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... in the context of space charge dominated beams 

Lattice Design in Particle Accelerators 
Bernhard Holzer 

Space Charge effect in a ring: Tune Shift 

CERN Linac 4 design 

€ 

ΔQ∝
Ip

εx,y β
2 γ 3

Space Charge effect in a Linac: distortion of the focusing effect 

Kin. Energy ~ 3MeV , m0 ~ 938 MeV 

€ 

ks.c. = 3*10
−4 1

m2

kq = 5.2*10−1 1m2

intergrating aling the linac we get:  

€ 

ks.c.dl∫
kqdl∫

≈ 75%

the space charge introduces an enourmous optical error that has to be compensated. 

 court. L. Hein [2] 
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How to get the optical solution 

1.  Matching the focusing structure in order to obtain the ‚old‘ solution (for local spots only) 

2.  Find a new periodical solution, which includes the Space Charge Effects (Linac4) 

3.  Optimise the Lattice while minimising the losses (Linac4 TL) 

effect of quadrupole errors on the optics 

tune shift   

beta beat   

I = 0 mA I = 60 mA I = 300 mA 

Lattice Design: 
  example: RCS (rapid cycling synchrotron)  

empty half cell  
-> disp suppressor 

dispersion free  
straight sections 

H- stripper injection 

RF section 

regular  
arc structure  



3 

Lattice Design: 
  H- Injection  The Low Beta Insertion 

transfer matrix for a drift: 

„0“ refers to the position of the last  
       lattice element 

„s“ refers to the position in the drift 

H- injection at J-parc rcs 
 court. M.Yoshimoto  [3] 
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H- Injection requirements: the Foil  

1% H0, 0.1% H-, -> Absorber 

schematic layout 
H- beam 

stored proton beam 

Lattice Design:   free space, 
  dispersion free, symmetric waist, 
  α = 0, D = 0  
  local orbit bumps: injection bump,  phase space paint bump 
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 as 

and we get for the β function in the neighborhood of the symmetry point 

Find the β at the center of the drift that leads to the lowest maximum β at the end: 

A mini-β insertion is always a kind of special symmetric drift space. 
 greetings from Liouville 

at a symmetry point β is just the ratio of beam dimension and beam divergence. 

x´ 

x 
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How to create a low β insertion: 

 * symmetric drift space (length adequate for the experiment) 
 * quadrupole doublet (or triplet)  on each side (as close as possible) 
 * additional quadrupole lenses to match twiss parameters to  
    the periodic cell in the arc 

regular FoDo α = 0 with doublets  
and free space for  
injection hardware  

mini β insertion and ATLAS detector at LHC 

parameters to be optimised & matched to the  
periodic solution:  
αx ,, αy,, Dx, Dx’,      βx, βy, Qx, Qy  

Idea: Inject a beam of moderate intensity,  
 accumulate via H- stripping injection 
 scan the transverse phase space using a symmetric closed orbit bump   

   
    Example: fractional tune ≈ 0.25 

 Lattice Design:   Multiturn Injection 
                                    ... and how it looks in phase space    

J-Parc: Footprints of the circulating proton bunch 
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x´ 

x 

●

●

●●Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

Liouville: Area in phase space is constant. 

But so sorry ...  ε ≠ const ! 

●

Classical Mechanics:  

 phase space = diagram of the two canonical variables  
                  position    &  momentum                                           
                      x                         px 

According to Hamiltonian mechanics:     
phase space diagram relates the variables q and p 

Liouvilles Theorem: 

for convenience (i.e. because we are lazy bones) we use in accelerator theory: 

where βx= vx / c 

the beam emittance  
shrinks during  
acceleration   ε ~ 1 / γ 

q = position = x 
p = momentum = γmv = mcγβx 

ε 
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Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 

emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  

create a configuration of orbit kicks to shift the closed orbit at a location in the ring …  
                                                                           … without changing the orbit anywhere else.  

needed for injection, extraction, steering two beams in a collider with resp. to each other … 

transformation matrix expressed in Twiss form: 
( … see ground school ) 

 Lattice Design: Multiturn Injection 
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′ x 2 = −
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for Δψ = 180° we get 

x = 0, 
x´= δ1 

δ2  

the kick,of the second coil has to compensate the angle  
of the orbit at position s2 

δ1 δ4 δ3 

transformation from pos. 1   3:  
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transformation from pos. 2   3:  

δ2 sp 
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using again 

knowing that αsp=0 ... and requiring that x’
sp =0 we get conditions for the kick strengths of the dipoles: 
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special requirements: multi turn injection  
                                    of heavy ions 

                smallest distance between stored & injected  
                                    beam required   

                bump amplitude is reduced turn by turn  
                                    for phase space painting 

Linac4 / PSB: painting bump    = 100 µs 
             „dc“- bump = 5 ms 

high voltage electrode 

TSR multi turn injection bump 

δ1 δ2 δ3 δ4 

Transferline: matched beam optics. 
     twiss parameters at start correspond to  
     periodic Twiss 

Transferline: un-matched beam optics  
at half the way: 

     twiss parameters at start correspond to  
     periodic Twiss 
     quadstrengths reduced by 20 % for  
     second part  

Transferline / Injection 
optics conditions 



10 

(αx,βx,αy,βy,D,D’)ext (αx,βx,αy,βy, D,D’)inj 

(αx(s),βx(s),αy(s),βy(s), D(s),D’(s))trans 

Twis parameters at start and end of the transfer line are fixed 

β(m) 

Transferline / Injection 
optics conditions 

FoDo arc FoDo transferline 

at least 6 individually powered quadrupoles needed 

Lattice Design: Space charge effects in rings 
              the “neck-tie problem” 

space charge tune shift: 

€ 

ΔQsc ∝
Np

β 2γ 3

large range in working diagram required  at low energy 
shrinking fast as acceleration starts 

this is where the “R” comes from in RCS 

 install trim quadrupoles to adjust the working  
 point during acceleration  

effect of quadrupole changes on the optics: 

                                         it changes the tune 

         but it affects also the optics  
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 court. K.H. Schindl [4] 
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Space charge effects in rings: 
  trim quadrupoles to reduce the “neck-tie problem” 

use several (i.e. more than one) trim  
quadrupoles in the lattice ...  
                   and put them  ... 900 apart 
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we can install fast quadrupoles to adjust the tune on the flight  
without any effect on the optics  ! 

general solution: 

Normalise with respect to Δp/p: 

Dispersion function D(s)  

        * is that special orbit, an ideal particle would have  for Δp/p = 1  

        * the orbit of any particle is the sum of the well known xβ  and the dispersion 

        * as D(s) is just another orbit it will be subject to the focusing properties of the lattice  
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. ρ 

xβ 

Closed orbit for Δp/p > 0 

Matrix formalism: 

Dispersion 
 Example: homogeneous dipole field 
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Example: longitudinal phase space painting  

off energy beam still has to follow the same  
trajectory at the injection point 
      Dispersion must vanish at the collision point  

Calculate D, D´:  ... takes a couple of sunny Sunday evenings ! 

or expressed as 3x3 matrix 
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Example: Drift 

Example: Dipole 
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D(s) = m12(s) 1
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m11(˜ s )d˜ s −
s0

s1

∫ m11(s) 1
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∫

periodic dispersion in a FoDo cell including dipoles 

a.) The straight forward one:    use additional quadrupole lenses to  
                            match the optical parameters ... including the D(s), D´(s) terms

* Dispersion suppressed by 2 quadrupole lenses, 

* β and α restored to the values of  the periodic solution by 4   
 additional  quadrupoles 

€ 

D(s), D'(s)
βx (s),αx (s)
βy (s),αy (s)

Advantage:   
 !  easy,  
 ! flexible: it works for any phase  
     advance per cell  
 ! does not change the geometry  
     of the storage ring,  
 ! can be used to match between different lattice  
     structures (i.e. phase advances) 

  ! additional power supplies needed 
                                (→ expensive) 
  ! requires stronger quadrupoles  
  ! due to higher β values: more aperture  
                                required 

6 additional quadrupole  
lenses required 
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Example:  

phase advance in the arc ΦC = 60° 
  number of suppr. cells     m = 1  
  number of regular cells   n = 1 

m = number of cells without dipoles  
followed by n regular arc cells. 

b.) The clever one: missing bend suppressors 

… turn it the other way round:  

Start with D = D‘ = 0 and create dispersion – using dipoles - in such a way, that it fits 
exactly the conditions at the centre of the first regular quadrupoles:   

c.) The Half Bend Dispersion Suppressor  

strength of suppressor dipoles is half as  
strong as that of arc dipoles, δsuppr = 1/2 δarc 

in the n suppressor cells the phase advance 
has to accumulate to a odd multiple of π  

Example:  phase advance in the arc  
                 ΦC = 60° 

  number of suppr. cells n = 3  

so if we require 

or, which is equivalent 

we get 
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d.) ... and a very compact compromise 

* leave out the dipoles in the last half cell of the arc 
* adjust (i.e. match) the arc quadrupoles with the constraint D = D’ = 0 at the end of the structure 

 -> no independent quads needed 
 -> Dispersion vanishes indeed 
 -> beta functions are modified over the complete ring,  Φc  =1010 

 -> but very compact and cheep. 

βx βy 

D 

 court A. Lachaize, [5] 

ρ 

ds x 
dl 

design orbit 

particle trajectory particle with a displacement x to the design orbit 
 path length dl ...  

circumference of an off-energy closed orbit 

remember: 

* The lengthening of the orbit for off-momentum  
    particles is given by the dispersion function  

   and the bending radius. 

o 

o 

o 
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For first estimates assume:  

Definition: 

€ 

α p ≈
2π
L

D ≈
D
R

... and now the key point: 

€ 

γ tr
2 =

1
α p

small dispersion  
                        small αp 
   

          large γtr 

Resume: an example 
RCS (rapid cycling synchrotron)  

empty half cell  
-> disp suppressor 

dispersion free  
straight sections 

H- stripper injection 

RF section 

regular  
arc structure  

Resume:lattices 

FoDo  
   small gradients, smooth optical functions, 
   very flexible &  robust   
   no long straight sections     

Doublet structure  
   made for longer straight sections 
   higher gradients, larger betas 

    

 court. G.H. Rees, [6] 
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Resume: Lattice structures 
     

Triplet structure 
   long straights with / without dispersion   
   unregular betas, higher gradients 

    

Hybrid: FoDo & Doublet 
    long straights with / without dispersion  
    smooth & regular betas, low gradients   

   

 court. G.H. Rees, [6] 

court. J. Wei, [7] 

horizontal 

vertical 

Resume: Lattice structures and emittance preservation 
     

court. S. Xu, [9] 
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the dispersion function is given by  

proof: 

now the principal trajectories S and C fulfill the homogeneous equation  
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and so we get: 

 qed. 

... the calculation of the half bend scheme in full detail (for purists only) 

1.) the lattice is split into 3 parts: (Gallia divisa est in partes tres)  

* periodic solution of the arc                    periodic β, periodic dispersion D 
* section of the dispersion suppressor      periodic β, dispersion vanishes 
* FoDo cells without dispersion              periodic β, D = D´ = 0    

€ 

β

€ 

D
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2.) calculate the dispersion D in the periodic part of the lattice 

transfer matrix of a periodic cell: 

for the transformation from one symmetriy point to the next (i.e. one cell) we have:  
ΦC = phase advance of the cell, α = 0 at a symmetry point. The index “c” refers to the periodic  

solution of one cell.   

The matrix elements D and D‘ are given by the C and S elements in the usual way: 

here the values C(l) and S(l) refer to the symmetry point of the cell (middle of the quadrupole) and the  
integral is to be taken over the dipole magnet where ρ ≠ 0. For ρ = const the integral over C(s) and S(s) is  

approximated by the values in the middle of the dipole magnet.   

Transformation of C(s) from the symmetry point to the center of the dipole:  

where βC is the periodic β function at the beginning and end of the cell, βm its value at the middle of  
the dipole and φm the phase advance from the quadrupole lens to the dipole center. 

Now we can solve the intergal for D and D’:  
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remember the relations  

remember:  

I have put δ = L/ρ for the strength of the dipole  

in full analogy one derives the expression for D‘: 

As we refer the expression for D and D‘ to a periodic struture, namly a FoDo cell we require  
periodicity conditons: 

and by symmetry: 

With these boundary conditions the Dispersion in the FoDo is determined: 



22 

This is the value of the periodic dispersion in the cell evaluated at the position of the dipole magnets. 

3.) Calculate the dispersion in the suppressor part: 

We will now move to the second part of the dispersion suppressor: The section where ... starting  
from D=D‘=0 the dispesion is generated ... or turning it around where the Dispersion of the arc is  

reduced to zero. 
The goal will be to generate the dispersion in this section in a way that the values of the periodic cell  

that have been calculated above are obtained. 

The relation for D, generated in a cell still holds in the same way: 

(A1) 

as the dispersion is generated in a number of n cells the matrix for these n cells is 

remember: 
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set for more convenience x = nΦC/2 

and in similar calculations:  

This expression gives the dispersion generated in a certain number of n cells as a function of the dipole  
kick δ in these cells.  

At the end of the dispersion generating section the value obtained for D(s) and D‘(s) has to be equal  
to the value of the periodic solution:  

 equating (A1) and (A2) gives the conditions for the matching of the periodic dispersion in the arc  
    to the values D = D‘= 0 afte the suppressor.   

(A2) 



24 

and at the same time the phase advance in the arc cell has to obey the relation: 


