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Harmonic Coil MeasurementHarmonic Coil Measurement

Outline 

Basic Equations for 2D Field & Multipoles
Harmonic Coil Measurement
Measure the Field Direction & Quadrupole Axis
Accuracy issues & possible improvements

Voltage Integrator
Angle Encoder & torsional stiffness
Imperfection in rotation & shaft rigidity

Calculate the Coil factors
Measure multipoles in pulsed magnets
Pro's & Con's of rotating coil measurement
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Basic Equations for Field & Multipoles DescriptionBasic Equations for Field & Multipoles Description

Often in use to describe high order multipoles : 
units = errors relative to the main harmonic BN
at reference radius Rr
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"               coil      "              superconducting magnets
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The reference radius Rr in practice corresponds to :

Why a Reference Radius ? Why a Reference Radius ? 

Choose carefully your reference  
radius

Measure with Rmeas>Rref

Radius when the multipoles relative to main field
have same order of magnitude
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nnn iAB +=C

B1

 

≠0, normal dipole

A1

 

≠0, skew dipole

n=1 n=2

A2

 

≠0, skew quadrupole

B2

 

≠0, normal quadrupole

Main Field ComponentsMain Field Components
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Simple rotating coil Simple rotating coil –– Any FieldAny Field

Coil [Kn ]      Field Time
Dependence

With a Fourier Analysis of Ψ(θ): 

)( nnnnnn AiBKCK ⋅+⋅=⋅=Ψ

Cn , Kn , Ψn , are 2D complex numbers
normal [By (x)] & skew [Bx (x)] terms
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A real bench with a permanent magnet A real bench with a permanent magnet 

Measured :
Ψ

 

(θi+1 ) - Ψ

 

(θi )
Rotating coil  connected 
to a voltage  integrator
(time disappears) 
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Triggered by 
an angular encoder 

At angles i = 1 .. 2M

(2M = 256 or 512 in most cases)
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n=2, B2

 

≠0n=1, A1

 

≠0n=1, B1

 

≠0

Fourier Analysis of the Flux  Fourier Analysis of the Flux  ΨΨ
 seen by a rotating coilseen by a rotating coil
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Harmonic Coil MeasurementHarmonic Coil Measurement

Outline 

Basic Equations for 2D Field & Multipoles
Harmonic Coil Measurement
Measure the Field Direction & Quadrupole Axis
Accuracy issues &possible improvements

Voltage Integrator
Angle Encoder & torsional stiffness
Imperfection in rotation & shaft rigidity

Calculate the Coil factors
Measure multipoles in pulsed magnets
Pro's & Con's of rotating coil measurement
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Reference Angle misaligned Reference Angle misaligned -- Measure the Field DirectionMeasure the Field Direction

Need to go from one reference to the other ? 
θm reference for the Fourier analysis , zero of the encoder
θg Gravity , magnet fiducials when aligned
θf Field defines vertical A1 = 0 in dipole (A2 in quadrupole)

Easy

))(exp( mf
f

n
m
n inCC θθ −⋅=

Measure the field Direction : 
Resolution (for A1/B1) < 0.1 mrad
Issue : refer θm (encoder) 

to θg (magnet fiducials)
Issue : calibrate K1 (coil direction) 

with θm (encoder)
when possible : turn the full system 

(or the magnet) end to end
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Need to go from one reference (zc = center of quadrupole)
to the other (zm = rotation axis of the measuring coil) ?

Easy
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Axis misaligned Axis misaligned –– measure Quadrupole Axismeasure Quadrupole Axis

Resolution (for d) ≈ 0.01 mm
Issue : refer rotation axis 

to magnet fiducials
when possible : turn the magnet 

top to bottom once centred
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Sometimes 
Impossible

And Useless
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For LHC dipoles, measurement axis sometimes 1 to 2 mm 
from mechanical dipole axis
So need to correct for the feed down from high "allowed" 
multipoles (b3 , b5 , b7 ) to lower ones where we wanted cn at 
10 ppm (0.1 unit) resolution
b3 ≈

 
5 to 10 unit & changing with time

Choice done: d = C10 /10⋅C11 defines axis for 
the results of the LHC dipoles 
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Need to center the system ?Need to center the system ?
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LEP measuring shaft : aperture 120 mm , maximum length 3.5 m

Align measurement system with Quad axisAlign measurement system with Quad axis

0

0.5

1

-1500 -1000 -500 0 500 1000 1500[mm]

B(z)

Align with the 2 end coils
Fine tune of alignement with integral coil
Gives full multipoles for ends & central part

central field (by difference) then effective length
measurement of end fields to compare to 3D calculation

Impossible for smaller apertures and/or longer magnets
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Does not work for axis finding if intermediate bearings

All coils on the same sizeAll coils on the same size

0

0.5

1

-1500 -1000 -500 0 500 1000 1500[mm]

B(z)
LHC 
11 segments
spaced by 110 mm

Allows more radial room for the coil segments 
(and compensation scheme)

Need to make sum of 3 (or more) measurement
and take into account the holes between coils 

to get ∫Bdl (& ∫Gdl)
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Harmonic Coil MeasurementHarmonic Coil Measurement

Outline 

Basic Equations for 2D Field & Multipoles
Harmonic Coil Measurement
Measure the Field Direction & Quadrupole Axis
Accuracy issues & possible improvements

Voltage Integrator
Angle Encoder & torsional stiffness
Imperfection in rotation & shaft rigidity

Calculate the Coil factors
Measure multipoles in pulsed magnets
Pro's & Con's of rotating coil measurement
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Using a Voltage IntegratorUsing a Voltage Integrator
Magnetic Fluxes are [T⋅

 

m2] = [V ⋅s] (Maxwell)
=> Integrating the voltage  between 2 angular positions eliminates "time"

What about the Amplifier offset ? Can be eliminated 

over a turn

Not true if excitation current changes with time

By "washing machine" :  average between go and return

If ω

 

(rotation rate) non constant

 

? 
Can be eliminated if δt measured with each angular interval

If both ω

 

(rotation rate) & Offset(t) non constant

 

? 
creates coupling between harmonics, 
generally the limit for the measurement accuracy

∫ ⋅+Ψ=Ψ dtOffset)0()2( π

! Have a good motor and smooth mechanics !
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Angular Encoder not perfectAngular Encoder not perfect

Encoder axis non parallel or non co-axial with shaft axis gives :
θmeas.

 

= θ + ε⋅sin(θ) 
in pure dipole (B1≠0)

Ψ(θ) ∝ cos(θmeas

 

) ) ≈ cos(θ) - ε/2⋅ (1-cos(2 θ))
Non existing B2
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Delta , gives a cos( 2 Th) contribution

[Pi*rad]

Torsional vibrations give 
similar random errors
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Angular Encoder not perfect (2)Angular Encoder not perfect (2)

unit) 10 (  10b gives mrad 1
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Encoder with 212 points (4096) is
Specified to be just good enough
is in fact better (if incremental encoder)

Order of Magnitude

θθRR11

RR22

! Take Care !
Torsional stiffness of coil
Encoder mechanical mounting

(add special bellow)
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Eliminate Angle imperfectionEliminate Angle imperfection

Rejection ratio ≈

 

300 to 2000 if the two coils are 
sorted according to effective area
(adjusted to be) parallel

Example with tangential coils : [a] – [c]

2 identical coils in electrical opposition 
are unsensitive to a dipole field  : K1 = 0
(true whether you displace or rotate them)
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Coil with lateral displacement when rotating in QuadrupoleCoil with lateral displacement when rotating in Quadrupole

Exemple : coil shaft bends due to gravity
Hyp : R2 = Rr ; R1 = 0 ; Displ. = i⋅d⋅Rr ⋅cos(2θ)

R2 = Rr ⋅

 

(i⋅d⋅

 

cos(2θ)+eiθ) ; R1 = Rr ⋅
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Imperfection in rotation (in Quadrupole)Imperfection in rotation (in Quadrupole)

 unit) 30 (  103b  

mm   0.02  

 mm  0.02              
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! Take Care !
Stiffness of coil (shaft)
Quality of the bearings
Compensate main harmonic

Quadrupole coil
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Eliminate imperfection in rotation Eliminate imperfection in rotation 

Compensating coil picks same flux as main  
half width & twice number of turn 
centrally located

in Gradient (B(x) = G⋅x)
When rotated or displaced : K1 = K2 = 0

Coil 4.8 mm wide, 64 turns       ;    8.7 mm wide, 32 turns 

More symmetric construction

Rejection ratio ≈

 

50 to 500
if the 4 (5) coils are 

sorted according to effective area
(adjusted to be) parallel

[a]-[b]-[c]+[d]
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Compensation Coil Schemes   Compensation Coil Schemes   
Improves signal to noise ratio Improves signal to noise ratio 

Only multipoles > main harmonic are measured with compensation coils

Since Cn (n≠1) << B1

 

in dipole ((n≠2) in quadrupole)

Voltage Ripple & slow current change by current supply

disappear (1st order)

Coupling between main and higher harmonic disappears

(cf. varying rotation rate & offset)

Voltage on integrator smaller (by rejection ratio) 

=> can be amplified

higher resolution

[signal / offset] better ratio
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Type ofType of

 
Coil BuckingCoil Bucking

CommonCommon

 
ModeMode

 
RejectionRejection

RotationRotation

 
imperfectionimperfection

 
correctioncorrection

FlexibilityFlexibility NotesNotes

AnalogAnalog

 
BuckingBucking

Equal coilsEqual coils

±±

 

Series ConnectionSeries Connection
YesYes YesYes AverageAverage Requires large array for higher ordersRequires large array for higher orders

Different Different NturnsNturns

±±

 

Series ConnectionSeries Connection
YesYes YesYes PoorPoor Array optimized for one specific orderArray optimized for one specific order

Equal coilsEqual coils

 
VariableVariable‐‐gain gain preamplipreampli YesYes YesYes HighHigh

Highly stable and linear Highly stable and linear ampliampli

 
required, otherwise unacceptable required, otherwise unacceptable 

 
errorserrors

Digital Digital 

 
BuckingBucking

Equal coilsEqual coils

 
Numerical treatmentNumerical treatment NoNo YesYes BestBest Gains may be fine tuned Gains may be fine tuned a posterioria posteriori

 
Multiple DAQ channels requiredMultiple DAQ channels required

Compensation Coil Schemes   Compensation Coil Schemes   
Compare different implementations Compare different implementations 
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Harmonic Coil MeasurementHarmonic Coil Measurement

Outline 

Basic Equations for 2D Field & Multipoles
Harmonic Coil Measurement
Measure the Field Direction & Quadrupole Axis
Accuracy issues & possible improvements

Voltage Integrator
Angle Encoder & torsional stiffness
Imperfection in rotation & shaft rigidity

Calculate the Coil factors
Measure multipoles in pulsed magnets
Pro's & Con's of rotating coil measurement
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Tangential vs. Radial coils Tangential vs. Radial coils 
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Allows more rigid coil frame 

Unsensitive for n·Angle=2π

Gives imaginary Kn

Ψn =Kn ·Cn holds
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Calculate KCalculate Knn with finite windingswith finite windings

WW

hh

5.12
22

 mm  0.5 h   w
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n

Rn
zzLNK

dzz
S

Not much different if w=h<<Rc

2
c mm  1 h        wmm 10  R =⋅=

Cf. A. Jain ,Anacapri, CAS 97

So far, pointlike coil winding
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Calculate KCalculate Knn with finite windingswith finite windings

Correct calculation needed 

in this case

a

c

b

d

Developped 
@ FNAL
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Coils Array to measure harmonics during rampsCoils Array to measure harmonics during ramps
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How to measure multipoles in pulsed magnetHow to measure multipoles in pulsed magnet

ΔB/Δt cannot be neglected over one coil revolution period
Increase rotation rate (and bandwidth of acquisition)

(cf. P. Arpaia & M. Buzio)
Coil static at given θi & pulse the current.
then go to next angle (32 or 64 points per turn)

Linac 4 pulsed quadrupoles have 2 ms flat duration

Experimental work going on
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Can we extrapolate outside Rmes ?Can we extrapolate outside Rmes ?

M. Buzio , IMMW15
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The The HarmonicHarmonic CoilCoil MeasurementMeasurement 
ProPro’’ss & & ConCon’’ss

Pro’s
full 2 D measurement (normal and skew terms)

corresponding to beam simulation needs
gives axis and field direction

High accuracy of multipole measurement
with help of Coil Compensation Schemes

Analysis and results with general formalism
(in particular for "Coil Factors")

Con’s
More complex mechanics (encoder, motor)
Not suited to high angle bending magnets
Not suited to wide horizontal aperture magnets
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