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Basic analytical design

Cost optimization
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@ Goals in magnet design

The goal is to produce a product just good enough to perform reliably with

a sufficient safety factor at the lowest cost and on time.
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Magnet Components

Alignment targets
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@ Yoke design

Translate the beam optic requirements into a magnetic design

Aperture size

-

\‘\__;",
Magnet excitations (Amp-turns) J

s

i /.(\?\% Yoke cross-section
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Beam rigidity

* C: speed ot light |[m/s]
* [ Kinetic beam energy [eV
* L, PArticle rest mass energy e\
( 0.51 MeV for electrons, 938 IVIeV tor protons)
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Magnetic induction

gnetic iInduction

A
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* B: Flux density or

1
(vector) [T, Gauss]

* r,,: magnet bending radius |m|

Sextupole ditfferential gradient B | T/m<] B"=Bom (2¢,
o sextupole strength |m=
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Aperture size

— Mlaximum pbeam Size

- 1ce functions: beta tunctions atl
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LargesE beamSize ustdlly aEifnjection o= 6‘,3+ D

— Closed OrRItdIStOEtIONS (S M) P
+ VVacuum chamber thickness (0.5 = 2 mm)
+ Installation ana alignment margin (0 — 2 mm)]
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Amperes law

@+ |

round the patn.
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yoke ﬂ iron

Excitation current in a dipole

/u air
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magnetic fiela (vector,
erriciency (typically SS

- |

relative permeability

permeanility or free sp

5

CERN Accelerator School — Specialized Course on Magnets

Bruges, Belgium, 16 — 25 June 2009

>>
/u iron

A
I\,

l
%,

m, Oersted|

-7t 107
on > 1000 (not saturated)

[Vs/Am]

Basic Magnet Design
Th. Zickler, CERN



@ Reluctance and efficiency

Similar to Ohm’s law, one can define the ‘resistance’ of a magnetic circuit,
called ‘reluctance’, as:

. (D: magnetic flux [Wb] 1 Ay 1, 1y
. fliiv nath lanath il iran T
s Tlux pathlength iniiron [m]

A\ Iron cross section perpendicular to flux [m#]

A

) In (3) IS called normalized reluctance  oi the yoke

Second term |{
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Magnetic length

Coming from =, B increases towards the magnet center (stray flux)

‘Magnetic’ length > iron length

5(2)-az
Magnetic length: ==
0
I.:Ol.’ E d[llcl 2: Imag — Iiron + 2hk (6%)

A
B/B,

Iron length

\

Magnetic length N

~
1 5

>

distance inbeam direction

* K:geometry Specific C

e Pole width <

Precise determination of k only by
measurements or numerical calculations
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@ Magnetic flux

Flux in the yoke includes the gap flux and stray flux

[otal flux in the return yoke:

(w+2h)l il

gap

cp:jB-dAzB
A
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Dipole types

C-Shape H-Shape O-Shape

/- POOr 101ty  very poor
Field nglL\-’ \\v"mmetric ield quality: very good,
Snims required: yes Ssymmetric
vie

chanical stapility: ShIms required: No
Iron (weight): medium [\<9c chanical s .,Lg,LlllLy gooa
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@ :
VAV Asymmetry in a C-magnet

C-magnet: one-fold symmetry
ince ~ the contribution to

(-
-

ditfferent path lengths

senerates torbiaden harmonics

, 6, ... Changing

with n= 2, 4,
WIth Saturation - -
Quadrupole term resulting
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@ Excitation current in a Quadrupole

Choosing the shown integration path gives:

IS constant

Y * I Bl
»F\ J { ~ - . _ 2 2 —
Fleld modulus along S: (r)=—x"+y =—r

r i
Ho H
: o S,
Neglecting B in's, because: /. — <<
and along s -IH3-d1:() fron
53
R ' R i
‘ B B'r
LEACS 10. NI zJH(r)dr = Irdr Nl(perpole) _ 2 (8%)
0 Hy Tk,
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@ Magnetic length

Magnetic length for a quadrupole:

NI oc r? Pocr?

IMlore difficult to get the necessary Ampere-turns (= coll €ross section) in

(_

->termination ot the hyperobola
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@ Quadrupole types

Standard quadrupole 1 Standard quadrupole 2 Collins or Figure-of-Eight

- /4
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VA Excitation current in a Sextupole

Same approach as for quadrupole:

B''r?
67714,

(107

R R
. ] B"
leads to: /4 :fH-dl z_!H(r)dr :m_!rz dr NI cer pote) =

CERN Accelerator School — Specialized Course on Magnets Basic Magnet Design
Bruges, Belgium, 16 — 25 June 2009 Th. Zickler, CERN




Summary

— y= tr By: a, = B0 = const.
Tl N "
= = ‘ - 2xy=£r B R
B
A X4 ‘ 3x2y - v3 3 B,= a5(x?- y?)
= = S — XYy-y>==xr = ag\X*-
s y-y y
[ | A 4(x3y —xy3)=+£r4 B,= a,(x* - 3xy?)
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@ Yoke materials

Massive (cast ingot) iron only for dc magnets

loday s stancddras colarolled, non-otiented electro=steelsneets (EN- 10106

be adjusted by tinal annealing

— Reproauciple steel quality even over large productions
— [Vlagnetic properties (permeability, coercivity) within small tolerances
Homogeneity and reproaucibility among the magnets ot a Series can ve enhancec

Organic or inorganic coating for insulation and bonding
Material Is usually cheaper, but laminated yokes are labour intensive and require
more expensive toolings (fine blanking, stacking,
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Relative permeabllity pr
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NGO electro-steel properties

Sheet thickness:
0.3<t< 1.5 mm

- - = Siabooor 1200-100 A {0/90}
— - - Siabooor M270-50 A {0/90}

- - - Stabocor 300-65 AP SpECiﬁC WE|ght

7.60<6<7.85g/cm?

Coercivity:
Hc < 65 (+ 10) A/m

Electrical resistivity @20°C:
0.16 (low Si) < p <
0.61 uQm (high Si)
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Anisotropy of rolled steel
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(Peak Value) / Champ magnétique (valeur de créte) / (Peak Value) / Polarisation magnétique (valeur de créte) /
Campo magnético (valor de cresta} (A/m) Polarizacion magnética (valor de cresta) (T)

Data source: Thyssen/Germany Data source: Thyssen/Germany

Anisotropy can be partly cured by final annealing
* J: magnetic polarization [T] according to:
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EAV Remanent field & coercivity

In a continuous ferro-magnetic core (transformer) the residual field is
determined by the remanence B,

In a magnet core with gap, the residual field is determined by H

Assuming the coil current /=0: §H -dl = IH gap - dl + _[H ¢-dl=0
gap | yoke

-
Z

A
Bresidual =—H H C 5 U_ 17 )

‘55 (1]
:

Data source: Thyssen/Germany
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@ Coil design

Ampere-turns NI are determined, but the current density j, the
number of turns N and the coil cross section need to be decided

‘ Coil type selection jJ
. V2 -
} Power requirements J

_ V2
} Cooling circuit computation J

\_'

Conductor selection ‘J
| o
} Optimization ‘
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Standard coil types

Bedstead or saddle coil

Tapered quadrupole coj

Racetrack coil
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@ :
Vm Power requirements

Assuming the magnet cross-section and the yoke length are known, one can
calculate the total dissipated power per magnet:

P Bh - B'r® B'r®
dipole = £ J avg \l:*) I:)qudrupole = 2p Jlavg ‘\13&‘) I:)sextupole =p Jlavg (14 qi)
Tk, iy, NIk,
NI I o
~ current density [A/m?] J——f N (15
c a'cond
* p. resistivity [QQm| (tfor copper: 1.86 - 10° Qm @ 40 C]
* lyg- QAverage turn length [mj; approximation: 2.5 i, < [, < 3 l;,, TOr racetrack colls
0.ong- CONAUCTOr cross section |m<|

)1l Cross section |m<|
net conductor area
coil cross section

nNg Tactor (geometric filling factor, insulation, cooling duct,

Note: for a constant geometry, the power loss P Is proportional to the

CERN Accelerator School — Specialized Course on Magnets Basic Magnet Design
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@ Number of turns

Basic relations:

The determined power can be divided into voltage a

- -

[he number ot turns N are chosen to matcn the impedances of the power

C
converter and connections:

large N'=low current'=nigh voltage Small'N"="high current = Iow voltage
e Small terminals e Large terminals
e Small conductor cross-section e Large conductor cross-section
e Thick insulation for coils and cables e Thin insulation in coils and cables
e Less good filling factor in the coils e Good filling factor in the coils
e Large coil volume e Small coil volume

e Low power transmission loss e High power transmission loss
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Coil examples

Dipole

o #of turns N o, yore): 16
e Current: 3000 A
e \/oltage: 100 V

Quadrupole

o #of turns N o yore): 20
e Current: 650 A
e \/oltage: 12V

Sextupole

o #of turns N o yore): 14
e Current: 650 A
e \/oltage: 16 V

CERN Accelerator School — Specialized Course on Magnets

Corrector

o #of turns N o, ore):240/96

e Current: 15/30 A
e \oltage: 7/3 V

Basic Magnet Design
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@ Air cooling

Air cooling by natural convection:
Current density:
. Aa/m-m or sma b
* j<1A/mm:< for la
— Ditticult to ah_ulat= \
— Numerical computations required to get reasonable results

— Rouna, | La"v*u“ or square conauctor
o H.Hng tactor: 0.63 (round) to 0.5 (rectangular,
— Conductor pre-impregnated with varnisn (0.02 <t < 0.1 mm) or hali-lappec
polyimide (Kapton™) tape (0.1 <t< 0.2 mm,
— QOuter coll insulation: epoxy Impregnated glass fibre tape
Cooling enhancement:
— Heat sink with enlarged radiation suria

— Forced air flow (cooling fan;

Only tor magnets with limited strength (correctors, steering magnets....}
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@ Water cooling

Sy

Direct water cooling: N

nm< have been realized,
LJL ana risky (single turn cocl[ng)

— Tap water can b LL. used
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Conductor materials

I R T

Purity 99.7 % 99.95 %

Resistivity @ 20°C 283 uQcm  1.72 uQcm

Thermal resistivity coeff. 0.004 K 0.004 K1
Specific weight 2.70 g/cm3 8.94 g/cm3
Thermal conductivity 2.37W/cm K 3.91 W/cm K
Price 4.7 Euros/kg 11 Euros/kg

Keystoning: risk or iInsulation damage & decrease of cooling duct cross section

A i "J ; Y \. s .\ | ‘

AA o

7 3. A= 2R 360 el N
L%\‘ RES A= =3 P

] Hd 1!

Details on coil insulation materials see lecture of D. Tommasini
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@ Cooling parameters

Recommendations and canonical values:

ASSUMING:
Long, straight and smooth pipes without perturoations
— [urbulent flow = high Reynolds number

—

— Good heat transter from conauctor to ¢ edium

O
O
=
O
—>
—

— lemperature of iInner conauctor surface equal to coolant temperature
Isothermal conductor cross section
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@ Cooling parameters

Pressure drop through a water circuit:
p: pressure [Pa, N/m?]

e f: friction factor [.]
* [d: cooling circuit length and diameter [m]
* 0 coolant mass density [kg/m? ] (for water: 1000 kg/m> = 1 kg/liter)
* U, average coolant velocity [m/s]
u,,,d
it ".“\ ~r r f \ ) ) N C 1= - D Ya - als 20 R — an ‘] -/
Friction tactor j depends on the Reynols humber ke 3 — —— (17,
|4
- 1 - . : - "« -~ ) il | \ 1:— - “"- -
Laminar flow: ke< Z0UU and j=64/R€e
* Ve Kinematic vIScosity of coolant Is temperature depending, tor simplification It IS

~NCC Y=Y , ~N 7 +ani O Q A N - ~ >) °C fAr AfAr
assumed to be constant (.65 : 10 m</s @ 21 C for water

U

>

J
(@
Q)
—
(@

210[0

- P
~ N alabe br al\ L ¢
1 A ML A LA LA N \\. \_ . .\ \

r
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@ Cooling parameters

Velocity and friction factor using Re(u,,,) 2 u,,, to be solved iteratively:
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@ Cooling parameters

Heat absorbed by coolant medium across a heated surface:

Q.
¢ P: power [W]
AT: temperature increase | C|
P P
- : Y N"nArace A ~ : ~ A ~ ~ D e S — — —_— - -
Flow @Q necessary to remove heat P: ~ Qv 0.2388 (22)
: » Sc,AT e AT
2
_ : : . ‘ rd 3
Coolant flow inside a round tube with a bore diameterd: © — I — 10 (23]
4
: , P 6
emperature increase using water as cooling fluid: 121F =0-3047'10 (2]
, u ol

avg

Basic Magnet Design
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@ Cooling parameters

Number of cooling circuits per coil: '
W

C

(T
o

G
(

numoer of cooling Circuits reauces the press
nstant fla

oubling the
T elght Tor a cons

N}
lw

0y a factor o1

Y1 ~ ale T
viameter a
N o Lo kRl Gl 1 L M) ayaiva oS (™ miliallaia I G s 1o D) il Lt b -~ - - -~ - -~
=2 Increasing the cooling channel by a Small factor can reauce the
‘equired pressure drop significantiy

Basic Magnet Design
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VA Cooling circuit design

Already determined: current density j, power P, current /, # of turns N

1. Select # of layers m and # of turns per layer n

3 Define coll h=xght € and colil wiath o: A=bC=—jf (Aspect ratio ¢ : b between 1 : 1
and1l:1.7and 0.6 <f.<0.8] ¢
<
4.  Calculate [, = pole perimeter + 8 X clearance + 4 x coll wiath
K_NI
> Start with single cooling circuit per coil: =~ = (25)
- - - - { 4 - | & _3 / -k
6. Select AT, Ap and calculate cooling hole diame o2 d=559.107° —— (—j (PAST
. | .. AT K, Ap
Change Ap or humber of cooling cir LL'IL\ I necessary
. , : | d? Zn -
S. petermine conductor area a. a:T+ 4 edge(4 ”) (27,
o Select conductor dimensions and insulation thickness

10. Verity It resulting coil dimensions, N, I, V, AT are still compatiole with the initial
requirements (it not, start new iteration,

5

11. Compute coolant velocity and coolant flow using (21) and (22

12. Verity it Reynolds number is inside turbulent range (Re > 4000) using (17
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&) - .
Vm Cooling water properties

Water properties:

E_r_.'
D
(o}
=
=
Q)
r—J‘.
D
i—;it
C
wn
D
(o]}
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@ Stored energy

Stored energy in a magnet depends on (non-uniform) field distribution in
the gap, coils, and iron yoke

» U: stored energy [J, joules]: U=—|BH-dv (28*)

In general, difficult to calculate analytically
- Usually done by humerical computations

For a window frame magnet with constant field in the gap:

2 2 2
U gap 2 V U coil — 2 Vcoil U yoke — B—Vyoke
24ty 644, 2 4 My
B? Vi 1
U magnet U gap +2U coil T U yoke — 2—/10 (Vgap +2 TI + _rvyokej
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@ Inductance

The inductance of a magnet is given by:

—+
N
o
—t+
(00
'__L

: - L Lo
VtOt — RIOSIn(wt+¢) *\:j_\v ¢:tan -

CA)
A
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9

Production specific toolings:
5 to 15 k€/tool

Cost estimate example

Material:

Steel sheets: 1.5 € /kg
Copper conductor: 11 to 13 € /kg

e manutracturing:

Quads/Sextupoles: 50 to 80 € /kg (>
Small magnets: up to 300 € /Kkg

Coll manutacturing:

Di (> 200 kg|

poles: 30 to SO € /Kkg
. 65

7y

0 0 €/

Contingency: 10 to 20 %

CERN Accelerator School — Specialized Course on Magnets

to 80 € /kg (> 3

200 kg)

o Magnet type Dipole

ED Number of magnets (incl. spares) 18

= Total mass/magnet 8330 kg

"E Design 14 kEuros

o Punching die 12 kEuros

E Stacking tool 15 kEuros

= Winding/molding tool 30 kEuros
Yoke mass/magnet 7600 kg

% Used steel (incl. blends)/magnet 10000 kg

> Yoke manufacturing costs 8 Euros/kg
Steel costs 1.5 Euros/kg
Coil mass/magnet 730 kg

§ Coil manufacturing costs 50 Euros/kg
Cooper costs (incl. insulation) 12 Euros/kg
Total order mass 150 Tonnes
Total fixed costs 71 kEuros

"E Total Material costs 428 kEuros

T: Total manufacturing costs 1751 kEuros

E Total magnet costs 2250 kEuros

Contingency
Total overall costs

20 %
2700 kEuros

measurements, transport, installation
Prices for 2009

Basic Magnet Design
Th. Zickler, CERN
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Cost estimate

Upper limit: sextupoles

——Mid-range: complicated
dipoles & quadrupoles
——Lower limit: simple dipoles

Euros/kg magnet

10 Total mass of order [x 1000 kgl

CERN Accelerator School — Specialized Course on Magnets Basic Magnet Design
Bruges, Belgium, 16 — 25 June 2009 © Th. Zickler, CERN




@ Cost optimization

Focus on economic design!

Design goal: Minimum total costs over projected magnet life time

optimization of capital (investment) costs against running costs (power
consumption,

capital costs of
magnets
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@ Cost optimization

Optimization procedure for dc magnets [CERN/SI/Int. DL/70-10]

For the example case:

— Power IS important - it enters into capital Costs and running ¢
— IvVlagnetic tluxes shoula be between 1.2 and 1.7 |

— Optimum yoke length a

OSLS

— M\m converter cost can be minimized BY running several magnets

.....

ire presented In reictive fuioer

Note:for other projects, the optima might be difterent

CERN Accelerator School — Specialized Course on Magnets
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Cost optimization

Magnet costs (iron length)

| -
~ -
-

1 -
\\ -

Normalized costs
A
A
A

Iron length [m]

08 1 12 14 16 13 2 22 24 26 23 3 32 34 36 3.

3
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Cost optimization

Investment vs running costs

.
— —_— — -_—
— — —
w = — e — | — T p—— — -—
)
o
O
L ¥ ) T
- ~g
@ L.
N .
E \“. [ —
£ o
o St~ F—————————————————= -
e T e e B S A [ - ="
G e A I B Magnet capital
L r b - = - = Power equipm. capital =
P — — . . Total capital
___,.....---—""""'""—_——__ Running
f
e Total
| |
I I
2 3 4 5 6 7 8 9 10
Current density j [A/mm?2]
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Cost optimization

Total cost (j, energy costs)

-
-
-
-
o -~
.; -
: =
N -
— -
1 -
g - B /
O -
i — /,
//
\\ neuros/kWh
=+ = Zneuros/kWh
1 I
2 3 4 5 6 7 8 9 10

Cumrent density j [A/mmZ]
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