Beam Dynamics in
Synchrotrons with Space-

Charge




Basic Principles without space-charge

e RF resonant cavity providing accelerating volt-
age V(t). Often V = Vysin(¢s + wyrt), where
wrr 1s the angular frequency synchronised with
the arrival time of beam particles. "‘“*w —

Synchronous

Particle with phase ¢ = ¢, at revolution period
To and momentum pg is called the synchronous
particle.

\"\l". 1)

Synchronous particle synchronizes with rt wave
with a frequency w,s = hwo, where wy =
Boc/ Ry is revolution frequency and h is har-
monic number. It encounters the rf voltage at
phase angle ¢, on every revolution. The accel-
eration rate for synchronous particle is

d& W .
d—to — 2—OqV Sin Q. Eo is the synchronous energy
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Non-synchronous particles have small deviations of rf parameters:

w = wqy + Aw, O = ¢s + A0, 0 =0,+ Ab
p = po + Ap, E =& + A€.

f is the azimuthal orbital angle, where A¢ = ¢ — ¢, = —hAH

d 1 d 1 dg
Aw=A)=—-SAp=—-2
0 Aw=TAl =g Al = —r

Energy gain per revolution for non-synchronous particle is ¢V sin ¢

d& W ,
— i %qumgb

d (A€
Thus [ " (w—o) == %qV(sinqb — sin qﬁs)}

, Ap 1 A&
Since — =

po 32 &

an equivalent form is

d Ap

qV( sin ¢ — sin gbs)




1)Ap
%2 Po

1
where v; corresponds

—

ayp 18 momentum compaction, oy, =
Tt

to the transition energy mo~yic

1

1
Write 1= — — —
Vi 2

Ap  hwin (A€
—hAw = h — = —
W WoT) o 328 ( wig )}

(slip factor)
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Small Amplitude Oscillations

| | d hwgn AE
Combined: dt { B2E (wo )]

hwgqVn
2T B2E

| sin ¢ — sin ]

hwiqVn cos ¢
2T B2E

linearised for |¢ — ¢| < 1 (¢ — Qbs)

—>  stable oscillations for ncos@s <0 (McMillan & Veksler)

B hwiqVn cos ¢,
2 B2E

at an angular frequency {2; = \/

Below transition, v < v, n < 0, so require 0 < ¢4 < %ﬂ' acceleration

Above transition, v > ¢, n > 0, so shift synchronous phase to m — ¢,
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Hamiltonian Formulation

) are conjugate coordinates in longitudinal phase-space

AE

For a Hamiltonian system, require H(qb, —) such that
Wo

de OH  hnwg A&
dt N 8(A5/w0) N 525 wWo

d [AE OH 1 . .
E (w—()) —a—¢ m— %QV[Slﬂgb — Sln¢3]

Suggests:

2 Qv
) u qz—w[cosgb—cos% + (¢gb8)singbs]}

Hamiltonian {'H

_ 1w (A€
2 (2€

o
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Synchrotron Mapping Equation

Hamiltonian formalism =—> uniform distribution of rf.

In reality, finite number of cavities, localised in short sections of synchrotrons.

Then use symplectic mapping equations:

2T R 27
After one revolution of ring, in time 7y = L

ﬁC W 7

(¢n7 Agn) — (¢n—|—17 Agn+1), Whel”e

o D
A&, 11 AE,, + qV( sin ¢,, — sin gbs)

2mhn
Pn+1 =  Pn 328 Alp+1

-

Here € = Eypni1 = & + ¢Vsing,, v = E/moc?, B = \/1 — 1/~4?% and
n=oap—1/7°

/

8(Ag’n—|—17 an—l-l)

AEn bn) |

Symplectic =  Jacobian
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Fields created by an unbunched (coasting) beam

Assume a round beam of mean radius a in a circular pipe of radius b

Velocity of beam = (¢
Line density (number of particles per unit length) = A(s)

Al
Fields are: FE, = el —;
2T€EQ T
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Chamber

Chamber

Beam induces charges on inner surface of chamber wall, which
form a current I, equal and opposite to the AC component of
beam current.
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Chamber

E.(s+ As)

+ ++ + + + + ++ + + F+F F+F F+F +F F+F F+F F+F + Be
Beam >
—|——|——|——|—‘|—‘|—‘|“|“|—jr+—|‘—|‘—|‘++—|—‘|—‘|—

As

Chamber

{ Faraday’s Law: ]{E dl = ——//B dS }

A 1
%E.dl:(ES—Ew)ASI 1 / —dr+/ —dr
2T€Q r

q
d1eg

S

(1—|—21n

é) (A(s 4+ As) — A(s))

a




/B . dS — HogBAc
2T

_ HogABc (1 1 91n Q)
47 a

Faraday’s Law: %E dl = ——//B dS

—  (Ey— E,)As- 4:60 (1 + 21n a) (A(s+ As) — A(s)) =

)NOC_W*C O\

—A(l 21n -
ST 47 Ot

a

where (3* is speed of disturbance, maybe not the same as 3 but
very close: (* = (.

q b B* O\
— (BB = (1ol ) |2+ D5




B q b\ [OA 0" OA
He = B Ameg <1+21na> L‘?s c Gt}

. O\ . OA O\
Since 5 = —0 c% ~ —60%,

A
longitudinal field is E, = -— 490 (1 — B *2) (9_ + Fy
47’(’60 0s

~ggo  OA LR,
Amegy? Os

b
where g9 = 14+ 2In-—
T a

go 1s geometry factor

Longitudinal space charge for a long bunched or coasting beam
given by derivative of the line density and a geometry factor




Longitudinal Examples

1. Pertectly conducting smooth wall, E,, = 0,

O\
— space charge field { E, = 490 }

 dmegy? Os

2. Inductive wall (common in accelerators), inductance L /27 R per unit length

1
Ly =— = 3771

€pC

—q{ go 5202L} oA qpc {go 20

= —wnL| 22
dregy?  2mR | Os 2w |28 ~? 0 }

3. Smooth resistive wall = skin effect; gives an impedance

Zskin = (1 — 1) o = conductivity

b

o R \/ % 1+ = permeability

2pp00
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Space-Charge and the Hamiltonian

Hamiltonian H = —

1 hnw? A&
2 (2%E

2 oqVv
> + qz—ﬁ[cosgb—cosqbs + (¢ — ¢s) sin @)

Wo

~ 2 B
W
For general rf H = — 0

where U(o) V() do — V(¢s)(P — és)

N /

Space-charge will alter the effective voltage, generally in a non-linear
way.

ox O

But if the line density A o« U, the self forces (~ 95 & 8_¢) caused by
S

space-charge and inductive wall are proportional to the external force,

giving a stationary distribution.
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Local Elliptic Energy Distribution

: A& hwgt o
Write W = w—o, so that 'H = 525W T %U(¢)

-

A necessary and sufficient condition for a stationary particle dis-
tribution is that the phase-space density f(W,¢) can be written as a

5 function of the Hamiltonian f = f(H).

J

The Elliptic Distribution is given by

[f(W7¢) = d(?/V](\;(/ﬁ = f(H) = c1/Ho — H, }

where Hg is the Hamiltonian of the extreme (boundary) particles.

o

Bucket extremities given by W = 0 or RSN RN e

|
P e - ! - A A P
' o ——— —— R R i .
A T — e ~— - - ——— - , .
! [ P e B e i e N PRl ‘__-'.,.I’.’.- 4
2 ' P e M T, e e S
Tl ' A~ —— e T S
' A A A i ———— - - - - e v 7 /
S s . o _ - — — B k P .
' S S P i - —— el 4, /
N rLS S A G e — " o R == S T > B
' vy e, I e s S W ~——— e ey 4
VS / // L S F e e e St ~ f
/ - N




The line density is M) = c2|U(¢) — U(ga)]

and has the same shape as the potential.

More precisely:

U(¢) — U(¢g2)
u(p1, P2)

where Ny is the number of particles in
the bunch and

A(@) = Ny

P2
u(br, d2) = / U(6) - U(es)] do

The bunch current is

dN d
I(¢) =g dqtb = 2mhly

U(¢p) — Ul(p2)
u(pi, d2)

where I, = qNywo /27 is the mean cur-

rent per bunch.
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Recall that the field in the beam from space-charge and inductance is

~gPc | go Zog
21 | 20 ~2

corresponding to a voltage per turn

FEy =

go Zo
26 2

At low frequencies (long bunches), this gives a reactive coupling
impedance

0s

Us = _Q6CR |:

L , Z .
— =1 {woL _ 40 g} — qwo L,
n

where n = w/wy and L. is the effective inductance.

So space-charge is equivalent to a negative, energy-dependent wall in-
ductance.

BNL-AGS | BNL-RHIC | Fermilab Booster | Fermilab MI | KEK-PS

3.7 22.5 5.4 20.4 6.8
13 1.5 30 2.3 20 g




For the elliptic distribution, total voltage seen by the beam is

V(6) ~ 2hhy I {Zfm} S0 <6< 0o

V(o) elsewhere

The induced voltage has the same shape as the applied voltage

. Below transition n < 0 and u(¢1, ¢2) < 0, so a space-charge domi-

nated beam with Im {—} < 0 leads to a reduced focusing force.
n

. Above transition n > 0, u(¢1,¢p2) > 0, so a dominating inductive
wall impedance results in reduced focusing, while a space-charge
dominated beam sees enhanced focusing.
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Voltage seen by a particle changes from V(¢) — V(¢s) to

B 2nh*I,Im {Z./n}
u(§b17 ¢2)

and bucket area is changed relative to its low intensity value Ay to

At _ AO\/W(Qb) B V(¢s) _ Ao\/l B 27Th2IbIm {Ze/n}

V() - V() = ( ) V(6) — V()]

V(o) —Vi(gs) u(P1, o2)

Gives limiting intensity:

7o — U(¢1,¢2)

" 2nh2Im {Z./n}
At this intensity, induced voltage cancels the applied voltage, bucket
area goes to zero and phase-space density is infinite.

Science & Technology
@ Facilities Council 20




Instability

qg90 O

Space charge field |FE, =

 4regy? Os

Suppose there is a small disturbance in the line density. |

O\
In regions where — > 0 space charge field is negative.

0s

O\
In regions where s < 0, the field is positive —
S

O\
(i) below transition (n < 0) particles will speed up in regions where — < 0

0s

and increase their revolution frequency. Hence move towards the trough
in the wave.

O

Similarly particles in regions where s > (0 will slow down and again fill
S
the trough.

—>  the disturbance is damped.

(i) Above transition, reverse holds and the disturbance will grow.
INSTABILITY
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Negative Mass (microwave) Instability

Assume a (wakefield) disturbance to the distribution of the form

A = Ao+ et(8=n0) (# = s/R = orbiting angle, n = mode number).

0\’ 1,7,
Satisfying Vlasov’s equation gives: (—> _ ;2o /n

! 2w B32E d

Stability requires real < —i—n =
n

For space-charge, Z./n is capacitive (negative inductive), so require

n < 0 for stability. There is an effective frequency shift without producing
damaging collective effects. Above transition, n > 0, there is a space-charge
driven instability, known as the negative mass or microwave instability

1 hnwé (A€ ° g

Z./n | capacitive | inductive | resistive

Below transition | n < 0 | stable unstable | unstable

Above transition | n > 0 | unstable stable unstable




Theory shows that the microwave instability can be avoided for rea-
sonably long bunches (e.g. SNS) provided

I, <0.41.

The induced (space-charge) voltage should never exceed 40% of the
applied voltage.
The corresponding reduction in bucket area is 23%.
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Sinusoidal Voltage
Sinusoidal voltage, V(¢) = Vjsin ¢ gives
U(¢p) = Vo| cos s — cos¢ — (¢ — ¢s) sin ¢ |

P2
— (g, ) = / U(6) — U(d2)] dé = —Vo  (é1, o)

where f(¢1,¢2) = sin ¢z — sin ¢y — %((?2 — ¢1)(cos @1 + cos ¢2).

Note: uses U(¢1) = U(¢p2) to eliminate ¢s.

Ny [
f(¢1,¢2)

1
For short bunches, ¢; = ¢2 — ¢1 and f(¢p1, p2) & E¢? cos ¢s. Then

Line density is A(¢) = oS ¢ + ¢sin s — cos o — o sin ¢ .

1 ) :
potential: A~ §(¢ — ¢5)*Vp cos @, quadratic,
,  resulting in
line density: ~ — (P2 — ¢) (¢ — 1) linear fields.

/




Longitudinal Envelope Equation

d¢_hw8n AE d (A qVo, . .
dt  32€ <w0>’ dt(w())_ 27 (sin¢ —sing,) +

- qRgo 0N qh’go ON _ qh’go y 12Ny,
26()"}/2 0s - 260’)/2R ﬁgb -~ QEO’YZR Qb?

In terms of distance from the synchronous particle,

dz RdAH ~ RdA¢  RuwinAE

At~ U dt - h odt | 32E w

d?z Rwén d <A5> _ qRuwin

6qNyh? go
eoRy2 7

a2 € dt 2 E

wo

{VO COS Qg —

/d2 IC :
< l
@+kzz—z—3zzo
N o y

Bunch has an approximately parabolic
line density between |[—zy,, Zm |
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Corresponding envelope equation is | 2

€., is the total (unnormalised) emittance of the bunch in the moving
frame.

Note:

(i) Longitudinal equations for a straight channel can be obtained by
setting a, = 0, n = —1/~2

Below transition, n < 0, so for ¢4 < %7’(’, k., > 0 and IC; > O;
analogous to a normal linear accelerator.

Above transition, n > 0, so longitudinal focusing requires a change
®s — m™— @s. Now the perveance I; < 0 and space-charge is focus-
ing. Space-charge electric field increases the energy of a particle
at the front of the bunch. This increases orbit radius, which slows
down angular motion and hence reduces distance z from bunch

centre. .
Science & Technology
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R*K 3 Ny R?
(iv) Synchrotron tune is Q2 = Q%, — L 2, ST0goet T

2 = %z0 2~,3 .2
zz 2 [Beyvze

For small differences, this gives

3 1ogo Ny 77
B 4 62’732%;,Q20

Longitudinal tune shift is negative below transition and positive
above transition.

AQ
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Acceleration in a Synchrotron

Magnets ramped so that magnetic field B(¢) matches the acceleration from
the cavities for synchronous particle. Suppose B(t) = By — Bj cos(27 ft).
d .
“Rigidity” L =Bp =— L = ¢B
q dt
d&€ pc? dp
dt E dt

Energy gain per revolution V (¢;) 22?3((11_(: — 21 RpB
Assume V(¢,t) = Vo(t)sin¢, with Vj modulated in time.

2rR - 27wRp
OO

@xample (ISIS): R=26m, p=7m, f =50Hz, B; = 0.2604T

52/62 :p2+m(2)02 —

—  sin¢, = X 27 f By sin(27 ft)

93.5kV
Vo ()

—  sings ~ sin(27 ft)
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93.5kV
sin ¢, ~ ————— sin(27w ft 0 <t<10ms

Peak voltage V;(t) has to be modulated so that RHS is less than 1.

1 L L L | 1 1
+ 8 ¢ 6
tme (msa) tima (me)

Synehrotron Fraquancy Synchroncua Phoae




How to Overcome Space-Charge?

Dual harmonic rf scheme:

[ V(gp,t) = Vo(t)|sing — dsin(2¢ + H)D

where 0, the ratio of the h : 2h voltages, and 6, the relatlve bhase, are
functions of time. |

2t Rp
Vo (%)

Double oscillation centre, causes bunches
to lengthen, flattening the line-density, and
reducing the peak current; and gives

sin ¢pg — dsin(2¢5 + 0) = B

e improved bunching factor By =

e reduced transverse space-charge
forces
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H msec, 500 Me\ 10 msec, 800 Me\

oG R e : ; : ; P _ G e .
Longitudinal phase space plots for acceleration of 3 x 10" protons in the ISIS

synchrotron from 70 MeV to 800 MeV with dual harmonic RF system.

Simulation of the ISIS
acceleration cycle,
showing the
formation of the
double oscillation

centre and merging
to give the final beam
on target.
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