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Basic equations

Particle coordinates (x, y, z) with respect to frame whose motion is given by s

Other factor γ from relativistic mass m = m0γ

Space-charge field E from Maxwell’s equation:

where n(x, y, z, s) is the number density of the beam distribution.

∇ · E =
q

�0
n(x, y, z, s) (4)

x�� + kx(s)x− q

m0γ3β2c2
Ex(x, y, z, s) = 0 (1)

y�� + ky(s)y − q

m0γ3β2c2
Ey(x, y, z, s) = 0 (2)

z�� + kz(s)z −
q

m0γ3β2c2
Ez(x, y, z, s) = 0 (3)

Factor 1/γ2 from electrostatic-magnetostatic effects



The total number of particles in the beam is

N =
���

n(x, y, z, s) dx dy dz. (7)

This is a complete set of seven coupled equations in which the distribution
determines the forces, which determine the motion, which determines the dis-
tribution, and so on.

n(x, y, z, s) given by the particle density f(x, y, z, x�, y�, z�, s) in six-dimensional
phase space, which must satisfy the Vlasov equation

∂f

∂s
+ (x� ·∇)f − (k− q

m0γ3β2c2
E) ·∇x�f = 0, (5)

through

n =
���

f(x, y, z, x�, y�, z�, s) dx� dy� dz�. (6)



How do we study a very non-linear beam?



RMS Properties of Beams
For non-linear beams, use the moments of the distribution and consider the
behaviour of r.m.s quantities.

The r.m.s. envelope is
x̃ =

√
< x2 >

and the r.m.s. emittance is

�̃x =
�
< x2 >< x�2 > − < xx� >2

� 1
2

Note: invariant under rotations of phase-space coordinates

If the beam projection in x-x� phase space is a uniform filling of the tilted ellipse

γ̂xx2 + 2α̂xxx� + β̂xx�2 � � (β̂xγ̂x − α̂2
x = 1),

then x̃ = 1
2

�
�β̂, and �̃ = 1

4�

Define the average value of a quantity g(x, y, z, x�, y�, z�, s) by

< g >=
1
N

�
. . .

�
gf dx . . . dz�
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Beams are equivalent if they have the same first and second moments

Note: �̃2 = �x2��x�2� − �xx��2 = �x�2�
�
�x2� − �xx��2

�x�2�

�

= �x�2�
�
�x2� − 2

�xx��2

�x�2� +
�xx��2�x�2�

�x�2�2

�

= �x�2�
�

x2 − 2xx� �xx��
�x�2� + x�2

�
�xx��
�x�2�

�2
�

= �x�2�
��

x − x� �xx��
�x�2�

�2
�

confirmed positive, valid definition



Define RMS Twiss parameters to identify the RMS emittance ellipse

Single particle emittance: γrmsx�2 + 2αrmsxx� + βrmsx2

100% emittance is maximum for all particles

Statistics then used to find the more meaningful 90% emittance
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αrms and βrms give orientation and aspect ratio of an “emittance ellipse”.

a =
�

�β =⇒ βrms =
x̃2

�̃
=
�x2�

�̃

a� = −α̂
�

�

β̂
=⇒ aa� = −α̂� =⇒ αrms = −�xx��

�̃

γ̂ =
1 + α̂2

β̂
=⇒ γrms =

1 + α2
rms

βrms
=
�x�2�

�̃





d
ds

< x2 > = 2 < xx� >

d
ds

< xx� > = < x�2 > + < xx�� >

= < x�2 > −kx(s) < x2 > +
q

m0γ3β2c2
< xEx >

d
ds

< x�2 > = 2 < x�x�� >

= −2kx(s) < xx� > +
2q

m0γ3β2c2
< x�Ex > .

How important is RMS emittance? How does it evolve? What causes it to

change?

Calculations:

x�� = −kx(s)x +
q

m0γ3β2c2
Ex
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Evolution of RMS Emittance under Space-Charge

d
ds

�̃2 =
2q

m0γ3β2c2

�
< x2 >< x�Ex > − < xx� >< xEx >

�
RMS emittance

d
ds

�̃2 =
d
ds

�
�x2��x�2� − �xx��2

�

= 2�xx���x�2� + 2�x2�
�
−kx(s)�xx�� +

q

m0γ3β2c2
�x�Ex�

�

−2�xx��
�
�x�2� − kx(s)�x2� +

q

m0γ3β2c2
�xEx�

�

=
2q

m0γ3β2c2

�
< x2 >< x�Ex > − < xx� >< xEx >

�

RMS emittance will be constant under linear space-charge forces Ex ∝ x.
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Evolution of RMS Envelope under Space-Charge

2x̃
dx̃

ds
=

d
ds

x̃2 = 2�xx��

=⇒ x̃
d2x̃

ds2
+

�
dx̃

ds

�2

= �x�2� − kx(s)�x2�+
q

m0γ3β2c2
�xEx�

= �x�2� − kx(s)x̃2 +
q

m0γ3β2c2
�xEx�

=⇒ x̃

�
d2x̃

ds2
+ kx(s)x̃

�
= �x�2� − �xx��2

x̃2
+

q

m0γ3β2c2
�xEx�

=
�̃2

x̃2
+

q

m0γ3β2c2
�xEx�

d2x̃

ds2
+ kx(s)x̃ − �̃2

x̃3
− q

m0γ3β2c2

�xEx�
x̃

= 0RMS envelope equation
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Special 2D Distributions

(a) Kapchinskij-Vladimirskij (KV) distribution

(b) Non-stationary Waterbag distribution

(c) Non-stationary Parabolic distribution

(d) Non-stationary Gaussian distribution

12



(a) KV Distribution
Particles uniformly populate the surface of a hyper-ellipsoid in 4D phase-space

f(x, y, x�, y�) =
N

π2ab�x�y
δ

�
x2

a2
+

y2

b2
+

a2x�2

�2x
+

b2y�2

�2y
− 1

�

Real-space number density is

n(x, y) =
��

all space
f(x, y, x�, y�) dx� dy� =

N

πab
,

x2

a2
+

y2

b2
� 1.

=⇒ a uniform elliptical beam.

�x2� = 1
4a2, �x�2� =

�2x
4a2

�xx�� = 0,

Space-charge forces linear =⇒ RMS emittances, �̃x, �̃y are constant.

=⇒ x̃ = 1
2a, ỹ = 1

2b, �̃x = 1
4�x, �̃y = 1

4�y.

where δ is the Dirac delta-function.

13
Distribution of particles is preserved in a linear focusing system→ stationary





(b) Waterbag Distribution

Particles uniformly fill the 4D hyper-ellispoid in phase-space:

f(x, y, x�, y�) =
2N

π2a4
, x2 + y2 + x�2 + y�2 � a2

if we assume a round beam with equal emittances and use normalised variables.

Real-space density is n(x, y) =
2N

πa2

�
1− r2

a2

�
, r2 = x2 + y2 � a2

Then �x2� = 1
6a2 = �x�2�, �xx�� = 0 =⇒ �̃x = 1

6a2 = 1
6�.

Space-charge fields are non-linear, so RMS emittance is not constant and the
initial distribution will change with time.
This 2D-waterbag distribution is not stationary.

Space-charge fields are

Er =
q

2π�0r

� r

0
n(r)2πr dr =

Nq

2π�0r

�
1−

�
1− r2

a2

�2
�

, r � a

15





(c) Parabolic Distribution

Beam fills the 4D hyper-ellipsoid with a parabolic density:

f(x, y, x�, y�) =
6N

π2a4

�
1− ρ2

a2

�
ρ2 = x2 + y2 + x�2 + y�2 � a2.

Real-space density is n(x, y) =
3N

πa2

�
1− r2

a2

�2

, r2 = x2 + y2 � a2

Space-charge fields are

Er =
q

2π�0r

� r

0
n(r)2πr dr =

Nq

2π�0r

�
1−

�
1− r2

a2

�3
�

, r � a

Then �x2� = 1
8a2 = �x�2�, �xx�� = 0 =⇒ �̃x = 1

8a2 = 1
6�.

Non-linear forces =⇒ beam evolves, distribution changes with time, non-
stationary.
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Note alternative form of distributions: n(x, y) =
m

πab

�
1− x2

a2
− y2

b2

�m−1

m = 0 is KV, m = 1 is Waterbag, m = 2 is parabolic, etc.



(d)  Gaussian Distribution

f(x, y, x�, y�) =
N

4π2σ4
exp

�
− ρ2

2σ2

�
, ρ � nσ.

Gaussian model distribution, cut off at n standard deviations (3 ≤ n ≤ 10) to
avoid unrealistic tails

Projection in real-space is also Gaussian:

n(x, y) =
N

2πσ2
exp

�
− r2

2σ2

�
, r � nσ

Space-charge fields given by

Er =
Nq

2π�0r

�
1− exp

�
− r2

a2

��
, r � nσ

RMS quantities: �x2� = σ2 = �x�2�, �xx�� = 0 =⇒ �̃ =
1
n2

�
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Space-charge fields are non-linear, so distribution is not stationary.





x�� + kx(s)x− 2K

a + b

x

a
= 0

y�� + ky(s)y − 2K

a + b

y

b
= 0

a�� + kx(s)a− �2x
a3
− 2K

a + b
= 0

b�� + kb(s)b−
�2y
b3
− 2K

a + b
= 0

Recall: For a 2D uniform beam with elliptical cross section
x2

a2
+

y2

b2
� 1,

space-charge forces are linear and given by

E =
Nq

π�0(a + b)

�x

a
,
y

b

�
,

where N is the number of particles per unit length.

Equations of particle motion and envelope equations are then:

K =
I

I0

2
(βγ)3

is the Perveance and I0 =
4π�0m0c3

q





Use of RMS Envelope Equations

Compare KV a�� + ka − �2

a3
− K

a
= 0

RMS x̃�� + kx̃ − �̃2

x̃3
− q

m0γ3β2c2

�xEx�
x̃

= 0

Sacherer showed that for ellipsoidal particle densities of the form

n(x, y, z, s) = n

�
x2

a2
+

y2

b2
+

z2

c2
, s

�

the averages �xEx�, �yEy� etc depend only very weakly on the
exact charge distribution.

For 2D axisymmetric beam, radius R and uniform density n,

Er =
nqr

2�0
=⇒ Ex =

nqx

2�0

Then �xEx� = �yEy� = 1
2

�
�xEx� + �yEy�

�
=

nq

4�0
�r2�

=
nq

4�0
× 1

2
R2 =

Nq

8π�0 22



and general RMS envelope equation is

x̃�� + kx̃− �2

x̃3
−

1
4K

x̃
= 0

Now, for KV, x̃ = 1
2a, �̃ = 1

4�

so KV envelope equation is, a�� + ka− �2

a3
− K

a
= 0

=⇒ 2x̃�� + 2kx̃− 16�̃2

8x̃3
− K

2x̃
= 0

Therefore RMS space-charge term is
q

m0γ3β2c2

�xEx�
x̃

=
Nq2

8π�0m0γ3β2c2

1
x̃

=
1
4K

x̃

This is the same as the general RMS envelope equation.

So, if we have a channel designed for a KV beam, it will also serve
for a non-linear beam with the same RMS beam size.



�̃2 = �x2��x�2� − �xx��2

�x�2� ∼ Kinetic Energy �x2� ∼ Potential Energy

What causes RMS emittance to evolve?

What else is present?

Emittance Growth
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Field Energy of a Beam
Self-field energy is

U = 1
2

�
ρφ dV = 1

2

�
qφn dV = 1

2Nq�φ�

where ρ = qn is the charge density and φ is the electrostatic potential, E = −∇φ

For the four special distributions, take a circular boundary of radius R where
φ = 0.

e.g. for a KV beam, Er<a =
Nq

2π�0a2
r, Er>a =

Nq

2π�0r

=⇒ φr<a =
Nq

4π�0

�
1 + 2 ln

R

a
− r2

a2

�
.

25

Therefore UKV = 1
2Nq

� a

0
φr<a(r) 2πr dr

=
N2q2

4π�0

�
1
4

+ ln
R

a

�
(and a = 2x̃ = 2

�
�x2�)



UKV = u0

�
ln

R

�x2� +
1
4
− ln 2

�
= u0

�
ln

R

�x2� − 0.4431
�

UWB = u0

�
ln

R

�x2� +
11
24

− 1
2

ln 6
�

= u0

�
ln

R

�x2� − 0.4375
�

∆UWB = 0.0056 u0

UPA = u0

�
ln

R

�x2� +
73
120

− 1
2

ln 8
�

= u0

�
ln

R

�x2� − 0.4314
�

∆UPA = 0.0118 u0

UGA = u0

�
ln

R

�x2� +
C

2
− ln 2

�
= u0

�
ln

R

�x2� − 0.4046
�

∆UGA = 0.0386 u0

Deduce that, for equivalent beams, the uniform KV distribution has the smallest
field energy.

Here C is Euler’s constant (0.577215665), u0 =
N2q2

4π�0
=

I2

4π�0β2c2
and ∆ is the

difference from the uniform KV model for equivalent beams (same �x2�).



Calculations give Energy conservation law:

Energy Conservation

Kinetic energy of a single particle in the beam frame is 1
2m0γβ2c2x�2

Potential energy from external forces is 1
2m0γβ2c2kxx2

T = 1
2

�
nm0γβ2c2

�
x�2 dV = 1

2Nm0γβ2c2
�

�x�2�

V = 1
2

�
nm0γβ2c2

�
kxx2 dV = 1

2Nm0γβ2c2
�

kx(s)�x2�

27

T + V +
1

γ2
U = constant



Solve in conjunction with RMS envelope equation

d2

ds2
x̃ + kx(s)x̃− �̃2x

x̃3
− K

4x̃
= 0.

For a continuous distribution with axisymmetry,

d

ds
�̃2x = −1

2
Kx̃2 d

ds

∆U

u0

where ∆U is the non-linear field energy and K is the perveance

K =
I

I0

2

(βγ)3
=

Nq2

2π�0m0γ3β2c2
.

An initially non-uniform beam in a focusing channel will release some or all
of its non-linear field energy, which will be converted via kinetic and poten-
tial energies into RMS emittance as the beam evolves towards a stationary
distribution.



Example

• Focusing channel with σ0 = 60
◦
and σ = 15

◦

• High levels of space charge, so the RMS beam size is approximately

constant

• Assuming beam evolves to a minimum field energy state∆U
final

= 0

then theory predicts emittance growth of:

Distribution ∆U/u0 Emittance Increase

Waterbag 0.0056 8%

Parabolic 0.0118 16%

Gaussian 0.0386 47%

Emittance Growth

29



Evolution of particle 
densities for 2D 

transverse distributions, 
showing tendency towards 

a stationary (KV) state

Simulations of emittance in-
crease accord with theory. The
increase takes place very rapidly,
generally within one quarter of a
plasma oscillation.



• Non-linear self-forces arising from non-stationary beam profiles

• Non-linear applied forces

• Chromatic aberrations

• Beam mis-match causing oscillation of RMS radius

• Beam off-centering causing coherent oscillations about the central orbit

• Misalignment of magnets

• Coulomb scattering between particles

• Instabilities

• Non-linear coupling between transverse and longitudinal motion

• External statistical fluctuations (e.g. rf noise)

Causes of Emittance Growth
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I2 = �x2��x�2� − �xx��2

I4 = �x4��x�4�+ 3�x2
x
�2�2 − 4�xx�3��x3

x
��

H =
1

2I2

�
3I4 − 2

=

�
3�x4��x�4�+ 9�x2x�2�2 − 12�xx�3��x3x��

2�x2��x�2� − 2�xx��2
− 2.

Quantifying Beam Halo
Kurtosis - an idea from statistics to measure tails of 
distributions, adapted for beams in accelerators.  !"#$%&'()*#+,-.,/

! RMS emittance
! 4th moments
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Elliptical symmetry in phase space

=⇒ H =

�
0 for the KV distribution

1 for the Gaussian distribution.

Multi-particle simulations show that significant halo in the 2D phase-
space projection corresponds to H > 1 .

H is called the 
halo parameter



An alternative approach is to use the spatial profile parameter :

h =
�x4�
�x2�2

− 2

For beams with elliptical symmetry and densities

ρ(x, x�) = f
�
βx�2 + 2αxx� + γx2

�
,

direct calculation shows H = h.

But not true for more general distributions

Simulations show that halo can ”hide” in phase space and is not observed
in some spatial projections.
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about 106. For a beam with a Gaussian profile, the device
provides a transverse profile measurement out to more
than 5!. This sensitivity will be suitable for detecting the
halo predicted by the simulations as well as to search for
other possible halo sources. Other aspects of the
experiment are described by papers at the conference.16,17

 5   SIMULATION STUDIES
Figures 2 through 5 show some beam-dynamics

simulation results for the breathing-mode mismatched
beam with µ=2, using 10,000 particles per simulation run
and using the SCHEFF18 space-charge subroutine. Figs. 2,
3, and 5 show results at the centers of the 52 drift spaces
along the beamline. The input-particle distribution for the
simulations was obtained from a previous beam-dynamics
simulation through the LEDA RFQ. Fig. 2 shows the rms
beam sizes in x and y and the maximum particle
displacements. The in-phase oscillations for xrms and yrms
indicate that the breathing-mode has been excited. There
is a large factor of about 2 increase in the maximum
particle amplitude compared with the matched beam (not
shown). Fig. 3 shows the beam-profile parameters for
both matched and mismatched cases for the y coordinate
versus distance along the beamline. The values for
uniform (KV), parabolic (4D Waterbag), and Gaussian
beams are shown for reference. The oscillations at the
breathing-mode frequency are the result of the rotation of
the outer phase-space filaments that constitute the halo as
they alternately project into either coordinate space,
where it shows up in the beam-profile parameter, or
momentum space, where it does not. The excursions
above the Gaussian level indicate growth of a large beam
halo. Fig. 4 shows the beam cross section at the center of
drift space after quadrupole 49 showing the halo. Fig. 5
shows rms-emittance growth in the x and y planes versus
distance along the beamline. Breathing-mode simulations
with 100M particles, using a 3D space-charge code
IMPACT19 on a fast parallel computer agree well with the
results shown in the figures. The maximum amplitudes
from the 100M particle simulation are larger than those of
the SCHEFF runs by only about 10%. Rms emittances
and beam-profile parameters for the two codes agree to
within about 10%. Nevertheless, the simulation results
will depend on the actual input beam distribution which
may differ from that assumed in these initial simulations.

6   SUMMARY

We have reviewed the present understanding of beam
halo in proton linacs. Beam mismatch acts in two ways to
produce the halo. First, even without space-charge forces,
a mismatch produces coherent oscillations of the beam
particles and an immediate increase in particle transverse
amplitudes. Second, the nonlinear space-charge force,
acting while the beam particles are oscillating through the
beam, slowly drives some particles to larger amplitudes

through parametric resonance and increases the beam
profile parameter.

We have presented a new description of halo based on
the moments of the distribution of particle coordinates.
We have introduced the Gaussian distribution as a
reference for determining when a significant halo is
present and for estimating the fraction of beam in the
halo. We have described the beam-halo experiment in
preparation at the LEDA facility at Los Alamos, which
will provide the first experimental tests of our
understanding of halo formation in high-current proton
beams. Experimental measurements are expected from
October through the early part of  2001.
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Fig. 2. Rms beam sizes and maximum particle
displacements from computer simulation at the 52 drift-
space locations along the beamline for the breathing-mode
mismatched beam with µ=2.
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Fig. 3. Beam-profile parameter in the y coordinate from
computer simulation at the 52 drift-space locations along
the beamline for the matched and breathing-mode
mismatched beam with µ=2. Values for uniform (KV),
parabolic (4D Waterbag), and Gaussian beams are shown
for reference. The excursions above the Gaussian level
indicate a large halo.
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Results from a beam halo experiment at LANL Beam-
profile parameter from computer simulation at drift-
space locations along the beamline for the matched and 
mismatched beams. Values for uniform (KV),  
Waterbag and Gaussian beams are shown. The 
excursions above the Gaussian level indicate a large 
halo


