)
$$

The polarisation is in general ellipsoidal depending on direction and wavelength
The footprint of the angular power density is an ellipse :

Helical Undulator

Magnetic field : $\vec{B}=\left(\hat{B} \cos \left(2 \pi \frac{s}{\lambda_{0}}\right), \hat{B} \sin \left(2 \pi \frac{s}{\lambda_{0}}\right), 0\right)$
Electron velocity: $\vec{v}=\left(\frac{K}{\gamma} \cos \left(2 \pi \frac{s}{\lambda_{0}}\right), \frac{K}{\gamma} \sin \left(2 \pi \frac{s}{\lambda_{0}}\right), 1\right)+o\left(\frac{1}{\gamma}\right)$

$$
\text { with: } K=\frac{e \hat{B} \lambda_{0}}{2 \pi m c^{2}}
$$

The footprint of the radiation observed on a screen makes a ring. The radiation on axis contains essentially the harmonic 1

Wiggler Spectrum

Wiggler Radiation

Trajectory

Wiggler Approximation

-Construct source points (tangent to direction of observation)
-Simply add the Spectral Flux from each point treated as a bending magnet (no interference effects)

- Two Source points per period

Characteristics

- Numerically simple and inexpensive to compute
- Critical Energy decays off-axis horizontal

$$
B\left(\theta_{x}\right)=\hat{B} \sqrt{1-\left(\frac{\gamma \theta_{x}}{K}\right)^{2}}
$$

- Continuous spectrum
- Flux, Brilliance,... grows like $2 \times \mathrm{N}$. of Periods
- Polarization :
- linear in Median Plane
- depolarized off-axis
- Multiple source points when observing off-axis

Multiple Source Points in Horizontal Plane

Wiggler
B $=2 \mathrm{~T}$
Period $=150 \mathrm{~mm}$
$\mathrm{K}=28$
N. Periods $=5$

Energy $=6 \mathrm{GeV}$

Remarks on Wigglers and Undulators

- It is customary to call undulators a device with $\mathrm{K}<2.5$ and wiggler a device with $\mathrm{K}>2.5$. This is partly justified by the fact that there is little practical interest in making use of an undulator spectrum with $\mathrm{K}>2.2$ except if one wants to reach a very low energy.
- All devices behave partly as an undulator (at low energy) and partly as a wiggler (at high energy)
- In the past 10 years, it has been observed in most synchrotron light sources that undulators are preferred to wigglers :
- They generate high brilliance
- They can be used at a higher photon energy than originally expected by reducing the magnetic gap and making use of high harmonic numbers

Computer codes for undulator/wiggler radiation including emittance and energy spread

Name	Authors	Platform	Download
B2E \& SRW	O. Chubar, P. Elleaume, ESRF	Mac, Windows	http://www.esrf.fr/machine/grou ps/insertion_devices/Codes/soft ware.html
URGENT	R.P. Walker, Diamond Light Source	Fortran Source	Contact Author
XOP	M. Sánchez del Río , ESRF \& R. J. Dejus, APS	Unix, Windows	http://www.esrf.fr/computing /scientific/xop/
SPECTRA	T. Tanaka, SPring8	Unix, Windows Mac	http://www.spring8.or.jp/ENGL ISH/facility/bl/insertion/Softs/in dex.html

