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Basic equations
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Particle coordinates (z,y, z) with respect to frame whose motion is given by s
Factor 1/v? from electrostatic-magnetostatic effects
Other factor v from relativistic mass m = mg~y

Space-charge field E from Maxwell’s equation:

where n(z,y, z, s) is the number density of the beam distribution.




n(x,y, z,s) given by the particle density f(x,y, z,z’',y’, 2/, s) in six-dimensional
phase space, which must satisty the Vlasov equation
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through

n:/// f(z,y,z,2",y, 2, s)dz’ dy’ d2’.

The total number of particles in the beam is

N:/// n(x,y, z,s) dr dy dz.

This is a complete set of seven coupled equations in which the distribution
determines the forces, which determine the motion, which determines the dis-
tribution, and so on.




How do we study a very non-linear beam?”




RMS Properties of Beams

For non-linear beams, use the moments of the distribution and consider the
behaviour of r.m.s quantities.

Define the average value of a quantity g(x,y, z,x’,vy’, 2, s) by
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The r.m.s. envelope is
T = V< 22>

and the r.m.s. emaittance 1s
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Note: invariant under rotations of phase-space coordinates
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If the beam projection in x-z’ phase space is a uniform filling of the tilted ellipse
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Dimanee: O

[Beams are

Note:

2
) > confirmed positive, valid definition




Define RMS Twiss parameters to identify the RMS emittance ellipse
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Qrms and Grms give orientation and aspect ratio of an “emittance ellipse”.

Single particle emittance:
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100% emittance is maximum for all particles

Statistics then used to find the more meaningful 90%
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How important is RMS emittance?” How does it evolve? What causes it to
change?

By
moW?’ﬁZCQ

Calculations:
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Evolution of RMS Emittance under Space-Charge
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RMS emittance will be constant under linear space-charge forces E, x x.
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Evolution of RMS Envelope under Space-Charge
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RMS envelope equation
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Special 2D Distributions

(a) Kapchinskij-Vladimirskij (KV) distribution
(

(c) Non-stationary Parabolic distribution

)

b) Non-stationary Waterbag distribution
)
)

(d) Non-stationary Gaussian distribution
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(a) KV Distribution

Particles uniformly populate the surface of a hyper-ellipsoid in 4D phase-space

N T
flx,y,2",y) = = 5{
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where 0 is the Dirac delta-function.

Real-space number density is

all space

~

€x = 7€z, €y = 7€y
Space-charge forces linear == RMS emittances, €,, €, are constant.

Distribution of particles is preserved in a linear focusing system — stationary
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(b) Waterbag Distribution

flx,y, o', y') =
mea

if we assume a round beam with equal emittances and use normalised variables.

S 2N re 2 2 | 2 2
Real-space density is n(z,y)=— (|1— —= |, re=x"+y* < a
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Space-charge fields are

" N r2\ %
L, = 1 / n(r)2mr dr = 11— (1 — —)
2mepr J, 2TEQT a?

Then sa? = (2"?), (z2/) =0 = & = za?

Space-charge fields are non-linear, so RMS emittance is not constant and the
initial distribution will change with time.

This 2D-waterbag distribution is not stationary. & Science & Technology
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(c) Parabolic Distribution

724

flz,y, 2’ y') = o <

Real-space density is

Space-charge fields are

Nq

2TEQT

E, = 1 / n(r)2rr dr =
0

2TEQT

Then (2?) = za®=(2"?), (z2/)=0 = & = 3a*= ;e

Non-linear forces = beam evolves, distribution changes with time, non-
stationary.

/
Note alternative form of distributions: n(z,y) = ﬂb (1 —
Ta

M= 0is KV, m =1 is Waterbag, m = 2 is parabolic, etc.




(d) Gaussian Distribution

Gaussian model distribution, cut off at n standard deviations (3 < n < 10) to
avold unrealistic tails
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Projection in real-space is also (Gaussian:
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RMS quantities: = (xx') =0

Space-charge fields are non-linear, so distribution is not stationary.




y (xam)

TRANEVERBE BEAM CRO2B-SBECTION

et A o o o o N s a1 o 4 4
-10 a 10
VERTICAL PHASE~-SPACE

z (mrvd)

HORIZONTAL FPHABE-SPACE

v T v T T
L 4

- 9

L 4

- 9
ik —~
L E

s 4

L 4

1

0F -
3 -

L 4

3 b

L 4
-1t .
b 4

L 4

4

| A A A L " ]
=40 —20 0o 40

Dlatanos: 0 m

'~Y PHASE-SPACE PROJECTION

T

Y

T

T

T

i i " i i A A i
o -am S Dzas ane _a . Y d n =
=




Recall: For a 2D uniform beam with elliptical cross section

space-charge forces are linear and given by

Nq Ty
E = <_7_)7
megla+b) \a b

where IV is the number of particles per unit length.

Equations of particle motion and envelope equations are then:
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Use of RMS Envelope Equations
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Sacherer showed that for ellipsoidal particle densities of the form
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a
the averages (zE,), (yE,) etc depend only very weakly on the
exact charge distribution.
For 2D axisymmetric beam, radius R and uniform density n,
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Then (xFE;) = (yEy)
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Therefore RMS space-charge term is
q (@E)

~
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and general RMS envelope equation is
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Now, for KV, x = %a, € = ~€

2
€ K
so KV envelope equation is, a' +ka — — — — =0

as a
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This is the same as the general RMS envelope equation.

— 2" + 2kx — 0

So, if we have a channel designed for a KV beam, it will also serve
for a non-linear beam with the same RMS beam size.




Emittance Growth

What causes RMS emittance to evolve?

& = (2®)(a"?) — (wa')]

(z'#) ~ Kinetic Energy (z*) ~ Potential Energy

What else is present?
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Field Energy of a Beam

Self-field energy is

=34 [poav =13 [ aonav = INg(s)
where p = gn is the charge density and ¢ is the electrostatic potential, E = —V¢

For the four special distributions, take a circular boundary of radius R where

é = 0.
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Ug {ln <m—2> — 0.4431}

R
Ug {ln T — 0.4375} AUw g = 0.0056 ug
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B 4deg B 4dreq 52 c?
difference from the uniform KV model for equivalent beams (same (z?)).

Here C is Euler’s constant (0.577215665), ug and A is the

Deduce that, for equivalent beams, the uniform KV distribution has the smallest
field energy.




Energy Conservation

Kinetic energy of a single particle in the beam frame is %m(yyﬂ%%ﬁ’ 2

Potential energy from external forces is %m075262 ko x?

T — %/nmovﬁZCQ 237/2 dV = %Nm(w5202 Z <:13’2>
V = % /nmofyﬂ202 Z k.x?dV = %Nm(yyﬂ2c2 Z kx(s)<:132>

Calculations give Energy conservation law:
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For a continuous distribution with axisymmetry,
4

d 22 5 d AU
— ——K
ds 2 ‘ ds wuqg

N y
where AU is the non-linear field energy and K is the perveance

I 2 N¢g?
Iy (B7)? ~ 2megmo3 B

K =

Solve in conjunction with RMS envelope equation

An initially non-uniform beam in a focusing channel will release some or all
of its non-linear field energy, which will be converted via kinetic and poten-
tial energies into RMS emittance as the beam evolves towards a stationary
distribution.




Emittance Growth

Example
e Focusing channel with og = 60° and o = 15°

e High levels of space charge, so the RMS beam size is approximately
constant

e Assuming beam evolves to a minimum field energy state AUg,41 = 0

then theory predicts emittance growth of:

Distribution AU/uy Emittance Increase

Waterbag 0.0056 8%
Parabolic 0.0118 16%
Gaussian 0.0386 47%
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Evolution of particle
densities for 2D

transverse distributions,
showing tendency towards
a stationary (KV) state

Simulations of emittance in-
crease accord with theory. The
increase takes place very rapidly,
generally within one quarter of a
plasma oscillation.
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Causes of Emittance Growth

Non-linear self-forces arising from non-stationary beam profiles
Non-linear applied forces

Chromatic aberrations

Beam mis-match causing oscillation of RMS radius

Beam off-centering causing coherent oscillations about the central orbit
Misalignment of magnets

Coulomb scattering between particles

Instabilities

Non-linear coupling between transverse and longitudinal motion

External statistical fluctuations (e.g. rf noise)
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Quantifying Beam Halo

Kurtosis - an idea from statistics to measure tails of
distributions, adapted for beams in accelerators. T. Wangler (LANL)

Iy = () (2'?) — (x2')” ~ RMS emittance

I = (2% (&™) + 3(2222)° — 4{z2")(237) ~ 4th moments

H=—+\/314 — 2
215
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2(x2) (x'2) — 2(za’)’ |

Elliptical symmetry in phase space

(O for the KV distribution H is called the

— | H =4 C
1 for the Gaussian distribution. halo parameter

\

Multi-particle simulations show that significant halo in the 2D phase-

space projection corresponds to | H > 1|




An alternative approach is to use the spatial profile parameter:

For beams with elliptical symmetry and densities

pla, ') = f (B + 2awa’ + ya?),

direct calculation shows H = h.

But not true for more general distributions

Simulations show that halo can "hide” in phase space and is not observed

in some spatial projections.

y-coordinate beam profile parameter

Gaussian

Matched
Waterbag
KV

\ \
8 12

Distance (m)

Results from a beam halo experiment at LANL Beam-
profile parameter from computer simulation at drift-
space locations along the beamline for the matched and
mismatched beams. Values for uniform (KV),
Waterbag and Gaussian beams are shown. The

excursions above the Gaussian level indicate a large
halo
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