RF BASICS

CAS, High Power Hadron Machines, 27 May 201 |
F. Gerigk (CERN/BE/RF)



overview |

* Maxwells Equations,

* Reminder to basic vector analysis,

- Amperes Law and Faradays Induction Law,

* What Is displacement current!

* Boundary conditions for magnetic and electric fields.
* Wave equation and its complex notation.

- Skin depth, energy propagation, and losses.

* Traveling wave cavity.



overview |

- Standing wave cavity: the pill-box.

» Basic cavity parameters (transit time factor; shunt impedance,
quality factor, (R/Q), filling time).

* A cavity as a lumped circutt.
- Getting power into a cavity with a power coupler.

 Matching a cavity to a wave-guide.



MAXWELLS EQUATIONS

and there was light...
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Maxwells equations: components

electric field [V /m]

dielectric displacement [As/m?]

magnetic induction, magnetic flux density |T]
magnetic field strength /field intensity [A /m]
electric current density [A/m?]

displacement current [A/m?]

gg = 8.854 - 10_12% electric field constant

£ relative dielectric constant
e 10_7% magnetic field constant

U relative permeability constant
K electrical conductivity |[S/m]
€ = &otr H = HoHtr
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differential operators In cartesian® coordinates

(0], o

Ox Ox

: : S0 |k
gradient of a potential Vo = By Uf dy
@l o

0z 0z

The result Is a vector telling
us how much the potential
GREliCEsTIm X, Z direction.

* see annex for cylindrical or spherical goordinates



differential operators in cartesian coordinates

ANNLE
vector field Oy . oz 0y 0z
o:/ \Gz

The result Is a scalar,
telling us If the vector
field has a source.




differential operators in cartesian coordinates

curl of a vector

0 oa, Dl (9Cl,y \
— O e Bl ol D) e Oay i duy
V X a= dy N | = det Chniss Ol k2 || T 0z Ox
0 da 0a
Are there curls/eddies around the X, y, z axes? (Imagine a ball

fixed around the X, y, z axis. I it starts rotating, thenv x a £ 0)

Laplace operator

0°®  9*d 9P
V- (V) 572 i e 5

E.g: electrostatic potentials are defined everywhere In space, if

they fulfill A®=0, and have the correct values at the boundaries.
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Cross products

or the so-called “right hand rule”




/ V-a dV:%a WS
vV “sources”

(Gauss theorem

e The vector flux through a closed surface equals the flux sources (e.g. charges),
which are enclosed in the volume.

e |f there are no sources, the amount of flux entering and leaving a volume must
be equal.

Q

e Electric field lines originate from el. charges. /V SDAVE — ]{E - dS =
&,

* Since there are no “magnetic charges’, /V - BdV = ]{B -dS = 0

magnetic field lines are always closed.



Stokes' theorem

— —

!<vXa>.dA(Z{a.d1 % ﬂ i } i

 —

e Tells us that the area integral over the curls of a vector field can be calculated by
a line integral along its closed border; or in other words, that,
e the field lines of a vector field with non-zero curls must be closed contours.

Applied to Maxwells equations:

dD
/(VXH)-dAz%H-dlz/(J—I—E) - dA
A C A H
and in the electrostatic case (%) — 0 we get Ampére’s Law m
U

with a one-line derivation! %H dl = T J
2

> [




Stokes’ theorem |

Applied once more to Maxwells equations:

b EED, @D, Gk D).
X X ‘/l
d X
/(VxE)-dA:%E-dl:—%/B-dA X
A c A &
\ e i NG - 4 X haXe X
Vi A, X': X FXee X
dt e fsior
we get Faradays induction law dm,
(again in a one-line derivation): dt

The electric field around a closed a closed loop (the induced voltage)
equals the rate of change of the magnetic flux penetrating that loop.
(The basis of every electric motor or generator.)
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what Is displacement current (dD/dt)!

we apply the divergencetoV x H = J + —— apply a volume integral
and make use of Gauss' theorem: dt

d
V-VXH:V-J+V-CZCZ—D continuity equation V-J:——pvJ

N o dt
= ( et
d
T

d
ave— @ J-dS — I, = —— LAV
[ o5t
\% 5 %

continuity equation: “electric charges cannot be destroyed: if the amount of
charges in a volume is changing a current needs to flow”

further interpretation: “the sources of the displacement current are time varying
charges”, or:"‘curls of the magnetic field are excited either by static currents, or by
displacement currents (which are a consequence of time-varying charges, which

s equal to current...)” |4



example of displacement current (dD/dt)

e.g: charging a capacrtor

d o
]f.]-ds I=—— | p,dV T
dt ok i
S 1% —
T .‘,V =ty
< Qc \ —

d e
S

The current used to charge the capacitor equals the rate of change of the
charge on a capacitor plate and equals the displacement current between
the capacitor plates.

or “In case we don’t have a conductor, we can use the displacement current to
transport energy instead of using moving charges” or “the current charging the

capacitor plate equals the displacement current between the plates”
|5



Jo design RF equipment for accelerators
we need to understand:

* what are electromagnetic waves and how do they propagate In
free space,

* how can we guide these wave (e.g. In wave-guides),

* or even trap them in a resonator (an accelerating cavity),

* energy density and energy flux in electromagnetic waves,

* standing waves,

* boundary conditions, and losses on electric boundaries.



Boundary conditions (Il to a surface)

AS — 0 dD
l Al / mate;:iall V 4 H — J —|— E (I)
1 IB
e Epp VS D — & (IT)
a0l Al material 2
o S d l
= H-dl:/J-dA—i—E/D-dA = HHl—HHQ:i/
X C A A
e e G ~~ =
, =t/ Al —0 for A—o0
Stokes’ theorem '

d
é%E-dl:—a/B-dA = B =E) J
C 4 5

—0 for A—0

a ‘ . -/
In case material 2 is an ideal conductor: HHl =1 E||1 =0 '
17




D,
AS

AS»
D,>,,Bi»

B
AV — 0

material 1

material 2

;» 7{ D.dS — / G
Gauss’ theorem ”’ = j{B dS =0

In case material 2 is an ideal conductor:

18

Soundary conditions (L to a surface)

V-D=py
V-B=0

(II1)
(1V)

= D1 —Di9=gqs '
= DB =D '

B =

D, =gqs



VWave equation

We consider homogenous media, meaning media in which the
electromagnetic fields “see” the same material conditions (K, €, ) in all
directions. In that case we can write Maxwells Equations as:

dE
VxH=rE+e— (I) V. i i
&
H
VXE——,uddt (IT) V-H=0 (IV)

Curl of (Il) together with (1), and curl of (I) together with (Il) and (lll) results in
the general wave equations in homogenous media:

V’E-V (V- -E)= /{iEwL d2E V?H = iH+ d2H
) g = o

In most cavities and wave-guides we consider electromagnetic field in non-
conducting media (K = 0) and charge free volumes (V - E = ( ):

2 d’ 2 d’
V°E = ,uedzE V‘H = ,ued2H




Complex notation for time-harmonic fields

In Radio Frequency we are usually dealing with sine-waves, which are sometimes
modulated in phase or in amplitude. This means we will concentrate on time-harmonic
solutions of Maxwells Equations. For this purpose we introduce the time-harmonic
notation, which can be used for all linear processes. (Electric and magnetic fields can be
linearly superimposed.)

Let us assume a time-harmonic electric field with amplitude Eo and phase :

E(t) = Eqycos (wt + @)

this corresponds to the Real part of:
E(t) =R {Eoe¥e™"} = R {cos (wt + ¢) + isin (wt + @)}

by defining a complex amplitude (or phasor): Jo Eoew
we can write: E(t) — e {Eeiwt}

from now on we will only use complex amplitudes and write them without tilde:

By coswt + o) ——>Fe“t——F
20



why do we do that!

® OuUr expressions become considerably shorter,

e and we no longer have to worry about any time
derivations,

d Uhie =
%E(t)HEEeWt = jwEe*?

——F = 1wk
dit

21



Complex notation of Maxwells Equations

The use of phasors yields the following form:

2%
VXH:m&:@—z‘i)E(I) V-E="— (I1T)
WE &
VxE=—iwuH (IT) V-H=0 (IV)
Consequently the general wave equations become: o g — o
2 2
R (7 B — - °E k* = wpe
with the wavenumber B K
V°’H = —k°H = W7 lE (1 = 1—8)
W

Remark: in conducting media k becomes complex. In non-conducting charge-
free media the wave equations simplify to:

V’E = —k’E l
U2H — 12K with the wave number — (w2 [E =

and ¢ being the speed of light




plane waves

* homogenous, isotropic, linear medium,
* no space charge distribution, no currents,

- fields vary only in one direction (e.g. 2).

The solution of the harmonic wave equation then becomes:

BRGI—C . c 2° + Cre™2?

ey PPOPAgation in positive

and negative z direction

N

with the propagation constant gamma

«v - attenuation, (3 - phase shift

in vacuum

s



the velocity with which the maxima travel along x is called phase velocity
Vph (exact definition later)

T —
From MIT Open Courseware .



skin depth

In conducting material RF waves are strongly attenuated, which means that:

K T e equivalent to neglecting
w_e: > 1 o e —Z; the displacement current!
then the propagation constant becomes:
: e O e
¥=a+18 = w a = (1 + 1) s
W 2
the skin depth Is defined as the distance Ho=s

after which the wave is attenuated to
1/e ~ 36.8%

5y =

Uo, €9, K =0 U, €9, K £ 0

25




skin depth |

If a wave travels along a conducting surface, then we can calculate the
surface resistance by assuming a constant current density within a material
layer equivalent to the skin depth.

it
T

A

1[0 ,
Rsu’r‘f o KO [m]J l,'.

Uo, €0, K =0

’--- -

-
-
4
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skin depth i

For cavities (usually copper) and wave-guides (usually aluminum) and
typical frequencies for accelerators (100 MHz - 10 GHz) the skin depth is

usually in the gm range, which is why we can build cavities out of steel
and copper plate them with just ~30 um.

0.1 ¢
| e.g. copper

001 F
i | 1
E 0.001 f Koy = 55 . 106{2
e i m
5 00001 f
2 | _ 4n10-T Y
ge | Ho = 4T —
- 1e-05 F Am

1e-06

1e-07 |

1 100 10000 1e+06 1e+08 1le+10
frequency [Hz]

il



-nergy density and energy flow

The energy density of electric and magnetic fields is defined as (without
derivation):

for time-harmonic fields in complex notation

1 1
GZ_ED e :_]ED>I<

w 9 We, K 1
—1H B —1H B*

wm—2 wm,k—4

Integration of the total energy density (magnetic + electric) and a bit of vector
analysis gives us Poynting’s Law:

d
S

V/(E-J)dV

reduction of total Energy leavingV work on charges

energy inV per time unit InV per time unit
28




Poynting vector

From Poynting’s Law we get the definition of the Poynting vector

for time-harmonic fields in complex notation

S:EXH' S:%EXH*'

which defines the direction of the energy propagation of an electromagnetic wave. It
also tells us that the propagation direction of the energy transport is perpendicular
to the directions of the electric and magnetic field components.

A e

)



Solution of the wave equation

To find the electric and magnetic fields in free space, in wave-guides or in
cavities, one needs to solve the wave equation in the appropriate coordinate
system (cartesian, cylindric, spherical).

A common approach to solve the wave equation for wave guides is to
define a vector potential for TE and TM waves, so that electric and magnetic
fields can be calculated from:

el VG A S and | HE v dAGES
ERE—S A <A D) and EIY =V (W OdA
In both cases the vector potential fulfills the wave equation,
VA = — kA with k% = w?ue

which can then be solved for different coordinate systems for TE and TM waves and
which has usually just one vector component: A = A.e,

30



Nomenclature of modes In cavities/wave guides

= E-field parallel to axis, B, =0,
TMmnp-mode = Emnp-mode Snly transverse magn. (TM) components

TEmnp-mode = Hmnp-mode

* number of full-period
variations of the field
components in the
azimuthal-direction

E or B

cos(me) or sin(mae)

* number of zeros of the
axial field component
IN radial direction.

B-field parallel to axis, E; =0,
only transverse el. (TE) components

* number of half-period
variations of the field
components in the
longrtudinal-direction

E. or B, x E or B
I (Tmnr/Re) cos(pmz/l) or sin(pmwz/l)

&



Solution of the wave equation

For circular wave guides we obtain (without derivation):

ATMITE — 0J, (kcr) cos(mp)e™ %% with k, = \/k2 — k2

BEEl A and E'M =V X (VXA

results in the following field components for TM waves:

B, =t 850 — —CkZ—IZCJ’m(kCT) cos(mey) \

E, =-L12l —gmkjg_(k.r)sin(mep)

B, =4, =Clelp(kr)cosimg) et
o = %8521; = —C2J,,(kcr) sin(mep)

H, =-%= = _CkJ(k.)cos(mp) |

Jm are Bessel functions of the first kind and,of m'th order



Bessel functions of the first kind

1.0 J,(x) |
J, () =

0.8 \ ]2(x) a5 e

0 5 10 15 20



wave propagation in a cylindrical pipe

let us consider the simplest accelerating mode (electric field in z-
direction): m=0, n=1,TMo

using Jj(r) = =1 (1)

E, :CkZSCJl(kCT)
E., =-C%ejo(kor) pe ™
HSO = CkCJl(kCT)
propagation constant: kg — 2 kf wave number: Lk = 2% S
C

kc 1s determined by the boundary conditions of the wave-guide
E=0=E,(r=a)=0= Jyo(kca) = 0= kca = 2.405

B



wave propagation in a cylindrical pipe

s 2T We  we can calculate the cut-off frequency for the
L= —

and from A. ¢ TMo mode in a cylindrical conducting pipe

TMO1 field configuration
2.405¢ ‘ A = B it
_ |®\® ® ' @ ] © o Qg |
- - ' RIS
i
Ap

E-field

B-field

from k2 = k* — k> we also get the dispersion relation

® [ Mo waves propagate for: w > w,

® and are exponentially damped for: w < we

w

® the phase velocity Is: Uph = e
z

ES



dispersion relation (Brillouin diagram)

group velocity:

phase velocity:

dw
VUgr = d_kz
w
Uph — k_

36

* each frequency corresponds to a

certain phase velocity,
* the phase velocity is always larger
than c! (at W=Wc k,=0 and

* synchronism with RF (necessary
for acceleration) is impossible
because a particle would have to
travel at v=vpn>c!

* energy (and therefore information)

travels at the group velocity vg<c,



How can we slow down the phase velocity?

v

put some obstacles into the wave-guide: e.g: discs
h

—

2a I 2b

L

Only then can we achieve synchronism between the particles and the
phase velocity of the RF wave.

Si7/



Dispersion relation for disc-loaded circ. wave guides

4q3
= Sr (2052
2.405

a

K

W =

2.4
55‘3\/ 1+ k(1 — cos(k, L)e—oh)

Brioullin diagram

damping: o =~

IVph:C

|
|
I J
|
' . reflected wave

|
(] \

' \

l \

|

I
I
I
I
I
| |
_2n 14 0 Aiti: L 21
L L Bl L

typical operating point



Example of a 2/3TT traveling wave structure

A
synchronism condition: d = % with 8~ 1
pulsed RF
Power 9
source ?mode

Electric field  RF wall currents RF
\ ' load




[raveling wave structures

* Since the particles gain energy the EM-wave i1s damped along the
structure (“constant impedance structure”). But by changing the bore
diameter one can decrease the group velocity from cell to cell and obtain
a “constant-gradient” structure. Here one can operate in all cells near the
break-down limit and thus achieve a higher average energy gain.

* Traveling wave structures are often used for very short (us) pulses, and
can reach high efficiencies, and high accelerating gradients (up to 100

Meinny, (CE@F
» are generally used for electrons at B= 1,
- difficult to use for ions with B<1:1) constant cell length does not allow for

synchronism, i) long structures do not allow for sufficient transverse
focusing,

40



let us see If we can apply all of this to
calculate the resistive damping in a
circular wave guide for the 1Mo mode

to do this we need:

* Boundary conditions on electric surfaces (or Ampere’s Law);

* The complex notation of EM fields;

* The solution of the harmonic wave equation for the TMo; mode;
* Poynting’s Law;

* A bit of common sense;

- and the Power-Loss Method, which we will learn on the way.

41



attenuation of waves (power loss method)

We assume highly conductive wave guide boundaries, which means that
we have a small skin depth and that the electric fields will basically be
orthogonal to the surface. We can therefore assume that the fields In
the lossless wave guide (infinite conductivity) are basically identical to
the fields in the lossy wave guide.

[t seems therefore reasonable to calculate the surface currents from the
ideal fields, and then to apply the surface resistance to calculate the
losses.

We will proceed In 3 steps:
| .Definition of the attenuation constant

2.Calculation of the power transported in the wave guide
3.Calculation of the losses in the wave guide surface

A



| . Attenuation constant

Ve start by defining the power lost per longitudinal distance:

dP
=
dz
from B et = P
. | dP
we get immediately P’ = o 2aP
z

and thus the definition of the attenuation constant

P/
~ 2P

8%

415



2. Power transport in a wave-guide

e

N we

1 1 2 " 2 DT .
00

i

a

2
/Jf(k’cr)frdr — %le(kca,)
0

44



3. Losses on wave-guide surface

L4
/N

Ampere’s Lavv:%H dl = T= %J - (05dl)

£;> I = @1y 2) :CCkCJl(kca)e_ikzz = J(2)0s
Hy =0 ";aAcp
: power density in the wall [W/m?3]:
1 R

N AN : 1
S —hk N ¥4 = _E ] J>I< ek _JZJ* sy
K = Ka S ol 2~ (Or)(ndblltdE)
power loss per meter along z [W/m]:
R 7 C2k2 T2 (k
0z KO g
aiese () T

0, <K a

45



attenuation per unit length

. 1
surface resistance Rsurf =
KO g
wave Impedance T Ho
(vacuum) £0
4.0e-04 . . , 1202 m
T 3.5¢-04 —4‘—)
e.g. damping Iin an
aluminum wave guide e 2=0.3 m
with £ 25e04 | ﬁ_)
bD —
. é* 2.0e-04 | 2=04m )
7 z |
Kar = 3.66 - 10" — S 1.5e04 | Z0.5
m d m ’
1.0e-04 ’
5¢-05 |
0

0 2e+09  4e+09 6e+09 8e+09 le+10
46 frequency [Hz]



what we should know by now

» The power of Maxwells Equations,

* Vector analysis: Gauss' Law, Stokes' Law

* Ampere's Law, Faraday's Law

* Displacement current

* Boundary conditions for electric and magnetic fields

- Wave equation/plane waves and the complex form of time-harmonic fields
B niciicet

* Poynting’s law

» Solution of the wave equation for circular geometries

* Dispersion relation, group velocity, traveling wave structures

 Power-loss method and damping in wave guides

47



I he Pillbox cavity

S —_—
—————
| —
C—
—
—
| —
—
| —
| —
C—_—
-—
——
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Ihe Pillbox cavity

A lumped element resonator transformed into a pillbox cavity




N the simplest case...

..the pillbox cavity Is e - e
just an empty cylinder: T e
---------------- | )
B liillemenlenal electric |cozzz33335500320
field and transverse EmuehnEag s oC 20
magnetic fields: TMoio EPBESRERRBEC
mode (,r2) SOEaEaeEatasas 806660060660600
PUZ)y - i [ meesssssssescss 000000000000000
00000000000 0O0O0O0OO
0000000000000O00O0
ficlledidspendence on (Fomeremeeereey penencE R
Z Gnd (P, ﬂ”equency IS .================-))Z i
determined by radius electric fields magnetic fields
r=a:
§_ 2405 E. o< Jo(kyr)
21ma 5t o Ji (7

50



fields in a pillbox cavity

Ve use again the vector potential for circular waves and
superimpose 2 waves: one In positive and one In negative z-direction

ATM/TE — 0], (k1) cos(mep) (e_ikzz + eikzz)

\ 7

N

from which we can 2 cos(k,z)

denve all IMfield pyrar _ g o ATM  4nd  ETM = v x (V x ATM)
components using:

E, =L1%e  _ kb (k1) cos(mep)sin(k,z)
E, =--L2l —_jpCmkJ(kr)sin(mep)sin(k,2)
E, = %Az = iZCz—iJm(krr) cos(m) cos(k, z)
H, = 7{%’:‘; = —2C 7 Jp (kpr) sin(me) cos (k. z)
H, = —85% = —2Ck,J’,, (k1) cos(m) cos(k,z)

N




fields in a pillbox cavity

applying the boundary conditions we can define the wave numbers:

a nir

En(z2=0/L), By(z=0/L) =0 =k, = —

Ew(T:a)aEz(T:a),Hr(T:a):O —

a
dispersion
relation

which gives us a discrete set of frequencies:

w? c N 2 J
k’2:—:]€2 k’2 S R —— (_) m

The mode with lowest frequency Is the TMoio mode:

2.405 B, = —i2CHJo(%r) = EoJo(2r)
F=22200 with . . o
2ra H, = 0@y =225

50 ZO



MULTI-CELL CAVITIE

- Often coupled structures are used to

increase the acceleration efficiency. M _;
' 'l : :g '—- :— et '\' I
* Here we assume a TMoio mode in ¥t W ==
each cel. s e e & e
| = S P R B e
: : s <t ) s
* A model of equivalent LC circuits is A% =S -
used to introduce the coupling & S 2 :
between cells, and can be used to \
determine the resulting single cell

fi ies.
e Brillouin diagram
* Here one speaks of O, ..., TT/2, .., TT

modes, which follow a different
dispersion relation than a higher
order pillbox mode (e.g. TMoip).

=l e N

N \/1 + k cos(nm/N)

Wn

Mo

V1+k|

. 3 3 |
dispersion relation 53 0 /2 fv




BASIC CAVITY
PARAMETERS




—nergy gain In a cavity

We drill two holes at the cavity axis to let the beam pass, and

assume E.(r=0,2,t) = E(0, z) cos(wt + )
L/2
AW =q / E(0, z) cos(wt + ) = qVpT cos ¢
- _L)2

with: Vo = / E(0,z2)dz = EgL | and Transit Time Factor T:
_1/2
L/2 L/2
[ E(0,z) cos(wt(z))dz [ E(0,z)sin(wt(z))dz

L2 _L/2

T = /3 — tan ¢ L/

[ E(0,z2)dz [ E(0,z)dz
_L/2 _L)2

\ . J

-~

55 =0 if E(0,z) is symmetric to z=0




Transrt | Ime Factor

Thus we can write the Panofsky equation
AW = qEyT'L cos gp)

The Transit Time Factor gives the ratio between the energy gained
in an RF field and a DC field and is therefore < |. It takes into
account that the electric field changes its phase during the
passage of the beam.

[T we assume that the velocity change is small, we can say that

, 7% 2T
Wi B — = —
U L/2
[ E(0,z)cos (257&2) dz
which simplifies the 7 —L/?
- illime Factor to: L/2
& [ E(0,2)dz

_L/2




Shunt impedance

2
s = ‘% shunt impedance
2
— (V;’DT) effective shunt impedance
d
2
— % = Pf? 7 shunt impedance per unit length
R

eff. shunt impedance per unit length

The shunt impedance gives a measure of how much voltage Vg
one can get with a given power Pq4, which Is dissipated in the
cavity walls.

Above we have used the linac definition of the shunt impedance, but
sometimes also the

circuit definition is used (more on that later).
c VO

St 2Pd57




3db bandwidth

amplitude

D @

|| frequiency
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Q and (R/Q)

The Qualrty factor Q describes the bandwidth of a resonator and

s defined as the ratio of reactive power (stored energy) to real
power lost in the cavity walls:

W wW
Q—A—w—?dJ

Together with the shunt impedance we can define another figure
of merit, which Is used to maximize the energy gain in a given
length for a certain power loss.

R\  (WT)?

Q) wW J
This quantity Is independent from the surface losses and qualifies
only the gseometry of the cavity!

59




Flling time of a cavity

The dissipated power In the cavity walls must be equal to the rate
of change of the stored energy:

dW CUQW
Pd s o
dt T QQ
woW
&y

As a solution we find an exponential decay for the energy:

2¢ 2
W(t) =Wpe = with 7= 260

Wo
For a loaded cavity (e.g. equipped with a power coupler) the filling
time constant changes to: - 2Q
(Qi will be derived later) K

(Comment: one can also define tau as 7 = %),then W(t) x e
60 0
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BASIC
CAVITY
PARAMETERS
OF A
°[LLBOX

or a cookie jar, or a muffin tin...

6



Transit Time Factor (pillbox cavity)

In a pillbox cavity (TMoio mode) the accelerating field has no
dependence on z, which simplifies our expression for | to:

L/2

P
_][/2 E(0,2) COS(BA)CZZ B %)
1= L/2 i L
[ E(0,z)dz g
_L/2

Let us assume relativistic particles (B=1) and a cavity length of
L=N/2 (which can be cascaded to TT-mode multi-cell cavities):

T:z:QMJ

T
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energy & losses (pillbox)

Using again the power-loss method we can calculate the quality
factor of the pillbox cavity:

1 joir
W:WeerWmag:ZWel:Z/ZE-D*dV E, —EoJ()( = )

it —

a
2
a 27 L/2
Jo1T 1
// / 1BEfE ( 3 )rdrdgpdz = §EO€07TLCL J7 (301)'
U 5
L/2
58 * 58 *
e Sl Pz Ak — S S il
2K N~ K N~
=2 éﬂg(r:a,z) 0 1 H2(frz 0)

S

EQT‘-Rsur a . ]
= 0! J12(301)(G+Lj H, = o (220

o)



Qo (pillbox)

. T L 1 L
quality factor @, = RN 2o L -

B Wb hra 58L+a,JO<\/(;

* [he quality factor is a function of the material constants (el.
conductance, permeabllity), the frequency, and the geometry
of the cavity.

* Since the material is usually fixed (Cu), one can optimize the
quality factor by optimizing the geometry of the cavity.

* Higher frequencies yield higher quality factors.
2
0y = 4 ——
WK
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accelerating voltage (pillbox)

Sin(g—i)
accelerating voltage Vace = Vol = EoLT = EglL———
B

* The accelerating voltage Is a strong function of the transit time factor.

* [t therefore depends on the gap length (L), and the speed of the
particle (B).

* Especially in multi-cell
cavities, which are used over
a wide velocity range (e.g.
SC multi-cell cavities for
protons), this effect must be
taken into account carefully.

* Also HOMSs depend on the
depend on the particle 107 7044 MHz

speed! ] T PR R T DO
050 055 060 0.65 070 075 0.80

B

monop le modes -
' ' 5- ceII cawty ([3

] Illlm IIIIIII| ] IIIIIII| ] IIIIIII| ] IIIIIII| LI




shunt impedance (pillbox)

n [ ZL
effective shunt  , _ (i Zo e (5/\) L?
impedance Py TReurgJi(Jo1) y  ala+ L)

* Depends on material parameters, the transit time factor and the geometry.
* This Is why most normal conducting cavities have noses.

* Noses increase T and focus the electric field between them.

* Why do SC cavities not have noses!

D

DTL

il

[
&
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frequency, (R/Q) in pillboxes

2.405
frequency J = 27mc
E 2c sin (B_L)
(R/Q) Q w7TJ2 (Jo1) g—L a?

*|n all TM mode cavities, the frequency Is strongly influenced by
the cavity diameter.

* (R/Q) does not depend on any material parameters, but Is

influenced by the transit time factor and the geometry and Is
inversely proportional to the frequency.
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characteristic quantities

cavity 7 — 11 T O
impedance o b e e

P wC + T = e
at resonance (W=Wo), the cavity VoT

impedance becomes real and we can
write:

>

R R

1 L &

e — CUQL — —C = E o,
W

i LW

and the power lost in the resonatoris: * 4 — Re
. 1 1 (VoT')?
the stored energy can be written as: W = —C(VyT)? = = JoT)
2 2w

so that we can calculate W o e
the quality factor: Qo = =L wOin" = T
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cavity transformed into a lumped circurt

! S NGNWERR T
ol QMOC(VOT) F WoC 0 Y e <Q> ) (Q)
Lumped circuit Field description

1

R g4t
2

‘ 0 (4)

/0



3 quantities to define a resonator

Instead of R, L, C, we can also use the derived quantities to
define a cavity resonator:

Field description

1 B 2.405¢

wWo — \/Tic wo — a (plllbox)
. RE€ - w()W
Qo = CUQCR = wOL QO — Pd
R L 1/(R (E) _ (WT)?
5)-VE1) @5
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Power couplers

7



Getting power Into a cavity

) Linac4 waveguide coupler

tuning port for
impedance
matching

coupling iris

connection
flange to wave-
guide window

: ‘.- . o o
2 coupling iris

stiffening

vacuum
diagnostics

coupler body

ion pump




) Antenna coupler (e.g. SPL version for SC cavities)

“matching” the
cavity impedance to
the wave-guide
impedance

standard wave-guide
flange with a wave

impedance of 50 Q

cylindric ceramic
to separate cavity
vacuum from air in
wave-guides

inner coax line penetrates cavity



Power coupler in the lumped circuit model

I : : e

gen : S0

; > » EECEEEERELEL O — :

E Ly Zy E E R | € | I
< TEEEEEPPPEPY ©

" matched generator ' wave-guide ' coupler ' cavity

The power coupler not only feeds the cavity with power but it also
transforms the impedance of the cavity into the impedance of the
attached wave-guide.

For the sake of simplicity we assume that the generator was
matched to the same impedance as the wave-guide.
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Power coupler in the lumped circuit model

cavity impedance: voltage & current transformation:
e 1 V()T — anen V T
ZC—,C+ P e }:»ZCOTrﬂzg
£ deadly g =
cavity + coupler impedance: i’c) e
1 : : :
Ze = o P P ,
7:&.)77,20 T e ey : 7 : : R¢ C L :
iwl  RC° e 5 5
stored energy in resonator: Veen VoT e
¢ C i
T = i e A 0
2(VoT')? & A .b\o : :

wave-guide ' coupler ' cavity
/6



Power coupler in the lumped circuit model

power dissipated in the cavity: Do leaking out through

; coupler: - .
VoT)? % V2 this power Is dissipate
P; = (VoT) el P.. = —25  |only after the generator is
2R° 2R° 220  |switched off and the cavity
‘ . fields “leak” out of the
quality factor of the cavity coupler
(unloaded Q): i’c) i‘)
woW i : : :
QO Pd § EO ----------- -CI 1.n E )I :
: i Zog E R° | € S
quality factor of external load : : : '
(external Q): E Veen | : Vol =
L CUOW B 2 : "
Qex = P | n“woZoC ot S

" wave-guide ' coupler | cavity
Vi



power balance for an un-driven cavity (RF off, no beam)

IR S
Ql Qew QO

The coupling between wave-guide and cavity Is qualified by the
coupling parameter:

total power and loaded Q: P, = P; + P.,

5 L Peaz L QO 5 R*
B Pd B Qex E nZZO
Assuming that the cavity Is driven on resonance  w = wo
1
A~ _ e
T 1 " 1
(10, R ety
el R
we get (in this case: no beam) optimum power transfer for
PBQZ‘

=1 :>RC:TL2ZO

=1 =
Faq 78



now we add the beam

The power given to the beam can be treated as an additional loss,
which we add to the dissipated power in the cavity wall.

P = 150 - 15

in analogy to the unloaded case we assume zero reflections (a
matched condition) to define the matched case

ea: QOb Pb Pb
—1+=— =B8=1+="
de Qe Py g Py

and for the quality factors in the matched case we can write:

Qob = Qex = Solld s 0 Z@andQl: Qo G

P,+Py 1+8 B / 1+8 242
1 1

1
7 @




finally a driven SC cavity

In superconducting cavities we can assume that

e
/& i = 0= l4 =8 —
A B 2 E P

and with Pb — IbeamVOTCOS ¢s ,

we can write

Ql ~ Qex ~

Qo Vo
Pbeam/Pd (R/Q)Ibeam COS ¢3
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1 _ 11
Ql Qea: QO
6 _ Pea: _ QO
Pd Qex
0~
‘T 118 matched casei
Pea: QO Pezc QOb Pb
Pd Qe:c 5 Pap Qex g Py
. . woW . . woW
Qea: — Y0 — Pd Qeaz — QOb — Pd T Pb
Qo _ Qo
Q=5 Q=3 + D
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what is
“matching’?
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matching and reflections

* Above we stated that for a "perfectly matched” coupler, there is
no reflected power. Let us have a look at a mismatched case.

* For this purpose we remind ourselves that we are dealing with
electromagnetic waves in wave-guide structures, which can travel
In positive and negative z-direction.

* We use this concept to describe forward and reflected voltage
(and current) waves along a transmission line, which describe the

electric fields along the wave-guide. o
O----- <I—_ ----- 0
1 VOei(kz—wt) L Fvoei(—kz—wt)
o s Vo .
Tt i(kz—wt) i apdl i(—kz—wt) vtV
Zo' 7
O -mmmnn- - Jo)
[' - Reflection coefficient 2o

83 transmission line (wave-guide)



matching and reflections

Let us say the cavity (the load Z'¢) Is connected at z=0
W= W e

the load Z'« can then be expressed as:
V 1+1T
7= - =7
¢ T 01—EJ

and the reflection factor becomes:

I — Ze—Zo _1=P) (the last term is only valid
Ze+Zo 1+ B} without beam)

The cavity is matched when the reflection factor becomes zero:
V=Y

C84




matching a cavity to a wave-guide

* The power coupler transforms the cavity impedance (at resonance)
into the iImpedance of the feeding wave-guides.

* In case of mismatch a certain fraction of the feeding power gets
reflected back to the RF source.

=5Since the cavity impedance depends on the cavity Q, each cavity type
needs a different matching.

=|f the cavity Is resonating off-resonance, we also get reflected power.

=|f we accelerate beam, we need additional power In the cavity, which

changes the loaded Q and the cavity impedance. The coupler
matching is usually done for the loaded case.

=During the start of the RF pulse (before the arrival of the beam),
when the cavity i1s “filled” with RF power; the cavity Is always
mismatched, which means we need to make sure that the reflected
power does not damage the RF source (e.g. with a circulator).



cavity voltage

pulsed operation of a SC cavity

Since Ppeam >> Pg, SC cavities are completely mismatched when
the RF pulse starts, so all RF power is reflected at t=0.

1.8 -

— —
16 s : {  beam duty cycle: covers only the
14| | beam-on time,
=l Vsteady state |
I :
b * RF duty cycle: RF system Is on and
| needs power (modulators, klystrons)
04
02 : : * cryo-duty cycle: cryo-system needs
. , - - : :
T s T to provide cooling (cryo-plant, cryo
: : 5 . modules, RF coupler, RF loads)
< < ;
. beam duty cycle: :
» > .+ RF and cryo-duty cycle have to be
; RFduty cycle : calculated as integrals of voltage over
' € s e

cryogenics duty cycle
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Annex: differential operators in cylindrical coordinates

g oa, da,
8_f \ ( 7“890 & 8z \
2 Oar oa,
VQb = raqcbp N/ A= PR
\ i \ O(ray)  day
0z ror rOp
a(rar) Oa aaz 82¢ a¢ 82¢ 62§b
N 00y N RO 029
r ror 24 roy 4 0z ¢ Or?2 & ror T r20p? i 72
A sicos o with 0 < r < oo dr
=i with 0 < » < 27 dl = ’r’ggp
7z,
L = Z

dV = rdrdpdz
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