Longitudinal Dynamics

F=e(E+VXxB)
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Acceleration

The accelerator has to provide kinetic energy to the charged particles, i.e.
increase the momentum of the particles. To do this, we need an electric field E,
preferably in the direction of the momentum of the particles

Electrostatic accelerator

Générateur v,

V, \A Vy v
Gain: n.e.AV © C ' V
Limit: Vo = XV, e —» £,
Sparks ! i L_

Rather use RE fields !
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RF accelerating fields:

Wideroe structure

Synchronism: L = vT/2 e —s = = =

As the speed of the particles increases, the length of the drift
tubes has to increase ! Efficiency !
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Low energy linac:

Linear structure
in use at CERN
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Resonant cavities (1)

The resonance frequency of the cavity is adapted (matched) to
the frequency of the RF generator.
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Resonant cavities (2)

Real geometry is
more sophisticated
to improve the
performance of the
cavity

Nose: E in the vicinity of the
symmetry axis

Rounding: losses,
multipacting
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RF cavities:

a - g "...‘ . (o . o1 . — -

LEP "NC"

LHC "SC"

SUPERCONDUCTING CAVITY WITH ITS CRYOSTAT
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Acceleration or compensation

» We have to provide energy to the particles either to accelerate them or
to compensate for the losses accumulated during one turn.

» This energy is not provided by electrostatic plates, but by RF cavities.

» The ideal particle has to arrive at the cavity exactly at the same moment
turn after turn (synchroneous particle).

Equilibrium:

1CRF = h " frev
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Off momentum particles (Ap/p=0)

Effect from Dipoles

> If Ap/p < 0, particles are more bent in the dipoles = should spiral in !

D(x)
Nol! Ap/p=0

There is an
equilibrium with the

restoring force of
the quadrupoles Ap/p<0 Ap/p=0
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i Off momentum particles
T

™

/\
. N

L b G

Synchronous particle

On momentum particle arrives at t, = V = V, = o.k.
Ap/p > 0 have a longer path =» arrive late, e.g. t, 2V, < V,
Ap/p < 0 have a shorter path = arrive early, e.g. t; 2> V, >V,
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Synchrotron oscillations

[

 t

-

A0

e

Ap/p ,

1) Correct energy but late, not enough voltage =» will loose energy.

2) On time, correct voltage, on short orbit = will gain energy.

3) Correct energy but early, too large voltage will gain = energy.

4) On time, correct voltage, on long orbit = will loose energy.
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i Synchrotron oscillations

» In the longitudinal plane, particles also perform oscillations, the
synchrotron oscillations.

» These oscillations are characterised by the synchrotron tune Q..

» The frequency of the synchrotron oscillations is very different from that
of the betatron oscillations:

Q.>1 Q. << 1
p S

The RF system imposes limits on t (i.e. t; and t,) and Ap/p for which the
particles are stable and perform synchrotron oscillations within the
bunch. Outside these limits the particles are lost.

The RF cavities restore energy losses, ensure correct energy of the
beam(s) and maintain particles grouped into bunches longitudinally.
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The bunches of particles:

The RF system creates bunches of particles

With f.r = h . f,,,, we could thus have "h" bunches of particles

circulating in the machine.

LHC: h= 35640
A
Momentum frr = 400 MHz

—> —
/EMQ RF phase Ve = 16 MV

2808 bunches per
beam
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i Closed orbit distortions

X(s) = (B; B(s))Y?/(2sin(=Q)) . 6; . sin(d(s) - ;)

X'(s) = (B B(s))"*/(2sin(nQ)) . 6; . cos(¢(s) - ¢)

» Any imperfection or perturbation of the guide field will distort the
closed orbit, which, so far was the theoretical axis of the
machine.

» The ideal particle will no longer go straight down the centre of
the vacuum chamber, but will follow a perturbed closed orbit
(still closing on itself).

» The betatron oscillations of the particles will be superimposed to
this distorted closed orbit = Aperture and non-linearities.
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Aperture:

IS a key parameter whnich has t
I Tt deserves a lot of attention!

APEnREshall

Global cost,

POWErINg COst,
Multipoles,

good field region,
avallable space,

POWer supplies,
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Injection steering,
closed orbit,
emittance at injection,
Impedance,
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Closed orbit, Magnets and PCs

»>In low-beta insertions (very large beta values before and after the
I.P.), imperfections or perturbations of the guide field can have
dramatic consequences (vacuum chamber, non-linear fields).

Magnets/power convertersiis one of the

expe ied performance of the machine !
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Stability !

How do the stability and the accuracy of the Magnets affect
the accelerator?

» Accuracy of the energy of the beam(s) : dipoles

» Modify the tunes of the machine : quadrupoles

> Perturb the closed orbit of the machine : field errors/fluctuations
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Synchrotron Radiation
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Synchrotron radiation

with y = E/E, = m/m, and m,is the rest mass

Energy loss:
eUy =A.v¥p
Collider B (T) E/beam (GeV) Y eU, (GeV)
LEP (e* €) 0.12 100 196000 2.92
LHC (p-p) 8.3 7000 7500 0.00001
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The power is all too real !
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ig. 12. Damaged X-ray ring fl;()l]t end gate valve. The power incident on the valve was approxima[ely'l_‘ kW for a

duration
estimated to 2—-10 min and drilled a hole through the valve plate. . ‘
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Hadrons vs. Leptons (circular machine)

Two extreme cases:

Magnetic rigidity: Synchrotron radiation losses:
Bp = mv/e = p/e eU, =A.yYp

LEP (100 GeV): B=0.12 T LEP (100 GeV): U, = 3 GeV

LHC (7 TeV): B=83T LHC (7 TeV): U, = 0.00001 GeV

Remember: For warm magnets (not SC): B<2T
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The Performance
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e.g. for colliders: the Luminosity

dN/dt=Lxo

[1/s] = [1/(cm2.5)] X [cm?]

L f.k/(4.n
with:

N; , = Number of particles per bunch

f = revolution frequency

K = number of bunches

0,, = horixontal and vertical beam size
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Maximise the bunch Intensity

] =f.k/(4.r|.ox.0y)
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‘L Intensity: Impedance Z, (o) (1)

/
AN

> q q

Perfect conductor: E, = 0

/ AN

M. Ferrario — CA
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i Impedance Z, (o) (2)

* |f conductor is not perfect, or, even worse, if b # const.

M. Ferrario — CAS Baden 2005

Es #+ 0 => there is an interaction between the beam and the wall!
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* Impedance Z, (o) (3)

Worst case: abrupt changes in the cross-section of the pipe:

M. Ferrario — CAS Baden 2005

J prObJQﬂ’ S), but the Inauced
| OF on the fellowing BUNCNES:
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i Induced fields

e.m. fields induced in
the RF cavities during
the passage of a
bunch.

The fields can act
back either on the
bunch itself or, on the
following bunches

M. Ferrario — CAS Baden 2005
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Impedance Z, (») (4)

Not surprisingly: 1., o« 1/Z,(®)

» Select carefully the materials you are using.

» Avoid any (unnecessary) change in the cross-section.

» When variations of the cross-section are unavoidable, use
smooth tapers (o < 15 °).
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i\Z/n\ as a function of time:

Machine 1Z/n| [Q]
PS (~ 1960) > 50
SPS (~ 1970) ~ 20
LEP (~ 1990) ~0.25 (1.0)
LHC (~ 2009) ~0.10 (0.25)
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LHC Beam-Screen (material)

o Without proper
Cu-coating of the
beam-screen,
nominal intensity
foreseen for the
LHC could not
circulate in the
machine!
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Transverse Impedance Z(®)

* In case of a broad-band impedance, there is a very convenient
relation between the longitudinal and the transverse
impedances, namely:

Z(®) = (2R/b2) . |Z,(w)/N] [Q/m]

This relation clearly shows that magnets designers, vacuum experts
and financial considerations might favour solutions which are
opposite to those of accelerator physicists!
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Minimise the beam sizes

| = N1.N2.f.k/(4.n
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Optimal performance:

> Highest possible bunch intensity (N2)
» Number of bunches k

»Minimise beam size =» decrease [ function !

Create special zones around the experiments:

The Insertions !
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The Iinsertions:

e Break the periodic structure of the arc at a selected place.
e « Insert » a straight section with the experiment in the middle.
e Each straight section is composed of (L+R):

o Dispersion suppressor (a few dipoles and quadrupoles)

e Section with quadrupoles to strongly squeeze the beam
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LHC insertions:

O 2 Ring Layout: CMS
TOTEM

IP5

extraction

P4 IP6

collimation —
1P3
machine
protection
P2 P8
ALICE LHCb
injection bl IP1 injection b2

ATLAS
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Momentum spread = 0.
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3 at the Interaction Point (IP):
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Summary ...
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High energy collider:

RADIOFREQUENCY CAVITY

BENDING MAGNET

FOCUSING MAGNET

VACUUM CHAMBER

A
INJECTION __—

*/

=]

-]  COLLISIONS — =
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}

Particle Physics and the rest of the field ...
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iAcceIeratorS in the world (2002)

Basic and Applied Research Medicine
High-energy phys. 120 |Radiotherapy 7500
S.R. sources 50 |Isotope Product. 200
Non-nuclear Res. 1000 |Hadron Therapy 20

Industry
Ion Implanters 7000
Industrial e- Accel. 1500 | [Total: 17390

Courtesy: W. Mondelaers JUAS 2004
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