Harmonic Coil Measurement Method

Cern Accelerator School on Magnets

16 – 25 June 2009

Brugge

L. Walckiers - Cern

Harmonic Coil Measurement

Outline

Basic Equations for 2D Field & Multipoles Harmonic Coil Measurement > Measure the Field Direction & Quadrupole Axis >Accuracy issues & possible improvements **Voltage Integrator Angle Encoder & torsional stiffness Imperfection in rotation & shaft rigidity Calculate the Coil factors** >Measure multipoles in pulsed magnets Pro's & Con's of rotating coil measurement

Flux seen by a (simple) rotating coil

Flux picked by a measuring coil rotating in a dipole field

$$\Psi(\theta) = N_t \cdot L \cdot \int_{R_1}^{R_2} B_1 \cos(\theta) \cdot d\theta$$

With Nt = number of turns L = Length of the measuring coil

Basic Equations for Field & Multipoles Description

$$B(z) = \sum_{1}^{N(=\infty)} C_n \cdot \left(\frac{z}{R_r}\right)^{n-1} \text{ with } C_n = B_n + iA_n$$
$$z = x + i \cdot y$$

 C_n are in Tesla at reference radius R_r

Often in use to describe high order multipoles : units = errors relative to the main harmonic B_N at reference radius R_r

$$c_n = b_n + ia_n = 10^4 \frac{C_n}{B_N}$$

Why a Reference Radius ?

$$B(z) = \sum_{1}^{N(=\infty)} C_n \cdot \left(\frac{z}{R_r}\right)^{n-1} \text{ with } C_n = B_n + iA_n$$

The reference radius R_r in practice corresponds to :

2/3 of the yoke aperture in resistive magnets
 " coil " superconducting magnets
 Useful aperture for the beam

Radius when the multipoles relative to main field have same order of magnitude

 Choose carefully your reference radius
 Measure with R_{meas}>R_{ref}

$$c_n = b_n + ia_n = 10^4 \frac{C_n}{B_n}$$

Main Field Components

$$\mathbf{C}_n = B_n + iA_n$$

n=1 $B_1 \neq 0$, normal dipole n=2

 $B_2 \neq 0$, normal quadrupole

 $A_1 \neq 0$, skew dipole

 $A_2 \neq 0$, skew quadrupole

Simple rotating coil – Any Field

A real bench with a permanent magnet

$$\Psi(\theta) = \operatorname{Re}\left(\sum_{1}^{N(=\infty)} N_t \cdot L \cdot \frac{(R_2^n - R_1^n)}{n \cdot R_r^{n-1}} \cdot C_n \cdot e^{in\theta(t)}\right)$$

Measured :

- Ψ ($θ_{i+1}$) Ψ ($θ_i$) Rotating coil connected to a voltage integrator (time discerse)
- (time disappears)
- Triggered by _____ an angular encoder
- At angles i = 1 .. 2^M (2^M = 256 or 512 in most cases)

Fourier Analysis of the Flux Ψ seen by a rotating coil

Harmonic Coil Measurement

Outline

Basic Equations for 2D Field & Multipoles **Harmonic Coil Measurement** Measure the Field Direction & Quadrupole Axis Accuracy issues & possible improvements **Voltage Integrator Angle Encoder & torsional stiffness Imperfection in rotation & shaft rigidity** Calculate the Coil factors > Measure multipoles in pulsed magnets Pro's & Con's of rotating coil measurement

Reference Angle misaligned - Measure the Field Direction

Need to go from one reference to the other ? $\geq \theta_{m}$ reference for the Fourier analysis, zero of the encoder $\geq \theta_{g}$ Gravity, magnet fiducials when aligned $\geq \theta_{f}$ Field defines vertical A1 = 0 in dipole (A2 in quadrupole)

$$C_n^m = C_n^f \cdot \exp(in(\theta_f - \theta_m))$$

Measure the field Direction : > Resolution (for A_1/B_1) < 0.1 mrad > Issue : refer θ_m (encoder) to θ_g (magnet fiducials) > Issue : calibrate K_1 (coil direction) with θ_m (encoder) when possible : turn the full system (or the magnet) end to end

Axis misaligned – measure Quadrupole Axis

Need to go from one reference (z_c = center of quadrupole) to the other (z_m = rotation axis of the measuring coil) ?

with
$$z_m = z_c - d \cdot R_{ref}$$
 $C_n^m = \sum_{k=n}^{\infty} \frac{(k-1)!}{(n-1)!(k-n)} C_k^c \cdot d^{k-n}$

Find quadrupole axis?
$$d = -\frac{C_1^m}{C_2^m}$$

 Resolution (for d) ≈ 0.01 mm
 Issue : refer rotation axis to magnet fiducials
 when possible : turn the magnet top to bottom once centred

Need to center the system ?

For LHC dipoles, measurement axis sometimes 1 to 2 mm from mechanical dipole axis So need to correct for the feed down from high "allowed" multipoles (b_3 , b_5 , b_7) to lower ones where we wanted c_n at 10 ppm (0.1 unit) resolution $b_3 \approx 5$ to 10 unit & changing with time

with
$$z_m = z_c - d \cdot R_{ref}$$
 $C_n^m = \sum_{k=n}^{\infty} \frac{(k-1)!}{(n-1)!(k-n)} C_k^c \cdot d^{k-n}$

At 1st order (d < R_{ref}) $C_n^m = n \cdot C_{n+1}^c \cdot d$

Choice done: $d = C_{10}/10 \cdot C_{11}$ defines axis for the results of the LHC dipoles

L. Walckiers - CAS, June 2009 - Harmonic Coils - p. 14

Align measurement system with Quad axis

> measurement of end fields to compare to 3D calculation

Impossible for smaller apertures and/or longer magnets

All coils on the same size

Allows more radial room for the coil segments (and compensation scheme)

Need to make sum of 3 (or more) measurement and take into account the holes between coils to get $\int Bdl (\& \int Gdl)$

Does not work for axis finding if intermediate bearings

LHC

11 segments

spaced by 110 mm

Harmonic Coil Measurement

Outline

Basic Equations for 2D Field & Multipoles Harmonic Coil Measurement > Measure the Field Direction & Quadrupole Axis >Accuracy issues & possible improvements **Voltage Integrator Angle Encoder & torsional stiffness Imperfection in rotation & shaft rigidity Calculate the Coil factors** > Measure multipoles in pulsed magnets Pro's & Con's of rotating coil measurement

Using a Voltage Integrator

- Magnetic Fluxes are $[T \cdot m^2] = [V \cdot s]$ (Maxwell) => Integrating the voltage between 2 angular positions eliminates "time"
- What about the Amplifier offset ? Can be eliminated
- ► over a turn $\Psi(2\pi) = \Psi(0) + \oint Offset \cdot dt$

Not true if excitation current changes with time

➢By "washing machine" : average between go and return

If ω (rotation rate) non constant ? Can be eliminated if δt measured with each angular interval

If both ω (rotation rate) & Offset(t) non constant ?

creates coupling between harmonics,

generally the limit for the measurement accuracy

! Have a good motor and smooth mechanics !

Angular Encoder not perfect

Encoder axis non parallel or non co-axial with shaft axis gives : $\theta_{meas.} = \theta + \varepsilon \cdot sin(\theta)$ in pure dipole (B1 \neq 0)

 $\Psi(\theta) \propto \cos(\theta_{meas}) \approx \cos(\theta) - \varepsilon/2 \cdot (1 - \cos(2\theta))$ Non existing B_2 term induced : $\partial B_2 / B_1 = \partial b_2 = \varepsilon / 2 \cdot K_1 / K_2$

Angular Encoder not perfect (2)

Order of Magnitude

Hyp:
$$R_2 = R_{ref}$$
; $R_1 = 0$
$$\frac{K_n}{K_1} = \frac{1}{n} \cdot \left(\frac{R_2}{R_{ref}}\right)^{n-1} = \frac{1}{n}$$
$$\varepsilon = 1 \text{ mrad gives } \partial b_2 = 10^{-3} \text{ (10 unit)}$$

Encoder with 2¹² points (4096) is
➤ Specified to be just good enough
➤ is in fact better (if incremental encoder)

! Take Care !
 > Torsional stiffness of coil
 > Encoder mechanical mounting (add special bellow)

Eliminate Angle imperfection

Coil with lateral displacement when rotating in Quadrupole

Exemple : coil shaft bends due to gravity Erroneous dipole & sextupole Hyp: $R_2 = R_r$; $R_1 = 0$; Displ. = i·d· R_r ·cos(2 θ) $\partial B_1 / B_2 = \partial b_1 = d$ In $\Psi(z = e^{i\theta}) = N_t \cdot L \cdot \operatorname{Re} \int_{R_1}^{R_2} \sum_{1}^{N(=\infty)} C_n \cdot \left(\frac{z}{R}\right)^{n-1} \cdot dz$ $\partial b_3 = -3 \cdot d$ $R_2 = R_r \cdot (i \cdot d \cdot \cos(2\theta) + e^{i\theta})$; $R_1 = R_r \cdot i \cdot d \cdot \cos(2\theta)$ 1.2 Cos(2*Th) - 0.1*(sin(Th)-sin(3*Th)) 0.8 Delta, gives b1, b3 0.6 0.4 0.2 0 -0.2 **ØN** -0.4 7 -0.6 -0.8

0.5

· 1-· 1.2-

0

L. Walckiers – CAS, June 2009 – Harmonic Coils – p. 22

1.5

[Pi*rad]

Imperfection in rotation (in Quadrupole)

Order of Magnitude : Hyp: $(R_2 =) R_{ref} = 20 \text{ mm}$ *!* Take Care ! > Stiffness of coil (shaft) > Quality of the bearings > Compensate main harmonic
Hyp: $(R_2 =) R_{ref} = 20 \text{ mm}$ d = 0.02 mm $\partial \frac{B_1}{B_2} \cdot R_{ref} = 0.02 \text{ mm}$ $\partial \frac{B_3}{B_2} = \partial b_3 = 3 \cdot 10^{-3}$ (30 unit)

Quadrupole coil

Eliminate imperfection in rotation

Compensation Coil Schemes Improves signal to noise ratio

Only multipoles > main harmonic are measured with compensation coils Since $C_n (n \neq 1) << B_1$ in dipole (($n \neq 2$) in quadrupole) Voltage Ripple & slow current change by current supply disappear (1st order) Coupling between main and higher harmonic disappears (cf. varying rotation rate & offset) \succ Voltage on integrator smaller (by rejection ratio) => can be amplified higher resolution [signal / offset] better ratio

Compensation Coil Schemes Compare different implementations

Type of Coil Bucking		Common Mode Rejection	Rotation imperfection correction	Flexibility	Notes
Analog Bucking	Equal coils ± Series Connection	Yes	Yes	Average	Requires large array for higher orders
	Different Nturns ± Series Connection	Yes	Yes	Poor	Array optimized for one specific order
	Equal coils Variable-gain preampli	Yes	Yes	High	Highly stable and linear ampli required, otherwise unacceptable errors
Digital Bucking	Equal coils Numerical treatment	No	Yes	Best	Gains may be fine tuned <i>a posteriori</i> Multiple DAQ channels required

Harmonic Coil Measurement

Outline

Basic Equations for 2D Field & Multipoles Harmonic Coil Measurement > Measure the Field Direction & Quadrupole Axis >Accuracy issues & possible improvements **Voltage Integrator Angle Encoder & torsional stiffness Imperfection in rotation & shaft rigidity Calculate the Coil factors** > Measure multipoles in pulsed magnets Pro's & Con's of rotating coil measurement

Tangential vs. Radial coils

Allows more rigid coil frame Unsensitive for n-Angle= 2π Gives imaginary K_n $\Psi_n = K_n \cdot C_n$ holds \boldsymbol{z}_1 $R_{c} = R_{r} = 17 \text{ mm}$ $2 \cdot \alpha = \frac{2\pi}{12.5}$

General Expression $K_n = N_t \cdot L \cdot \frac{(z_2^n - z_1^n)}{n \cdot R^{n-1}}$ Radial Coil: $R_2 \& R_1$ are real $K_n = N_t \cdot L \cdot \frac{(R_2^n - R_1^n)}{n \cdot R_{\cdot}^{n-1}}$ Tangential Coil: $z_2 = R_c \cdot e^{-i\alpha}$; $z_1 = R_c \cdot e^{i\alpha}$ $K_n = -2 \cdot i \cdot N_t \cdot L \cdot \frac{R_c^n \sin(n\alpha)}{n \cdot R_r^{n-1}}$

Calculate K_n with finite windings

Calculate K_n with finite windings

If finite dimension of coil winding Replace z_2

by
$$\langle \mathbf{z}_2^n \rangle = \frac{1}{S} \int z^n \cdot dz$$

in
$$K_n = N_t \cdot L \cdot \frac{(Z_2 - Z_1)}{n \cdot R_r^{n-1}}$$

Correct calculation needed

in this case

Coils Array to measure harmonics during ramps

BNL Harmonic Coil Array

16 Printed Circuit coils, 10 layers 6 turns/layer 300 mm long 0.1 mm lines with 0.1 mm gaps Matching coils selected from a production batch Radius = 35.7 mm (BioMed) 26.8 mm (GSI)

How to measure multipoles in pulsed magnet

∆B/∆t cannot be neglected over one coil revolution period
> Increase rotation rate (and bandwidth of acquisition)
(cf. P. Arpaia & M. Buzio)
> Coil static at given θ_i & pulse the current. then go to next angle (32 or 64 points per turn)
Linac 4 pulsed quadrupoles have 2 ms flat duration

Experimental work going on

Can we extrapolate outside Rmes ?

Example of results: harmonics in large aperture by extrapolation at r>r_{coil}

Reference quadrupole measured in the same conditions with two moles having different coil arnothing

The Harmonic Coil Measurement Pro's & Con's

Pro's
▶ full 2 D measurement (normal and skew terms) corresponding to beam simulation needs gives axis and field direction
▶ High accuracy of multipole measurement with help of Coil Compensation Schemes
▶ Analysis and results with general formalism (in particular for "Coil Factors")

Con's

More complex mechanics (encoder, motor)
 Not suited to high angle bending magnets
 Not suited to wide horizontal aperture magnets