
Wir schaffen Wissen – heute für morgen

CERN Accelerator School: High Power Hadron Machines, 24.5.-2.6.2011, Bilbao, Daniela Kiselev1.6.2011PSI,

Paul Scherrer Institut

Activation and Radiation Damage of
Components in the Environment of Proton 
Accelerators

Daniela Kiselev



CERN Accelerator School: High Power Hadron Machines, 24.5.-2.6.2011, Bilbao, Daniela Kiselev1.6.2011PSI,

Contents

1. Activation of material
• Mechanism for activating material
• Time evolution of the activity
• Calculation methods
• Examples of Activation
• Composition of radioactive waste at accelerators

2. Radiation damage of components
• Influence on physical and mechanical properties
• Mechanism for producing radiation defects
• Definition of DPA, Displacement cross section
• Defect effiency
• Calculation methods
• Practical example: - target hull of ESS (European Spallation Source)

- Cu-collimator at PSI

3. Summary



CERN Accelerator School: High Power Hadron Machines, 24.5.-2.6.2011, Bilbao, Daniela Kiselev1.6.2011PSI,

When is a material radioactive?

1. Activity: decays/sec, unit: Bq

1
i i

i

R
A Ai : specific activity [Bq/g]

Ri : exemption limit
given in the radioprotection regulation

2. Dose rate D: ~ absorbed energy/kg x biological factor, unit: [Sv/h]
measure for the damage to human tissue

D > 0.1 Sv/h

OR

OR

3. Surface contamination:
• > 1 Bq/cm2 in case of unidentified - and -emitters 
• > 0.1 Bq/cm2 in case of unidentified  -emitters
• > CS-value (given in regulation) for specific isotope
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How does the material get activated? 

Reaction of beam with atomic nuclei of the component:

 Nuclear reactions: Change of the number of protons and neutrons
 Transmutation into other isotopes, often radioactive

Secondary
particles

Dependent on
- production cross section for xA  Y + secondaries
- energy distribution of the projectile per area (fluence): cm2]
- number of atomic nuclei : NA
- number of particles per sec.: nx

    dEE
dE

EdnNP YxA
x

xAY   

Primary particles

Production rate (Isotope/s):
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Inter-Nuclear Cascade

Nuclear processes for direct irradiation (e.g. in target)

Example: 
Pb-Target: ~ 20 n/p, 

complicated coupled processes
 Monte Carlo Simulation (MCNPX)

3H

higher energetic

E ~ 1-2 MeV
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Production cross section

Threshold energy
for charged projectile

~ constant

Models are needed to describe all reaction channels, 
including the production of secondaries and their reactions

similar for
high energetic
neutrons (> 20 MeV)

residual nuclei

proton energy [MeV]
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A. Ferrari, CERN

Production cross section for residual nuclei

Cluster emission
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Nuclear reactions in the environment (e.g. shielding)

- mainly secondary particles
- charged particles already slowed down or absorbed
- neutral particles are left: e.g. neutrons

excitation
n

A A+1

Important reaction: neutron capture

 Energy loss due to many collision (particularly with light nuclei)
= Moderation, thermalization
 the shape of the neutron spectrum does not vary much with thickness

e.g. 59Co(n,)60Co, 107Ag(n,)108mAg
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Production cross section using neutrons < 20 MeV  

Resonances
~ energy levels in 
compound nucleus (A+1)*

vE
11



 large cross sections at thermal energies

thermalcold

Neutron energy

C
ro

ss
 s

ec
tio

n

spacing
~ 1 eV

Resonances are
overlapping
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Time evolution: Build-up and Decay of isotopes

    tetN
dt

tdNtA   oN )(

The simple case: 1 radioisotope

)()( tNP
dt

tdN 

 
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t
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1)( 

For many isotopes contribution via decay chain: Bateman equation

P: production rate    Asat : saturation activity
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Relevant isotopes

The isotope with the
largest contribution
to the -dose rate 
changes with time.

talk from L. Ulrici, 
CERN

Proton irradiation of copper

Nuclide inventory
Depends also on the
Irradiation time 
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• for disposal as radioactive waste
- Nuclide inventory needed before disposal (required by authorities)
- periodical validations are required: comparison to experimental data

• for future (planned) installations/facilities:
- estimation of the amount of total waste after operation
- dose rates needed for construction of shielding

• for repair/dismantling  planning of work procedures
dose rate estimation needed

The need for calculations

 ‘s in Ge-detector
 chemical + quantitative Analysis 

+ 

 

measurement in Liquid Scintillator
 Accelerator mass spectrometry (AMS) for isotopes with long life time
 dissolution out of the solid, surface detectors
 time elaborate, not all isotopes can be measured

Measurements are needed for checks:
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Monte Carlo particle transport program: n,p,d,3H....
Input:
- dedicated geometry
- material compositions
- cross sections: for n < 20 MeV (e.g. ENDF-B-VI.6) 
- models for all other reactions
Output: dependent on the code
MCNPX, PHITS FLUKA, MARS
• n-fluxes (E<20 MeV)                                      built-in buildup & decay codes
• residual nuclei production rates

Cinder’90

Orihet3

SP-Fispact

Input:
- irradiation and cooling history
- n-cross sections built-in or external library
- decay properties of isotopes

Calculation of the Activation: Method

case 1: due to direct irradiation

coupling to 
buildup & decay codes

DCHAIN

Output::
- nuclide inventory
- residual (or remanent) dose rate
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Example: Activation at the SINQ-Target 3 (PSI)

irradiation: 6.77 Ah for 2 years

p-beam

geom. model in MCNPX: 3 samples:

Zr
screw

AlMg3
safety hull

shielding
316L
behind
target

Zr tubes

Type: mark1
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Results for AlMg3 safety hull: exp. / calc. activity

remarks:
• overall good agreement with MCNPX+Cinder‘90
• 22Na: Data/SP-Fispact = 0.72
• the right material composition (including impurities) is important!

2 different material compositions

not obtained
in calculation

simulation using MCNPX + Cinder‘90
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Calculation Methods

- n-spectra have to be determined once for a larger region
(via measurement or MC-simulation)

- include cross section library

- defining material compositions

- collecting operational data (irradiation periods, currents)

NP  

 

 

 N

Case2: further away from loss points, e.g. behind shielding
remember: 
- neutral particles (especially neutrons) are most relevant
- the shape of the neutron spectrum is almost constant (amplitudes varies)
 simplification:

 + coupling to buildup and decay code
 nuclide inventory, normalized to measured surface dose rate

Code at PSI: PWWMBS, 
at CERN: Jeremy, using spectra for neutrons, protons, pions and photons

^
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E4

Target E

ASK61

sample from beam tube

Example: Activation at the E4 beam line (PSI)

Several samples were taken from
• bending magnet ASK61
• shutter behind ASK61
• shielding around shutter

 components are not directly irradiated
 calculation of the activity with PWWMBS

use representative n-flux spectrum in vicinity of Target E 

bending
magnet
ASK61
(stainless
steel) irradiated

for
13 years

beam entry

2004:
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Results for beam entry at ASK61

exp./calc. activity

Calculation with PWWMBS + typical stainless steel composition

calc. values from F. Atchison & M. Wohlmuther

Satisfying agreement: < factor 10
exception: 36Cl
reason: Cl content too large in material composition
 large sensitivity on material definition
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Proton beam line from Target E to KHE2&3

Target E: 
purpose: meson production
- 4 cm graphite wheel
- rotating with 1 Hz
- additional beam spread: 

~6 mrad590 MeV 
Protonen

Target E KHE0 KHE1 KHE2 KHE3

5m

beam losses: 13%                               16% Collimator system: OFHC-Cu
- protection of the beam line
- reduction of beam losses
(activation)
large power deposition:

150 kW in KHE2
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Dose rates at KHE2
• purpose of the calculation before inspection:
- planning of the shielding needed for camera in inspection tool
- shielding during transport sufficient
• calculated with MCNPX + Cinder’90, later measured in the hotcell (ATEC)

KHE2
downstreamupstream

measured
calculated

do
se

 ra
te

 [S
v/

h]

distance [cm]

p

Ni aperture (127 micron)

after 3 months cooling

highest dose ever measured at PSI,
limit of the dose meter: 500 Sv/h

Cu
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Radioactive waste

Accelerator waste at PSI: 
activity per container: 1010 – 1012 Bq (4.5 t of waste) 

0.01 0.1 1 10 100

other metals

tungsten

PVC

insulation materials

lead

aluminum

copper

cast iron

concrete

stainless steel

normal steel

M
A

TE
R

IA
LS

CONTRIBUTION IN % OF TOTAL

mainly low level waste: 

For final disposal:
- filled into concrete containers or steel drums
- components fixed with concrete (conditioning) 

10001 
i i

i

R
A
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Radiation damage on materials

Tungsten target 580 mg/cm2  (0.03 cm)
76Ge30+ at 130 MeV/nucleon (5.77 x 1016) 

Water-cooled/Edge-cooled graphite 
target at TRIUMF

important for high-power beams
on targets, collimators, beam dumpsTungsten after compression test

before after irradiation

800 MeV
protons, LANL

500 MeV
protons

Change of mechanical
properties

crack

swelling + deformation
NSCL,
MSU
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Macroscopic Effects on Structural Materials

Degradation of mechanical properties:
•• Hardening (ductility, tensile strength)

• Irradiation embrittlement  cracks

• Radiation induced growth and swelling

• Irradiation creep

• Phase transformation 

• Segregation of alloying elements

Change of physical properties:
• Thermal conductivity  electrical resistivity
• Thermal expansion
• Thermoelectric voltage

Affects life time of the
component
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• no saturation up to 100 dpa

• data are for neutrons only (thermal and fast reactors)

 Not much is known for high energetic protons

0.5%/dpa

Swelling after irradiation with neutrons

DPA:
Displacement Per Atom,
a measure for radiation damage

S. Zinkle, Effects of Radiation
on Material, 15th Symposium 1992,
p. 813-834
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Thermal and electrical conductivity

Search for new materials,
which are especially radiation hard

Graphite Copper + Glidcop

SCM Metal Products

T. Maruyama, M. Harayama
J. Nucl. Mat.195 (1992), 44-50
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• Electronic excitations (ionization): for charged particles
dissipated as heat,no damage (except temperature gets too high) 

• Elastic interaction  transferring of recoil energy to a lattice atom
recoil nucleus loses energy due to 
- ionization/excitation  dissipated as heat
- nuclear reactions  cascade of collisions (displacement cascade)
 production of vacancies, interstitials

 damage of material structure
 change of mechanical and physical properties

• Inelastic interaction  transmutation of nuclei
 activation
 dose rate
 impurities  effect on thermal conductivity

 change of material properties (H, He production)
 energy to recoil nucleus (s. above)

Energy loss of particles in material
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Microscopic and sub-microscopic effect on structural 
materials

vacancy + self-interstitial atom = Frenkel pair.

Cluster

Point defect
Remark:
Liquids do not
suffer radiation
damage
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a) ED  < ER < 2 ED
1 atom is displaced to an interstitial site
 a vacant lattice site is created

b) ER > 2ED
cascade of collisions within a small range
 displacement spike
(

 

~ 10 nm after 1ps for ER = 10 keV (PKA)

Mechanism:
1) p/n interacts with nucleus recoil energy ER to nucleus
2) recoil nucleus looses energy due to 

- ionization/excitation  Ee dissipated as heat
 energy left for nuclear reactions: Tdam = ER – Ee = (ER ) ER

Displacements of atoms (DPA) in cascades

To displace an atom: bonds need to be broken
Threshold energy called displacement energy ED

range: 10 - 60 eV (~ twice the sublimation energy)
Cu: 30 eV, Fe, Ni,Co: 40 eV

partition function,
damage efficiency

damage energy

MD simulation
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Atomic nature of radiation damage (e.g. distribution, no. of vacancies):
• Molecular dynamics (MD): needs a lot of computer power
- recombination of defects are taken into account
- solves the equation of motion for all atoms at the same time
- computing time ~ ER

2

• Binary collision approximation (BCA): faster
- discrete collisions in a lattice, other atoms are treated as spectators
- particles are followed via trajectories
- works well at higher energy

Estimation of DPA:
• Phenomenological approach (NRT = Norgett, Robinson, Torrens: 1975)
- use of particle transport codes (e.g. MARS, FLUKA, MCNPX),
- particles are followed via trajectories
- no properties of the solid (e.g. lattice structure, atomic bound energy)
- codes have models for all nuclear reaction cross sections
- folding neutron/proton fluxes with displacement cross sections (dcs)

Calculation methods



CERN Accelerator School: High Power Hadron Machines, 24.5.-2.6.2011, Bilbao, Daniela Kiselev1.6.2011PSI,

Displacement cross section (dcs)

      RR

E

E R

Rdam
dis EE

dE
EEdE

D

d    ,max

 

damage cross section: damage function (no. of displaced atoms):

particle energy

 
V

R

xN
Ew



w(ER ): recoil spectrum
needs nuclear reaction models

x:         thickness of the sample (thin)
NV :      atomic density (atoms/cm3)

D

dam

E
T

2


 modified Kinchin-Pease m.
= NRT model:
Nucl.Eng.Des. 33 (1975) 50

Tdam (ER ) : damage energy
displacement efficiency 

 

= 0.8

some remarks on uncertainties:
• ED e.g. in Cu set to 30 eV but varies 18 – 43 eV
• 

 

= 0.8: compensates for forward scattering,
derived from BCA simulation of Robinson, Torrens 1972
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only a small fraction of the displaced atoms
leads to permanent lattice defects

Displacements Per Atom (DPA):
- how often an atom is displaced during the irradiation period

    dE    
dE

EdEDPA disp


Related to the number of Frenkel pairs NF :


i

i
Fi NNDPA i: number of reaction channels

Ni = number of particles

fluence (particles/cm2)
disp : displacement cross section

Displacements per atom

DPA is used to quantify the radiation damage
Problem:
It cannot be measured!
Reason:
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Defect production efficiency 

Recoil

Cartula et al., 
J. Nucl. Mat. 296 (2001) 90

 
D

dam
R E

TE
2
 

ntsdisplaceme
defects stable



Singh, Zinkle et al., 
J. Nucl. Mat. 206 (1993) 212

copper
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Displacement cross sections (A. Konobeyev, KIT)

Incident particle
energy

E < 28 keV: MD, E > 28 keV: BCA

    dE    
dE

EdEDPA disp
 fluence (particles/cm2)

disp : displacement cross section

on copper

Main difference between proton and neutron dcs:
Coulomb interaction, important at low energy
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Practical example: target window of ESS

5 MW proton beam, 1.3 GeV  = 2 1022 /cm2 protons in 1 year
dcs for iron: 3000 barn at 1 GeV p
 DPA = 3000 barn * 2 1022 /cm2 = 60

Filges, Goldenbaum,
Handbook of Spallation
Sources

Life time for T91 window
for MEGAPIE at PSI:
~ 10 DPA 

(Y. Dai et al., 
J. Nucl. Mat. 356 (2006) 308)

Caution:
life time predictions
depend on many
parameters!
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Effect on material properties

Very difficult to predict,
dependent on
• temperature
(healing!, defects get mobile)

• impurities (partly produced)
• grain size
• rate of irradiation: [dpa/s] 
• kind of particle irradiation, its energy

+ lots of data for thermal neutrons
- not many data available for high-energy particles
How to transfer mechanical/physical property changes
measured on thermal/fission reactor neutrons (a lot!) to high-energy 
particle beams? 
damage correlation
very complex problem

irradiation test experiments are needed!

Tm : melting temperature
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0.5%/dpa

Radial dependence
of DPA on 1. tooth

very high DPA at
the inner side

Cu-collimator at PSI: 20 years in use, ~ 15 Ah
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Summary

Activation:
• important reaction mechanisms:
- spallation  excitation  emission of p,

 

evaporation of n, light ions
- neutron capture

Calculation:
1) direct irradiation:
• particle transport codes: MCNPX, FLUKA, MARS, PHITS ….
- physical reactions models
- evaluated cross section for n < 20 (150) MeV

2) in the environment of loss points:
• simplification due to almost constant neutron fields possible
Radiation damage:
• defects in the lattice structure due to recoil nuclei
• change of material properties: mechanical, physical
• calculation: MC, BCA, displacement cross sections
• to quantify radiation damage: DPA
• due to recombination (defect efficiency) DPA cannot be measured
• radiation damage depends on many parameters
 very difficult to predict
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