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A transverse impedance is excited by the longitudinal bunch motion and
produces a deflection field. It is illustrated by a cavity oscillating with w
in a mode (dipole mode) having a longitudinal field F. with a constant
transverse gradient OF,/Oz. E., vanishes on axis and is only excited by
a bunch with a transverse off-set giving a dipole moment I;,Ax. After
1/4 oscillation the E, field is converted into B, field which deflects the

beam in the z-direction. Maxwell's equation B = —curlE in integral

form /Ed&’ = — fEdE’ gives

OF 1 OF
E=F = 57 cos(wt) — B=DB, = o sin(wt)

To describe a general deflecting field we introduce a transverse im-
pedance, Z7 or Z | in analogy to the longitudinal one

J (E(w) + [T X é(w)])Tds W/ (E(w) + [ X é(w)])Tds
Zr(w) = Tz(w) T (W)

using e/“*. The first impedance definition above relates deflecting field to
exciting dipole moment. If the two are in phase there is no energy transfer
to the transverse motion, therefore the factor "' in front. However,
if deflecting field and transverse velocity are in phase there is energy
transfer as stated in the second definition.
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In our cavity mode the dipole moment [z also induces a longitudinal
field giving a longitudinal impedance Z;. An excitation at distance x
gives a gradient of the dF,/dx related to Ixy by a factor k

dE. dE.
— = kI and E.(z) = v = klngw E.(z0) = klx;
The longitudinal impedance of this mode is
E.(xy)d
ZL(CC()) = —f (;EO) © = kx%,f

¢ is the cavity length. Maxwell's eq. /Edd’ = — fEdE’ gives By:M =
—xldFE,/dx and transforms electric field gradient into magnetic field.
With I(t) = Ie/“" we get

: U dE 1dE,
B, = Bjwe*! = o ——e/*! | B, —];% giving
J (E(w) + [T x B(w ds B 2ed?7
trto) = B T B} ds Bt e, ez,
Ix(w) Ixg w w dz?

Our transverse impedance is related to the second derivative of the lon-
gitudinal one. From this we get the symmetry relations

longitudinal 7, (—w) = Z,(v) , Zi(—w) = —Z;(w)
transverse  Zp.(—w) = —Zp(w) , Zpi(—w) = Zpi(w)

For a ring radius R and vacuum chamber radius b the impedances,
averaged over resonances of different modes, have a ratio

2R Z(w)
b* (w/wo)

ZT(w) ~
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TRANSVERSE INSTABILITIES WITH Q'=0

Transverse dynamics summary

The transverse focusing provided by the quadrupoles keeps the beam in
the vicinity of the nominal orbit. A particle executes a betatron motion
around this orbit. This motion has the form of an oscillation which is not
harmonic but has a phase advance per unit length which varies around
the ring. Often this is approximated by a smooth focusing given by

i+ wiQ*r =0

with wy being the revolution frequency and (), the horizontal tune, i.e.
the number of betatron oscillation executed per turn.

A stationary observer, or the impedance, sees the particle position
only at one location each turn £ and has no information what the particle
does in the rest of the ring

fx{\ /,/’\\ xp = T cos(2mqk)
\/\/ \‘\4/ T = - sin(2mqk).

e
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We observe this motion as a function of turn k. We can make a

harmonic fit, i.e. a Fourier analysis. For a single bunch circulating in
the machine we find at the revolution harmonic pw; an upper and lower
sideband. The distance of the sideband is given by the tune @, =
integer + ¢. The fractional part ¢ is the only part which matters since
the integer cannot be observed. For a very short bunch these sidebands
will appear at very high frequencies, for longer bunches they will get
smaller. A transverse impedance (or a position monitor) is sensitive to
the dipole moment [z of the current and does not see the revolution
harmonics.
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Transverse multi-traversal instability of a single bunch

A B
t=0 t="T,/4 t="T,/2 t = 3T,/4
W g y Y
\\\> p
N
/A/\\\ T -

A bunch p passes with a displacement x through the cavity and excites
a fields E which converts after T, /4 into a field —é, then into —E and
after into B. The bunch is making a betatron oscillation with frequency
wo@, @ is the tune having a fractional part ¢q. For a stationary observer
the oscillating bunch has sidebands at wy(integer + ¢q) (take ¢ = 1/4).

A) With the cavity tuned to the upper sideband the bunch will traverse
it in the next turn at the situation 'A’, t = T,.(k+1/4) with a transverse
velocity in the —x direction and receive by the magnetic field a force in
the opposite direction which damps the oscillation.

b N
VAVEVAE

B) With the cavity tuned to lower sideband the bunch traverses it next
turn at situation 'B’, t = T,.(K'+3/4) = T,.(k'+ 1 — 1/4) with negative
velocity and receives a force in the same direction. This increases the

oscillation and leads to an instability.
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The resistive impedance at the upper sideband damps, the one at the
lower sideband excites the oscillation. |f we have a more general im-
pedance extending over several sidebands wy(p + ¢q) and wy(p — q) we
expect that the growth or damping rate of the oscillation is given by an
expression of the form

1 :
— %: <I§+ZTT(wp+) — I;_ZTT(wp_D with w1 = wo (p £ q)

where [, is the Fourier component of the beam current at the upper
or lower sidebands. It appears here as the square Ig since the instability
is driven by the energy transfer from the longitudinal to the transverse
motion.

We can estimate some properties of the proportionality factor missing
in the above equation. The product IgZT = P/y represents a power
transfer per unit length. To get a growth rate we have to divide this by
the energy of the bunch having NV, particles which can be related to the
average current of the bunch Iy = eNywy /27

1 P ewo P

Y

T mecy Ny - 2mmocy 1
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Calculation of the transverse instability for a single bunch

A transverse impedance Zp(w) in a symmetry point 3. = 0 interacts
with a bunch executing a betatron oscillation with tune (), = integer+q.
lts position and angle at impedance location as a function of turn k are

Ly
NS N r) = T cos(2mqk)
\ \ / \ / \\ /3 , \ \ / \ / \\ k’ q
\\ T SRR 7 \\ ! \\ 3 T // o ! T
/ / /
vy M \./’/ Y W ZC% = _ﬁ— SIH(QT('Qk)

X

0 4 5 6 7 8 9 10 tumk
Tspectrum ‘
| |

| ‘ ]
1 2 w/wy
The single traversal bunch current in time and frequency domain is

I(t) time domain
:“" I(t)
f(w) (:) frequency domam |
o T o0 —jwt
- l[(w)=—F—= I(t)e™/“"dt.
. @) = = [ 100
0 "
The multi turn bunch current in time and frequency domain is
Ik (t) /\"‘TO “l 1) time domain l I(t—T))
=0 0 7, t
Ip(w) frequency domain
N | ‘ I I ‘ ‘ 1 I ‘ ] ﬁ |
0 w
Ig(t) = i% I(t — KTy) is periodic of period Ty and Fourier series
00 L 12 _ Wy
_ Jpwot .~ [70 Jpwot g4
Ik(t) = pzz—:oo Le , 1, = T )y I(t)e dt m[(pwo)
Ix(t) = § L/ = [+ 2 i% I, cos(pwot) , Io= (I(t)).
p=—00 p=1
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The dipole moment of oscillating bunch at turn £ and as function of ¢
IS

Dk = ij]k , DK(t) = § COS(Qqu)](t - ]CT())
k=—00
To express this in a series we get Fourier transform of [ (t)

Ix(w) = m/ z I(t — KTp)e ¥ dt
1

_ Z e_kWTO /OO ](t . kTO)e—jw(t—k?To)dt — IN(W) Z e_jk?wTO

V 21 o k=—00

The Fourier transform of the dipole moment is

) 7 : pI(w) = . |
D:c( ) = i’]( ) Z COS(Qqu)e*]kWTo — # Z {e*jk(wToJr%rq) + e*Jk(WTO*%Tq)]

The sums are oo if the exponent is of form 27p and vanish otherwise

§ e M = or § d(x — 2mp) and d(ax) = %(5(:1:) gives
k=—00 p=—00
8 I(w) o
D) = #21) $5 (5(00 — (p — ghen) + 8 (0 + g)en)]

The inverse Fourier transform gives the oscillating dipole in time domain

woﬂf OO

2021 =
Wy =

Using wyr = (p+ Qwo, wy— = (p — q)wy, Lpr = \/—Q_WI(wﬁ) gives

Dk (t) =

[ ((p + q)wp)e’ PFrO=ot) 4 T((p — q)wo)ej((p—q)wot)}

5 [, eirt) I, eler-)].

p=—00

Dik(t) =

[NORIESN

Combining terms p > 0 from first, p < 0 from second part and vice
versa, using I(w) = I(—w)

Di(t) =2 X [Ip+ cos(wpst) + I— cos(w,—t)].
w>0
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A charge e going through the impedance element at turn & feels a trans-
verse force changing its momentum Apy. = FpAt =~ FrAs/c

—]GDk<t) ZT

Appe = — /[ + [0 x B(w)]] . ds = ;

We get the momentum change of the whole bunch by a convolution

between its charge distribution given by the single traversal current
dq/dt = I(t) with the momentum change Ap,(t + kTp) in turn k

1 oo
Apk = —j; . ](t)Dk(t + ]CT())ZTdt

L% o0

=—j- > | L) [y Z(wp ) T L 7w, Yol (HRTO)] g

This contains integrals of the form
2m

/ ] —j t+kT0)wp+dt \/%e_jTokpr“i(wp_F) _ w_oe—jZqu]p+
giving
Iy & —j2rgk | 72 2k
Apy, = —]— Z [ L Zr(wpy)e T+ I Zp(wy - )el T }

Combining terms p > 0 from first, p < 0 from second part and vice
versa, using relations Zr,.(w) = Zr(—w), Zpi(w) = Zri(—w) gives

T .
App = —?O Zo K[;JFZTT(prF) — ]g_ZTT(wp_)) T sin(2wqk)
w>

— (]§+ZTZ-(wp+) + I;_ZTZ-(wp_)) T cos(27qu')} :

using the form of the betatron oscillation we started from

A

x = T cos(2mqk) , ) = L sin(2mqk) , ) = cx) = _ e sin(27qk)
T T

T .
Apk = c_;) 2;0 [(]§+ZTT<Wp+> — ]]g_ZTr<Wp—>) ﬁxxk
+ (15+ZTi(wp+) + I;_ZTZ-(wp_)) cxk] .
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Transverse velocity and angle change with the transverse momentum

A:Ck Apk GApk

A:El - = =
b c Nomoye  moyelyTy

€

Axk — Z [<]§+ZTT(wp+) — IS_ZTT(wp—)) ﬁrxk

moc?yly =0
+ (15+ZT¢(wp+) + I;_ZTi(wp_)) cxk} :

The velocity change has a component proportional to velocity and re-
sistive impedance and one proportional to displacement and reactive
impedance. The first can lead to exponential growth or damping the
second to a change of betatron frequency.

The first part alone with a smooth approximation gives an acceleration
¥ = Atwy /21 which we ad to the one due to focusing by beam optics

i+2a34+Q*wi = 0, solution: = = zge” ™ cos(Quuot+d) if a <K Q,wp

1 ewo 5, 2 2
T drmoc?yl wz>:0 (]erZTT(prF) B ]p_ZTT(wp_)) .
using w_ = (p — qJwo = —(—p + q)wo = —(|p| + @)wy for p <0 and

Zrr(w) = —Zp,(—w) gives a sum with positive and negative frequencies

1 ewo By <,
= — = ] Z T .
— drrmociyly pzz—:oo p 21 (ps)

The reactive impedance alone gives angle change Az} = Ay /c pro-
portional to x;. This represents a focusing element of strength

L S (12, Zri(wps) + I2_ Zry(w,-))
— = — = — G\ _ i\Wp— X
f T}, moc2yly wizo V PT fasr p= "
which results in a tune change AQ, = 3./(4nf)
. . ewo By 9 2
Awg = woAQ, = _47Tm062’}/]0 wgo (1p+ZT¢(Wp+) + ]p_ZTz'(Wp—))
ewo

_ < 72
- _47Tmoc2’}/]0 pzz—:oo ]p+ZT2(wp+)'

An inductive impedance Z7; > 0 is defocusing giving negative tune shift.
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Instability due to the resistive impedance
r = z0e” " cos((Quwo + Awp)t + @) if a < Quwy

1 ew
a=_= Mmoogfy 7 Eo (12, Zre(wpe) = 12 Zpp(wy-)) -
For a distributed impedance we replace local beta function by average
B =~ (B;) = R/Q with R = average ring radius. Single strong im-
pedances, RF-cavities, are best located at a small beta function.
zlp(w)

wo

< =

qwo

N[
/
€

To drive this instability we need a narrow band impedance with a memory
lasting at least for one turn.
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Frequency shift due to the reactive impedance

r = z0e” " cos((Quwo + Awp)t + @) if a < Quwy

ewOﬁx

Awg = WAQ, =  drmec wgo (1p+ZTz<wp+) + ]p_ZTz(Wp—))
eWOBx 2

_ 2
- _47Tm062’ﬂo p:z—:oo ]p+ZT¢(Wp+)-

$Ip(|w)

wo

< =

0 /qw\ w
0
ZTz‘(w) |
Zri |
N
0 w\\/ W

The betatron frequency shift can also be caused by a wide band im-

pedance since there is no cancelation between the upper and lower side
band. A measurement of this shift is often used to obtain a convolu-
tion between the impedance and the bunch spectrum. Doing this for
different bunch lengths some information on the impedance itself can be
extracted

This frequency shift acts only on the coherent (center of mass) motion of
the bunch and has little influence on the incoherent motion of the indi-
vidual particles and there frequencies. The reactive impedance can cause
a separation between the coherent betatron frequency in the incoherent
frequency distribution which can lead to a loss of Landau damping.
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Transverse instability of many bunches
M bunches can oscillate in M different modes n = MA@/ (27) with

the phase A¢ between adjacent bunches

Global view of frozen motion for n = 3
bunch:l 2 3 4 1

* ¢
T , |
S

Motion observed at a fixed location vs. time
bunch:1 2 3 4 1 2 3 4 1 2 3

x \ :’l/\\ ///\\ /
\ ) \ / \ ;
L \
\, \_
[
0
Spectrum
. . g
| | | —
0 1 2 3 4 w/wy

M bunches oscillating with mode n have frequencies and growth rate

Wyt = wo (PM £ (n + q))

1 ewo Sy
a=— > (B Zrn(wps) — 12 Zry(w,-)

T drmocyly oo

Spectrum n = 3

, . q
| | | > |
0 1 2 3 4 w/wy
i ~_Z. i
/\
: |
me 3
General mode number n for M =4
n 0 3,1 2,2 1.3 0,0 3.1 2.q
Y 1 A A O T O O O O I =
0 1 2 3 4 5 6 w/wy
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Dependance of the transverse instability on 5, at LNLS
The transverse instability growth rate is oc 3, since a deflection at low
(3 gives lower oscillation energy than one at a large (3

1
by s (12, Zr(wpr) — I2_Zrylwy) -

aqa = — =
T drmoc?yly 50

This was measured at LNLS (Laboratorio Nacional de Luz Sinchrotron,
Brasil) where (3, can be reduced in the straight section of the RF-cavity.
An exponential instability growth is only seen if a large intensity is in-
jected or a feed-back system is used during accumulation and than turned
off. For slow accumulation the instability saturates unstable betatron
lines at a finite amplitude. Reducing (3, makes this line disappear in-
dicating that the offending impedance is in this section, i.e. in the
RF-cavity.

25 —
[m] 20 —
15 —

10+

normal beta

Pragili]

Fegdam

low beta
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HEAD-TAIL Instability

Head-tail mode oscillations

The synchrotron motion in energy and time deviation AFE and 7 affects
transverse motion via chromaticity Q' = d@/(dp/p). For v > ~yr it has
an excess energy moving from head to tail and an energy lack moving
from tail to head. For Q' > 0, this gives a phase advance in the first

and a phase lag in the second step and vice versa for )/ < 0 or v < 7.
Q' <0

tail

4 B osc. 77 N 4.5 ﬁ\osc. TNy -

displacement y dipole moment y/ displacement y dipole moment y/
-7 T T
t="Ts/8 py
—%
t="Ts/4 py

\]
\]

t3Tg/8Ty t:3T@/8 y[ t:3Tg/8 Yy t3T5/8IyI
T & /bT T
t="T3/2 t="T43/2 t="T43/2 t="T3/2
5/2 py 5/2 £yl 5/2 py bunch 5/2 pyl
bunch
T T T T
bunch

bunch

Betatron motion observed in steps of its period T = 1y /q
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Observation of the head-tail mode in the CERN Booster

The head-tail mode oscillation of relatively long bunches can be ob-
served directly with a fast position monitor. The figure shows such a
measurement of the head-tail mode at vanishing and a finite chromaticity
taken by J. Gareyte and F. Sacherer in the CERN Booster. | shows sev-
eral traces each corresponding to a turn of the oscillating bunch passing
through the transverse position monitor which gives a signal proportional
the instantaneous dipole moment x(t)I(t).

Head-tail mode m =0
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Head-tail instability

A broad band impedance is excited by oscillating particles A at the bunch
head which in turn excite particles B at the tail with a phase shifted by
A¢ compared to the head. Half a synchrotron oscillation later particles
B are at the head and while particles A are at the tail oscillating with
phase —A¢ compared to B (assuming )’ = 0). The excitation by the
head has the wrong phase to keep oscillation growing unless Q' # 0
producing a phase shift during a motion from head to tail or vice versa.
The wake field excited by the head of the bunch will affect the tail later.
The tail oscillates therefore with a phase lag compared to the tail. To
keep the oscillation growing the head particle must undergo a relative
phase delay while moving to the tail and the tail particle a relative phase
advance moving to the head. We expect a possible instability if )’ < 0
for v > ~p or if Q' > 0 for v < ~7.

The 'wiggle' of the head-tail motion is seen by a stationary observer
(impedance) as an oscillation with the chromatic frequency w¢ which
has to be considered in calculating the head-tail instability.

ws Ap
Ne P

ws = @Q.wy is the synchrotron frequency and 7. = a,. — 1/9* with o, =
momentum compaction. The relative betatron phase shift of a particle

Ap/p = Ap/psin(wst) , 7= —Tcos(wst) with 7=

executing part of a synchrotron oscillation is
o to o JAD fty
Apg = wy /t1 AQdt = wy@Q ?/n sin(wgt)dt
wo Q'

Ne

— —on’Af (cos(wsta) — cos(wsts)) = (12 — 1)

This gives for the chromatic frequency

_A¢p _ wo@’
AT Ne

we
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The 'wiggle' of the head-tail mode shifts the envelope of the sidebands by
the chromatic frequency we = Q’wy /7. and we have current components

Hwps +we), wpt = wo (PM £ (n+ q))

s

péE \/%
which can be very different adjacent sidebands. Even a broad band
impedance can lead to an instability with growth (or damping) rate

. eWOBx 2

 dmrmocyI wz>:O (]p e+ Z1e(pe) = Iy é_ZTrwp_)) '
y]p(w) i Q' =0

,:siiiHiiiis:.w
IR s|i|el: [T A
quwo
1y (w) - __w§_> Q' >0
e

TR DO R O B L L e d TR IENY P T
J]p(,w)

; ; WO Q/>O
._‘_.__l_LJ__._|_.J_J___I_J-l--.’-i-{--i-i-[--l---‘ ______ J ______ J___‘__I_l ______ I B o Aoz
0 w

/\
W ")
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Higher head-tail mode; m=1, Q'=0

t=20

4 [(3-osc.

t=0 y t=20 yl
bunch T > bunch T
t=Ts/8 Ty t="Ts/8 Tyf
T
t=Ts/4 Ty t="T5/4 Tyf
T
t=3T3/8 Ty t=3T3/8 Ty[
T
t="Ts/2 Ty t=Ts/2 yl
bunch T bunch

Head-tail mode m = =£1 seen in steps of T3 = T/q, it has node in
center and comes in pair of frequencies wg = wy(p = ¢ = MQ;).
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Observation of higher head-tail modes

The head-tail mode oscillation of relatively long bunches can be observed
directly with a fast position monitor. The figure shows measurements at
the CERN Booster ring by J. Gareyte and F. Sacherer at chromaticities
£ = Q'/Q. Each trace corresponds to the bunch passage through the
transverse position monitor giving a signal proportional the instantaneous
dipole moment x(¢)1(t). This captures the oscillation at different phases.
The higher modes show m > 0 show a number m of nodes.

Higher head-tail modes m =0, 1, and 2

-2-1012
: [

52 D ; w/wy

Detailed spectrum of higher head-tail modes w = wy(p + ¢ + Q)
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