Field Measurement Methods

Luca.Bottura@cern.ch CAS on Magnets

Novotel Brugge Centrum, Bruges, Belgium 16 - 25 June, 2009

Overview

- NMR/EPR, the golden standard
- Fluxmeters, the workhorse for accelerators
 - fixed, moving, flipping, rotating coils and wires
- Hall generators and magneto-resistors, *cheap*
- Other *fun* methods
 - Fluxgate magnetometers, sensitive
 - SQUIDS, quantum sensitive
 - Atomic and SERF magnetometers, yet more sensitive
 - Faraday rotation, *fast*
- Concluding remarks, and a design graph

NMR/EPR principle

 a particle with a spin and magnetic moment in an applied field precesses at a (Larmor) frequency f:

Gyromagnetic ratio

Electron Paramagnetic Resonance (EPR), Electron Spin Resonance (ESR)

> Nuclear Magnetic Resonance (NMR)

Resonance and coherence

 a transverse RF pulse of frequency *f* induces resonance in the precession and coherence in *M_t*

FIG. 4. Scale drawing of an xy section of the r-f head. The spherical sample S is surrounded by a receiver coil R, which is in turn surrounded by a transmitter coil T, the whole being encased in a shield. A rotably mounted paddle P is used to steer the transmitter flux. Leads to the receiver coil are the coaxial leads L_1L_2 while the transmitter leads are L_3 and L_4 . The outer shield is split to avoid 60-cycle eddy currents.

A *DIY* NMR magnetometer

0.1 ppm absolute accuracy achievable (0.1 Hz)

- tracking is slow (Hz): maximum field variation tolerated for latching δ B/B < 1 % s⁻¹
- field gradients *blur* signal: field homogeneity $\nabla B/B < 10 \dots 100 \text{ ppm/mm}$
 - gradient coils to measure inhomogeneous fields !

Free Induction Decay

- *M_t* decay after RF pulse (FID)
 - high accuracy for long measurement times
 - main tool for spectroscopy
 - analysis of chemicals, molecules
 - structure determination (COSY, NOSY, ...)

2000 Ig Nobel Prize winner, Annals of Improbable Research I.W. Schultz, P. van Andel, I. Sabelis, E. Mooyaart *Magnetic resonance imaging of male and female genitals during coitus and female sexual arousal* British Medical Journal, **319**, 1596-1600, 1999.

Fluxmeter

• Magnetic flux: $\varphi = \int \mathbf{B} d\mathbf{S}$

• Induction law: $V = -\frac{d\varphi}{dt}$

Ann. Der Physik, 2, 209, **1853**

II. Ueber die Anwendung der magnetischen Induction auf Messung der Inclination mit dem Magnetometer; con Wilh. Weber.

(Mitgetheilt vom Hrn. Verf. im Auszuge aus d. Abhandl. d. K. Gesellsch. d. Wiss. zu Göttingen Bd. V.)

Inductions-Inclinatorium

			Beol	bach	let.	Ber	echn	et.
1805	Dec.		69°	29		69°	36'	43 "
1826	Sept.		68	29	26"	68	23	17
1837	Juli	L	67	47	0	67	52	41
33))		67	53	30	67	52	41
1841	Oct.	8	67	42	43	67	42	0
1842	Juni	21	67	39	39	67	40	18
1050	A 110	7	67	18	38	67	18	34
daß	die	durc	h	Ve	rmitti	lung	de	r
Induction	mit	dem	ı N	1ag	neto	meter	a	n
Präcision	aı	ıch	de	n	du	rch	di	e
sorgfältigs	sten	Beob	acht	tun	gen	mit	de	n
besten	bis	herig	en		Inc	linato	rie	n
gewonnen	en Re	esultat	ten 1	nicl	ht na	chsteh	ien;	

Unterschied. - 7' 43" + 6' 9" -5' 41" + 0' 49" + 0' 43" - 0' 39" +0'

magnetic inclination in Göttingen, also measured by:

- Gauss
- Humboldt
- Forbes

... that the determination of the inclination through the evaluation of the induction with the magnetometer are not worse than the results obtained so far with the best inclinometers;

Analog integrator (Miller)

simple, inexpensive, effective accuracy limited by analog electronics

European Organization for Nuclear Research

digital output, no cumulative error, 10...100 ppm accuracy ! VFC linearity and stability, counter resolution ($\Delta t/(4 f_{ref})$ ppm)

Numerical integrator digital approximation for numerical V_{in} R_{coil} integration ′i-1 Vi DVM Δt_i ti trigger t_{i-1} t_i

digital output, powerful numerical integration possible precise time required, *dead*-times, may need 2 DVM's

European Organization for Nuclear Research

Fast Digital Integrator

faster integrals (100 kHz), improved resolution (1 ppm)

Point coils – the Fluxball

W.F. Brown, J.H. Sweer, Rev. Sci. Instr., 16, 276, **1945**

measure average field in a small volume (point-like) can be approximated by co-axial solenoids of proper R/H

measure field gradients or higher order terms (bucking) high resolution through compensation of background field signal Fluxmeter zoo

 $=-\frac{d\varphi}{dt}$

- Fixed coil measurements
 - Static coils (dS/dt=0), the field change (dB/dt) induces the voltage
 - Provides only a relative measurement (B_{end}-B_{start})
 - The voltage offsets cannot be distinguished from physical signal

Most flexible method in all its many variants, although...

"...This type of magnetometer is obsolete."

http://en.wikipedia.org/wiki/Magnetometer

Moving coil measurements

00123

BdS

 $\varphi =$

- Steady field (dB/dt=0), the coil movement (dS/dt) induces the voltage
- Requires well controlled mechanics, simple movements
- Provides and absolute measurement if:
 - initial B_{start}=0 moving from *far away* into the magnet (zerogauss chamber): <u>moving coil</u>
 - using symmetries B_{end}=-B_{start}: <u>flip coil</u>, <u>rotating coil</u>
- A voltage offsets can be distinguished from physical signal

A rotating coil ???

... no, actually this is a *fixed coil* with 800 turns and $\approx 250 \text{ m}^2$ surface that has been used to verify e.m. coupling of LEP and SPS

Rotating snakes @ CERN

0.1 μ T, 0.05 mrad resolution, 100 ppm accuracy

Complex formalism

SC magnets for accelerators

- 2-D field (slender magnet), with components only in x and y and no component along z
- Ignore *z* and define the complex plane s = x + i y
- Complex field function:

$$\mathbf{B} = B_y + iB_x$$

 B is analytic in s and can be expanded in Taylor series (the series converges) inside a current-free disk:

$$B_{y} + iB_{x} = \sum_{n=1}^{\infty} \mathbf{C}_{n} \left(\frac{\mathbf{s}}{R_{ref}}\right)^{n-1}$$

$$\mathbf{C}_n = B_n + iA_n$$

$$B_{y} + iB_{x} = \sum_{n=1}^{\infty} \mathbf{C}_{n} \left(\frac{\mathbf{s}}{R_{ref}}\right)^{n-1}$$

complex multipole coefficients:

Multipoles

$$C_{n} = B_{n} + iA_{n}$$

$$n=1$$

$$B_{1}\neq 0, \text{ normal dipole}$$

$$A_{1}\neq 0, \text{ skew dipole}$$

$$A_{2}\neq 0, \text{ skew quadrupole}$$

Rotating coil in normal dipole

maxima and minima located at 0 and π cos(θ) waveform

Rotating coil in skew dipole

maxima and minima located at $\pi/2$ and $3/2 \pi$ flux de-phased by $-\pi/2$ with respect to normal dipole $sin(\theta)$ waveform

Rotating in normal quadrupole

maxima and minima located at 0, $\pi/2$, π and $3/2 \pi$ flux variation twice faster than in a dipole $\cos(2 \theta)$ waveform

Rotating in skew quadrupole

maxima and minima located at 1/4 π , 3/4 π , 5/4 π and 7/4 π flux de-phased by $-\pi/4$ with respect to normal quadrupole sin(2 θ) waveform

Rotating in normal sextupole

 $\cos(3 \theta)$ waveform ...

Hall generator principle

Hall coefficient

- Hall voltage: $V_H = GR_H IB \cos(\theta)$
 - R_H(B): material dependent Hall coefficient
 - high mobility, low conductivity to have high R_H
 - metals (low mobility)
 - allows (high resistivity causes heating)
 - compromise choice: semiconductors
 - temperature dependence 100 to 1000 ppm/°C
 - G (B): geometry factor
 - equipotential lines deform under v x B
 - Optimal design to compensate R_H vs G
 - Cruciform design achieves 1 % linearity over wide B range

Electrode

Hall cross

Semi-insulating

better definition of magnetic center

100 ppm accuracy feasible

Hall magnetometer

a Hall sensor is a 4-terminals device

• do NOT connect outputs in series !!!

- AC (lock-in) can resolve 0.1 μT
 - $I = I_0 \sin(2\pi ft)$, f = 10 Hz ... 1 kHz

Quantum Hall effect

Shubnikov-de Haas effect

oscillation in R_H periodic function of 1/B

effect as much as 1 % on calibration coefficient

 V_{planar} is important when mapping 3-D fields

Phil. Trans., 146, 736, 1856

XXXI. THE BAKERIAN LECTURE.—On the Electro-dynamic Qualities of Metals*. By Professor WILLIAM THOMSON, M.A., F.R.S.

Received February 28,-Read February 28, 1856.

two-terminal device, simple, inexpensive modest sensitivity, non-linear, T effects (2500 ppm/°C) bias field, compensated bridges, giant-magnetoresistance J. M. Kelly, *Magnetic Field Measurements with Peaking Strips*, Rev. Sci. Inst., **22**, 256, **1930**

Fluxgate applications

- simple and inexpensive, lightweight device
- highly directional
- high sensitivity (tens of pT !)
- modest accuracy (1000 ppm)
- typical applications
 - navigation
 - geology, ores, oil fields
 - hunting submarines
 - finding mines
 - mapping of interplanetary magnetic field

A special fluxgate: the DCCT

best known device for high current (relevant for SC magnets) 1 ppm possible at 10 kA (10 mA)

SQUID principles – 1

A. Abrikosov

superconductor

path Γ around a normal conducting region

• change δ of phase of wave-function for paired electrons along Γ depends on magnetic flux φ :

 $\delta = 2\pi \frac{\varphi}{\varphi_0}$ quantum fluxoid (2 x 10⁻¹⁵ Wb)

• flux quantization: $\delta = 2\pi n$

 $\varphi = n\varphi_0$

• the maximum supercurrent depends on δ :

 $I = I_c \sin(\delta)$

sensitivity few pT for bare SQUID, 1 fT with input transformer range limited by FB, accuracy limited by calibration of surface

SQUID Magnetometry

151 SQUID channels helmet

magnetoencefalogram

cortical activation of the primary and secondary somatosensory cortex during left median nerve simulation measured by MEG and fMRI...

The frontier of magnetometry

- Alkali atoms (Rb, Cs) have unpaired electrons whose spin precesses with magnetic field (as protons)
- The interaction with field can be detected as follows:
 - An alkali metal vapor is prepared in a cell
 - A first laser (the pump) aligns the spins to create coherence (as the RF pulse in NMR techniques)
 - A second laser (the probe) detects resonance, which can be seen, e.g., as a shift in an interference pattern
 - Excellent device for miniaturization

Sandia National Laboratories

A digression on spectra

- The gross structure of ^{III} the spectral line of atoms (energy level), are split in:
 - A *fine* structure (due to interaction of magnetic moment of electron spin and orbital angular momentum)
 - A hyperfine structure, due to interaction of nucleus magnetic moment with internal magnetic/electric fields in the atom

Atomic magnetometer DIY

- Set a laser on a given absorption line (e.g. D1 of ⁸⁷Rb, 794 nm)
- AM the laser with a VCO to create two sidebands corresponding to the hyperfine structure (central f = 3.42 GHz)
- Modulate the VCO (by ± 3 MHz) to detect the resonances from the split hyperfine levels
- Compute the difference of frequency between two resonances, which is proportional to the magnetic field:

$h\Delta v \approx \mu g B$

Princeton University

NIST

sensitivity in the range of tens of fT range limited to 1 mT at most, accuracy not established so far J.C. Allred, R.N Lyman, T.W. Kornack, M.V. Romalis, *High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation*, Phys Rev Lett **89**, 130801, **2002**

SERF atomic magnetometers

- Spin Exchange collisions preserve total momentum but cause single spins to change, scrambling the hyperfine structure
- The precession of atoms in the vapor loses quickly coherence, the resolution of the resonance is limited

- At low B and high gas density, collisions happen quicker than the precession time of the atoms. On average the hyperfine states are stable, the Spin Exchange is Relaxation Free
- The resonance is measured with improved resolution !

Premium sensitivity !

- Best quoted sensitivity is 200 aT/√Hz !
 - 0.2 x 10⁻¹⁵ T at 1 Hz

Example: NMR signal from water on chip

- A new world of possibilities
 - Magnetoencelography,
 - Magnetocardiography of in fetal hearts,
 - Earth field NMR ...

a Tricorder ?!?

850 T pulsed field at LANL

imploding flux compression generator (VNIIEF design)

material properties at high magnetic fields (8 to 10 MG)

850 T shot at LANL

Field imaging

- light polarization can be used to image the field:
 Courtesy of A. Jain BNI
 - Faraday rotation
 - ferrofluid cell

center of a RHIC quadrupole at 75 T/m gradient during cold testing

direct magnetic center measurement (image treatment) needs higher field than e.m. methods, limited accuracy

Performance summary

Conclusions

- the art of magnetic measurements cannot be made into a science
 - at least I have given up...
- methods and instruments exist, don't try to make them yourself, use them if you can
 - as for *italian cuisine* let Mom do it...
 - ...or buy a good cooking book before you start
- where can I find out more ?
 - CAS on MM, MT, PAC, EPAC
 - (NIM) uNclear Instruments and Methods