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overview I

• Maxwells Equations,

• Reminder to basic vector analysis,

• Ampères Law and Faradays Induction Law, 

• What is displacement current?

• Boundary conditions for magnetic and electric fields.

• Wave equation and its complex notation. 

• Skin depth, energy propagation, and losses. 

• Traveling wave cavity. 
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overview II

• Standing wave cavity: the pill-box.

• Basic cavity parameters (transit time factor, shunt impedance, 
quality factor, (R/Q), filling time).

• A cavity as a lumped circuit. 

• Getting power into a cavity with a power coupler.

• Matching a cavity to a wave-guide. 
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MAXWELLS EQUATIONS

and there was light...

∇×H = J+
dD

dt
(I)

∇×E = −dB

dt
(II)

∇ ·D = ρV (III)

∇ ·B = 0 (IV )
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Maxwells equations: components

E − electric field [V/m]
D = ε0εrE − dielectric displacement [As/m2]
B − magnetic induction, magnetic flux density [T]
H = 1

µ0µr
B − magnetic field strength/field intensity [A/m]

J = κE − electric current density [A/m2]
d
dtD − displacement current [A/m2]

ε = ε0εr µ = µ0µr
5

ε0 = 8.854 · 10−12 F

m
electric field constant

εr relative dielectric constant
µ0 = 4π · 10−7H

m
magnetic field constant

µr relative permeability constant
κ electrical conductivity [S/m]



REMINDER OF VECTOR ANALYSIS 
AND SOME APPLICATIONS TO 

MAXWELLS EQUATIONS
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differential operators in cartesian* coordinates

∇Φ =





∂
∂x

∂
∂y

∂
∂z



Φ =





∂Φ
∂x

∂Φ
∂y

∂Φ
∂z



gradient of a potential

The result is a vector telling 
us how much the potential 
changes in x, y, z direction.

* see annex for cylindrical or spherical coordinates
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differential operators in cartesian coordinates

∇ · a =





∂
∂x

∂
∂y

∂
∂z



 ·





ax

ay

az



 =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

divergence of a 
vector field

The result is a scalar, 
telling us if the vector 
field has a source.
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differential operators in cartesian coordinates

∇× a =





∂
∂x

∂
∂y

∂
∂z



×





ax

ay

az



 = det





ux uy uz

∂
∂x

∂
∂y

∂
∂z

ax ay az



 =





∂az
∂y − ∂ay

∂z

∂ax
∂z − ∂az

∂x

∂ay

∂x − ∂ax
∂y





curl of a vector

Are there curls/eddies around the x, y, z axes? (Imagine a ball 
fixed around the x, y, z axis. If it starts rotating, then               ) 

Laplace operator

∆Φ = ∇ · (∇Φ) =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2

E.g: electrostatic potentials are defined everywhere in space, if 
they fulfill ΔΦ=0, and have the correct values at the boundaries.  

∇× a �= 0
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cross products

a

b

axb

or the so-called “right hand rule”
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Gauss’ theorem

�

V

∇ · a� �� �
“sources”

dV =

�

S

a · dS

• The vector flux through a closed surface equals the flux sources (e.g. charges), 
which are enclosed in the volume.

• If there are no sources, the amount of flux entering and leaving a volume must 
be equal.

�

V

∇ ·BdV =

�

S

B · dS = 0

•Electric field lines originate from el. charges.

•Since there are no “magnetic charges”, 
magnetic field lines are always closed.
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�

V

∇ ·EdV =

�

S

E · dS =
Q

ε



Stokes’ theorem

H

I

• Tells us that the area integral over the curls of a vector field can be calculated by 
a line integral along its closed border, or in other words, that,

• the field lines of a vector field with non-zero curls must be closed contours. 

Applied to Maxwells equations:

and in the electrostatic case                we get Ampère’s Law
�

C

H · dl = Iwith a one-line derivation!

�
dD

dt

�
= 0

�

A

(∇× a) · dA =

�

C

a · dl

�

A

(∇×H) · dA =

�

C

H · dl =
�

A

�
J+

dD

dt

�
· dA
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Stokes’ theorem II
Applied once more to Maxwells equations:

we get Faradays induction law 
(again in a one-line derivation): Vi = −dψm

dt

x
x
x
x
x
x
x

x
x
x
x
x
x
x

x
x
x
x
x
x
x

x
x
x
x
x
x
x

x
x
x
x
x
x
x

x
x
x
x
x
x
x

x
x
x
x
x
x
xVi

The electric field around a closed a closed loop (the induced voltage) 
equals the rate of change of the magnetic flux penetrating that loop. 
(The basis of every electric motor or generator.)

�

A

(∇×E) · dA =

�

c

E · dl

� �� �
Vi

= − d

dt

�

A

B · dA

� �� �
dψm

dt
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what is displacement current (dD/dt)?

we apply the divergence to                                 apply a volume integral 
and make use of Gauss’ theorem:

∇ ·∇×H� �� �
≡ 0

= ∇ · J+∇ · dD
dt� �� �

d

dt
ρv

∇ · J = − d

dt
ρvcontinuity equation

continuity equation: “electric charges cannot be destroyed: if the amount of 
charges in a volume is changing a current needs to flow”

further interpretation: “the sources of the displacement current are time varying 
charges”, or : “curls of the magnetic field are excited either by static currents, or by 
displacement currents (which are a consequence of time-varying charges, which 
is equal to current...)” 

�

V

∇ · JdV =

�

S

J · dS =
�

In = − d

dt

�

V

ρvdV

14

∇×H = J+
dD

dt



example of displacement current (dD/dt)

I

V

S

dD
dt

e.g: charging a capacitor

The current used to charge the capacitor equals the rate of change of the 
charge on a capacitor plate and equals the displacement current between 
the capacitor plates. 
or “In case we don’t have a conductor, we can use the displacement current to 
transport energy instead of using moving charges” or “the current charging the 
capacitor plate equals the displacement current between the plates”
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�

S

J · dS = I = − d

dt

�

V

ρvdV

� �� �
d
dtQC

= − d

dt

�

S

D · dS



To design RF equipment for accelerators 
we need to understand: 

•what are electromagnetic waves and how do they propagate in 
free space,

•how can we guide these wave (e.g. in wave-guides),
•or even trap them in a resonator (an accelerating cavity),
•energy density and energy flux in electromagnetic waves, 
•standing waves, 
•boundary conditions, and losses on electric boundaries.
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Boundary conditions (II to a surface)

In case material 2 is an ideal conductor:

Stokes’ theorem

∇×H = J+
dD

dt
(I)

∇×E = −dB

dt
(II)

H�1 = i
�

E�1 = 0

⇒
�

C

H · dl =
�

A

J · dA

� �� �
=i�∆l

+
d

dt

�

A

D · dA

� �� �
→0 for A→0

⇒ H�1 −H�2 = i
�

⇒
�

C

E · dl = − d

dt

�

A

B · dA

� �� �
→0 for A→0

⇒ E�1 = E�2
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!l2
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H‖2, E‖2

d→ 0

!S→ 0
material 1

material 2



Boundary conditions (⊥ to a surface)

∇ ·D = ρV (III)

∇ ·B = 0 (IV )

Gauss’ theorem ⇒
�

S

B · dS = 0 ⇒ B⊥1 = B⊥2

⇒
�

S

D · dS =

�

V

qV dV ⇒ D⊥1 −D⊥2 = qS

In case material 2 is an ideal conductor: D⊥1 = qS B⊥1 = 0
18
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!S1
D⊥1, B⊥1

D⊥2, B⊥2

h→ 0

!V → 0

material 1

material 2



Wave equation
We consider homogenous media, meaning media in which the 
electromagnetic fields “see” the same material conditions (            ) in all 
directions. In that case we can write Maxwells Equations as:

κ, ε, µ

∇×H = κE+ ε
dE

dt
(I)

∇×E = −µ
dH

dt
(II)

Curl of (II) together with (I), and curl of (I) together with (II) and (III) results in 
the general wave equations in homogenous media: 

∇2
H = µκ

d

dt
H+ µ�

d2

dt2
H

In most cavities and wave-guides we consider electromagnetic field in non-
conducting media (          ) and charge free volumes (                 ):κ = 0 ∇ ·E = 0

∇ ·E =
ρV
ε

(III)

∇ ·H = 0 (IV )

∇2E−∇ (∇ ·E) = µκ
d

dt
E+ µ�

d2

dt2
E

∇2E = µ�
d2

dt2
E ∇2

H = µ�
d2

dt2
H
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Complex notation for time-harmonic fields

In Radio Frequency we are usually dealing with sine-waves, which are sometimes 
modulated in phase or in amplitude. This means we will concentrate on time-harmonic 
solutions of Maxwells Equations. For this purpose we introduce the time-harmonic 
notation, which can be used for all linear processes. (Electric and magnetic fields can be 
linearly superimposed.)

Let us assume a time-harmonic electric field with amplitude E0 and phase φ:

this corresponds to the Real part of:

by defining a complex amplitude (or phasor):

we can write: 

from now on we will only use complex amplitudes and write them without tilde:

E(t) = �
�
Ẽeiωt

�

20

E(t) = E0 cos (ωt+ ϕ)

E(t) = �
�
E0e

iϕeiωt
�
= � {cos (ωt+ ϕ) + i sin (ωt+ ϕ)}

Ẽ = E0e
iϕ

E0 cos (ωt+ ϕ)−→Ẽeiωt−→E



why do we do that?

21

•our expressions become considerably shorter,

•and we no longer have to worry about any time 
derivations,

d

dt
E(t)−→ d

dt
Ẽeiωt = iωẼeiωt

−→ d

dt
E = iωE



Complex notation of Maxwells Equations

The use of phasors yields the following form:

∇ ·E =
ρV
ε

(III)

∇ ·H = 0 (IV )

Consequently the general wave equations become: 

with the wavenumber 

Remark: in conducting media k becomes complex. In non-conducting charge-
free media the wave equations simplify to:

∇2
E−∇ (∇ ·E) = −k2E

∇2
H = −k2H

∇2
E = −k2E

∇2
H = −k2H

with the wave number k2 = ω2µε =
ω2

c2

and c being the speed of light 

∇×H = iωε
�
1− i

κ

ωε

�
E (I)

∇×E = −iωµH (II)

k2 = ω2µε

= ω2µε
�
1− i

κ

ωε

�

ε� − iε��
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plane waves
• homogenous, isotropic, linear medium,

• no space charge distribution, no currents,

• fields vary only in one direction (e.g. z).

The solution of the harmonic wave equation then becomes:

with the propagation constant gamma

and the wave impedance Z

Z =
Ey

Hz
=

�
µ

ε
Z =

�
µ0

ε0
≈ 377Ω

in vacuum

Ex(z) = C1e
−γz + C2e

+γz

Hy(z) =
1

Z

�
C1e

−γz + C2e
+γz

� propagation in positive 
and negative z direction

   - attenuation,     - phase shiftα βγ = α+ iβ = jk = iω
√
µε
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From MIT Open Courseware 24

the velocity with which the maxima travel along x is called phase velocity 
vph (exact definition later)



skin depth

In conducting material RF waves are strongly attenuated, which means that:

then the propagation constant becomes:

γ = α+ iβ = iω

�
−iµκ

ω
= (1 + i)

�
κµω

2

the skin depth is defined as the distance 
after which the wave is attenuated to

1/e ≈ 36.8%

!s

µ0, "0, # != 0µ0, "0, # = 0
δs =

1

α
=

�
2

ωµκ

κ

ωε
� 1 or ε ≈ −iε�� = −i

κ

ω
equivalent to neglecting 
the displacement current!
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skin depth II

If a wave travels along a conducting surface, then we can calculate the 
surface resistance by assuming a constant current density within a material 
layer equivalent to the skin depth.

!s

IS

µ0, "0, # != 0µ0, "0, # = 0

Rsurf =
1

κδs

�
Ω

m

�
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skin depth III

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1  100  10000  1e+06  1e+08  1e+10

sk
in

 d
ep

th
 [m

]

frequency [Hz]

For cavities (usually copper) and wave-guides (usually aluminum) and 
typical frequencies for accelerators (100 MHz - 10 GHz) the skin depth is 
usually in the μm range, which is why we can build cavities out of steel 
and copper plate them with just ~30 um. 

κCu = 55 · 106 1

Ωm

µ0 = 4π10−7 V s

Am

e.g. copper
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Energy density and energy flow
The energy density of electric and magnetic fields is defined as (without 
derivation):

we =
1

2
E ·D

wm =
1

2
H ·B

Integration of the total energy density (magnetic + electric) and a bit of vector 
analysis gives us Poynting’s Law:

we,k =
1

4
E ·D∗

wm,k =
1

4
H ·B∗

reduction of total 
energy in V

Energy leaving V 
per time unit

work on charges 
in V per time unit

for time-harmonic fields in complex notation

− d

dt

�

V

wdV =

�

S

(E×H) · dS+

�

V

(E · J) dV
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Poynting vector
From Poynting’s Law we get the definition of the Poynting vector

S = E×H S =
1

2
E×H

∗

for time-harmonic fields in complex notation

which defines the direction of the energy propagation of an electromagnetic wave. It 
also tells us that the propagation direction of the energy transport is perpendicular 
to the directions of the electric and magnetic field components.

E

H

S
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Solution of the wave equation
To find the electric and magnetic fields in free space, in wave-guides or in 
cavities, one needs to solve the wave equation in the appropriate coordinate 
system (cartesian, cylindric, spherical). 

A common approach to solve the wave equation for wave guides is to 
define a vector potential for TE and TM waves, so that electric and magnetic 
fields can be calculated from: 

In both cases the vector potential fulfills the wave equation,

∇2A = −k2A with k2 = ω2µε

which can then be solved for different coordinate systems for TE and TM waves and 
which has usually just one vector component: A = Azez

30

E
TE = ∇×A

TE and H
TM = ∇×A

TM

H
TE = ∇× (∇×A

TE) and E
TM = ∇× (∇×A

TM )



Nomenclature of modes in cavities/wave guides

TMmnp-mode = Emnp-mode

TEmnp-mode = Hmnp-mode

• number of full-period 
variations of the field 
components in the 
azimuthal-direction

• number of zeros of the 
axial field component 
in radial direction.

• number of half-period 
variations of the field 
components in the 
longitudinal-direction

E-field parallel to axis, Bz =0, 
only transverse magn. (TM) components

B-field parallel to axis, Ez =0, 
only transverse el. (TE) components
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in a circular cavity this means: 



Solution of the wave equation
For circular wave guides we obtain (without derivation):

results in the following field components for TM waves:

Jm are Bessel functions of the first kind and of m’th order

using 

32

ATM/TE
z = CJm(kcr) cos(mϕ)e−ikzz with kz =

�
k2 − k2c

Er = i

ωε
∂Hϕ

∂z = −C
kzkc
ωε J’m(kcr) cos(mϕ)

Eϕ = − i

ωε
∂Hr
∂z = C

mkz
ωεr Jm(kcr) sin(mϕ)

Ez = ik
2
c

ωε Az = C
ik

2
c

ωε Jm(kcr) cos(mϕ)

Hr = 1
r

∂Az
∂ϕ = −C

m

r
Jm(kcr) sin(mϕ)

Hϕ = −∂Az
∂r = −CkcJ’m(kcr) cos(mϕ)






e
−ikzz

H
TM = ∇×A and E

TM = ∇× (∇×A)



Bessel functions of the first kind
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wave propagation in a cylindrical pipe

propagation constant: wave number:

let us consider the simplest accelerating mode (electric field in z-
direction): m=0,  n=1, TM01

using J �
0(r) = −J1(r)

kc is determined by the boundary conditions of the wave-guide

a

34

Er = C
kzkc
ωε J1(kcr)

Ez = −C
ik2

c
ωε J0(kcr)

Hϕ = CkcJ1(kcr)





e
−ikzz

E� = 0 ⇒ Ez(r = a) = 0 ⇒ J0(kca) = 0 ⇒ kca = 2.405



TM01 field configuration

E-field
B-field

λp

TM01 waves propagate for :

and are exponentially damped for :

the phase velocity is: 

from                     we also get the dispersion relation

wave propagation in a cylindrical pipe

and from
we can calculate the cut-off frequency for the 
TM01 mode in a cylindrical conducting pipe

ωc =
2.405c

a

35

k2z =
ω2 − ω2

c

c2
=

ω2

v2ph



• each frequency corresponds to a 
certain phase velocity,

• the phase velocity is always larger 

than c! (at ω=ωc: kz=0 and 
vph=∞),

• synchronism with RF (necessary 
for acceleration) is impossible 
because a particle would have to 
travel at v=vph>c!

• energy (and therefore information) 
travels at the group velocity vgr<c,

group velocity:

phase velocity:

dispersion relation (Brillouin diagram)
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put some obstacles into the wave-guide: e.g: discs

2b

L

2a

h

Only then can we achieve synchronism between the particles and the 
phase velocity of the RF wave.

37

How can we slow down the phase velocity?



Brioullin diagram

damping:

Dispersion relation for disc-loaded circ. wave guides

kz0

!

2"
3L

reflected wave

vph = c

−

2"
L

2"
L−

"
L

"
L

!c

!"

typical operating point
38



synchronism condition:

Example of a 2/3π traveling wave structure
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Traveling wave structures

• Since the particles gain energy the EM-wave is damped along the 
structure (“constant impedance structure”). But by changing the bore 
diameter one can decrease the group velocity from cell to cell and obtain  
a “constant-gradient” structure. Here one can operate in all cells near the 
break-down limit and thus achieve a higher average energy gain.

• Traveling wave structures are often used for very short (us) pulses, and 
can reach high efficiencies, and high accelerating gradients (up to 100 
MeV/m, CLIC). 

• are generally used for electrons at β≈1,

• difficult to use for ions with β<1: i) constant cell length does not allow for 
synchronism, ii) long structures do not allow for sufficient transverse 
focusing, 
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let us see if we can apply all of this to 
calculate the resistive damping in a 

circular wave guide for the TM01 mode
to do this we need:

• Boundary conditions on electric surfaces (or Ampère’s Law);

• The complex notation of EM fields;

• The solution of the harmonic wave equation for the TM01 mode;

• Poynting’s Law;

• A bit of common sense;

• and the Power-Loss Method, which we will learn on the way. 
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attenuation of waves (power loss method)

We assume highly conductive wave guide boundaries, which means that 
we have a small skin depth and that the electric fields will basically be 
orthogonal to the surface. We can therefore assume that the fields in 
the lossless wave guide (infinite conductivity) are basically identical to 
the fields in the lossy wave guide. 
It seems therefore reasonable to calculate the surface currents from the 
ideal fields, and then to apply the surface resistance to calculate the 
losses. 

We will proceed in 3 steps:

1.Definition of the attenuation constant
2.Calculation of the power transported in the wave guide
3.Calculation of the losses in the wave guide surface

42



1. Attenuation constant

We start by defining the power lost per longitudinal distance:

P � = −dP

dz

from E,H ∝ e
−αz ⇒ P ∝ e

−2αz

we get immediately P � = −dP

dz
= 2αP

and thus the definition of the attenuation constant

α =
P �

2P

43



2. Power transport in a wave-guide

a

a�

0

J2
1 (kcr)rdr =

a2

2
J2
1 (kca)

44

P =
1

2

�

A

(E×H
∗) · dA =

1

2

a�

0

2π�

0

ErH
∗
ϕrdrdϕ =

C
2
kzk

2
cπa

2
J
2
1 (kca)

ωε

Er = C
kzkc
ωε J1(kcr)

Ez = −C
ik2

c
ωε J0(kcr)

Hϕ = CkcJ1(kcr)





e
−ikzz



3. Losses on wave-guide surface

Ampère’s Law:
�

c

H · dl = I =

�

c

J · (δsdl)

power density in the wall [W/m3]:

power loss per meter along z [W/m]:

δs � a
45

H! = 0 a"!H!

#s

$ = $Al

$ = 0

pv =
1

2
E · J∗ =

1

2κ
JzJ

∗
z =

∂3P

(∂r)(r∂ϕ)(∂z)

P � =
∂P

∂z
=

a+δs�

a

2π�

0

pvrdrdϕ =
πaC2k2cJ

2
1 (kca)

κδs

⇒ Hϕ(r = a, z) = CkcJ1(kca)e
−ikzz = Jz(z)δs



attenuation per unit length

surface resistance

wave impedance 
(vacuum)

 0

 5e-05

1.0e-04

 1.5e-04

2.0e-04

 2.5e-04

3.0e-04

 3.5e-04

4.0e-04

 0  2e+09  4e+09  6e+09  8e+09  1e+10

da
m

pi
ng

/m

frequency [Hz]

a=0.5 m

a=0.4 m

a=0.3 m

a=0.2 m

e.g. damping in an 
aluminum wave guide 
with 

κAl = 3.66 · 107 S
m

Z0 =

�
µ0

ε0

α =
P �

2P
=

Rsurf

Z0a

�
1−

�
fc
f

�2

Rsurf =
1

κδs
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what we should know by now

• The power of Maxwells Equations,

• Vector analysis: Gauss’ Law, Stokes’ Law

• Ampère’s Law, Faraday’s Law

• Displacement current

• Boundary conditions for electric and magnetic fields

• Wave equation/plane waves and the complex form of time-harmonic fields

• Skin effect

• Poynting’s law

• Solution of the wave equation for circular geometries

• Dispersion relation, group velocity, traveling wave structures

• Power-loss method and damping in wave guides
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The Pillbox cavity

48



The Pillbox cavity

A lumped element resonator transformed into a pillbox cavity

L

C

L

C
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in the simplest case...
...the pillbox cavity is 
just an empty cylinder:

electric fields magnetic fields

r

z

• with longitudinal electric 
field and transverse 
magnetic fields: TM010 
mode (φ,r,z),

• no field dependence on 
z and φ, frequency is 
determined by radius 
r=a:

50

Ez ∝ J0(krr)

Hϕ ∝ J1(krr)
f =

2.405c

2πa



fields in a pillbox cavity
We use again the vector potential for circular waves and 
superimpose 2 waves: one in positive and one in negative z-direction

from which we can 
derive all TM field 
components using: 
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H
TM = ∇×A

TM and E
TM = ∇× (∇×A

TM )

ATM/TE
z = CJm(krr) cos(mϕ)

�
e−ikzz + eikzz

�
� �� �

2 cos(kzz)

Er = i

ωε
∂Hϕ

∂z = i2C kzkr
ωε J’m(krr) cos(mϕ) sin(kzz)

Eϕ = − i

ωε
∂Hr
∂z = −i2Cmkz

ωεr Jm(krr) sin(mϕ) sin(kzz)

Ez = ik
2
r

ωε Az = i2C k
2
r

ωεJm(krr) cos(mϕ) cos(kzz)

Hr = 1
r

∂Az
∂ϕ = −2Cm

r
Jm(krr) sin(mϕ) cos(kzz)

Hϕ = −∂Az
∂r = −2CkrJ’m(krr) cos(mϕ) cos(kzz)



fields in a pillbox cavity
applying the boundary conditions we can define the wave numbers:

which gives us a discrete set of frequencies:

The mode with lowest frequency is the TM010 mode: 

f =
2.405c

2πa
with

dispersion 
relation

52

Ez = −i2C j201
a2ωεJ0(

j01
a r) = E0J0(

j01
a r)

Hϕ = 2C j01
a J1(

j01
a r) =

E0

Z0
J1(

j01
a r)

Er(z = 0/L), Eϕ(z = 0/L) = 0 ⇒ kz =
nπ

L

Eϕ(r = a), Ez(r = a), Hr(r = a) = 0 ⇒ kr =
jm

a

k2 =
ω2

c2
= k2z + k2r ⇒ fnm =

c

2π

�
�nπ
L

�2
+

�
jm
a

�2

r

a

z



• Often coupled structures are used to 
increase the acceleration efficiency.

• Here we assume a TM010 mode in 
each cell.

• A model of equivalent LC circuits is 
used to introduce the coupling 
between cells, and can be used to 
determine the resulting single cell 
frequencies. 

• Here one speaks of 0, ..., π/2, ..., π 
modes, which follow a different 
dispersion relation than a higher 
order pillbox mode (e.g. TM01p).

Brillouin diagram

dispersion relation

MULTI-CELL CAVITIES

0 !!/2

"0√

1− k

"0√

1+ k

ωn =
ω0�

1 + k cos(nπ/N)
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BASIC CAVITY 
PARAMETERS
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Energy gain in a cavity
We drill two holes at the cavity axis to let the beam pass, and 
assume 

with: and Transit Time Factor T: 

T =

L/2�

−L/2

E(0, z) cos(ωt(z))dz

L/2�

−L/2

E(0, z)dz

− tanφ

L/2�

−L/2

E(0, z) sin(ωt(z))dz

L/2�

−L/2

E(0, z)dz

� �� �
=0 if E(0,z) is symmetric to z=0

V0 =

L/2�

−L/2

E(0, z)dz = E0L
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Ez(r = 0, z, t) = E(0, z) cos(ωt+ ϕ)

∆W = q

L/2�

−L/2

E(0, z) cos(ωt+ ϕ) = qV0T cosϕ



Transit Time Factor
Thus we can write the Panofsky equation

The Transit Time Factor gives the ratio between the energy gained 
in an RF field and a DC field and is therefore < 1. It takes into 
account that the electric field changes its phase during the 
passage of the beam. 
If we assume that the velocity change is small, we can say that 

ωt ≈ ω
z

v
=

2πz

βλ

which simplifies the
 Transit Time Factor to:

T =

L/2�

−L/2

E(0, z) cos
�

2πz
βλ

�
dz

L/2�

−L/2

E(0, z)dz
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∆W = qE0TL cosϕ



Shunt impedance

The shunt impedance gives a measure of how much voltage V0 
one can get with a given power Pd, which is dissipated in the 
cavity walls. 
Above we have used the linac definition of the shunt impedance, but 
sometimes also the
 circuit definition is used (more on that later). 

Rs = V 2
0

Pd
shunt impedance

R = (V0T )2

Pd
effective shunt impedance

Z = Rs
L = E2

0
Pd/L

shunt impedance per unit length

ZT 2 = R
L = (E0T )2

Pd/L
eff. shunt impedance per unit length

Rc
S =

V 2
0

2Pd 57



3db bandwidth
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frequency

amplitude

Δω

3db



Q and (R/Q)
The Quality factor Q describes the bandwidth of a resonator and 
is defined as the ratio of reactive power (stored energy) to real 
power lost in the cavity walls:

Together with the shunt impedance we can define another figure 
of merit, which is used to maximize the energy gain in a given 
length for a certain power loss. 

�
R

Q

�
=

(V0T )2

ωW

This quantity is independent from the surface losses and qualifies 
only the geometry of the cavity! 
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Q =
ω

∆ω
=

ωW

Pd



Filling time of a cavity
The dissipated power in the cavity walls must be equal to the rate 
of change of the stored energy:

Pd = −dW

dt
=

ω0W

Q0

Q0 =
ω0W

Pc

As a solution we find an exponential decay for the energy: 

W (t) = W0e
− 2t

τ with τ =
2Q0

ω0

(Comment: one can also define tau as            ), thenτ =
Q0

ω0

For a loaded cavity (e.g. equipped with a power coupler) the filling 
time constant changes to:

τl =
2Ql

ω0

W (t) ∝ e−
t
τ

(Ql will be derived later)
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BASIC 
CAVITY 

PARAMETERS 
OF A  

PILLBOX
or a cookie jar, or a muffin tin...
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Transit Time Factor (pillbox cavity)

In a pillbox cavity (TM010 mode) the accelerating field has no 
dependence on z, which simplifies our expression for T to:

Let us assume relativistic particles (β≈1) and a cavity length of 
L=λ/2 (which can be cascaded to π-mode multi-cell cavities):

T =
2

π
= 0.64

62

T =

L/2�

−L/2

E(0, z) cos
�

2πz
βλ

�
dz

L/2�

−L/2

E(0, z)dz

=
sin

�
πL
βλ

�

πL
βλ



energy & losses (pillbox)
Using again the power-loss method we can calculate the quality 
factor of the pillbox cavity: 

Ez = E0J0

�
j01r

a

�
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W = Wel +Wmag = 2Wel = 2

�

V

1

4
E ·D∗dV

=
ε0
2

a�

0

2π�

0

L/2�

−L/2

E2
0J

2
0

�
j01r

a

�
rdrdϕdz =

1

2
E2

0ε0πLa
2J2

1 (j01)

Hϕ =
E0

Z0
J1

�
j01r

a

�

Pd =
δs
2κ

L/2�

−L/2

JzJ
∗
z� �� �

1
δ2s

H2
ϕ(r=a,z)

2πadz +
δs
κ

a�

0

JrJ
∗
r� �� �

1
δ2s

H2
ϕ(r,z=0)

2πrdr

=
E2

0πRsurfa

Z2
0

J2
1 (j01)(a+ L)



Q0 (pillbox)

quality factor 

•The quality factor is a function of the material constants (el. 
conductance, permeability), the frequency, and the geometry 
of the cavity. 

•Since the material is usually fixed (Cu), one can optimize the 
quality factor by optimizing the geometry of the cavity.

•Higher frequencies yield higher quality factors.

Q0 =
ωW

Pd
=

Z2
0ω

2Rsurf

La

L+ a
=

1

δs

La

L+ a
∝

√
ω
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δs =

�
2

ωµκ



accelerating voltage (pillbox)

accelerating voltage 

• The accelerating voltage is a strong function of the transit time factor.
• It therefore depends on the gap length (L), and the speed of the 

particle (β). 
• Especially in multi-cell 
   cavities, which are used over 
   a wide velocity range (e.g. 
   SC multi-cell cavities for  
   protons), this effect must be 
   taken into account carefully. 
•Also HOMs depend on the 
   depend on the particle 
   speed! 

0.50 0.55 0.60 0.65 0.70 0.75 0.80
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monopole modes
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Vacc = V0T = E0LT = E0L
sin(πLβλ )

πL
βλ

5-cell cavity (βg=0.65), 
704.4 MHz



shunt impedance (pillbox)

effective shunt 
impedance

•Depends on material parameters, the transit time factor and the geometry.
•This is why most normal conducting cavities have noses. 
•Noses increase T and focus the electric field between them.
•Why do SC cavities not have noses? 

DTL CCDTL CCL SC Elliptical

R =
(V0T )2

Pd
=

Z0

πRsurfJ2
1 (j01)

sin
�

πL
βλ

�

πL
βλ

L2

a(a+ L)

66



frequency, (R/Q) in pillboxes

f =
2.405c

2πa
frequency

(R/Q) 

•In all TM mode cavities, the frequency is strongly influenced by 
the cavity diameter. 

•(R/Q) does not depend on any material parameters, but is 
influenced by the transit time factor and the geometry and is 
inversely proportional to the frequency.

�
R

Q

�
=

2c

ωπJ2
1 (j01)

sin
�

πL
βλ

�

πL
βλ

L

a2
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A CAVITY AS 
A LUMPED 
CIRCUIT

L

C

L

C

I

V0T

Rc C L
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characteristic quantities
cavity 
impedance

at resonance (ω=ω0), the cavity 
impedance becomes real and we can 
write:

X = ω0L =
1

ω0C
=

�
L

C

Zc =
1

iωC +
1

iωL
+

1

Rc

and the power lost in the resonator is:

the stored energy can be written as:

so that we can calculate 
the quality factor : Q0 = ω0

W

Pd
= ω0CRc =

Rc

ω0L

Pd =
1

2

(V0T )2

Rc

W =
1

2
C(V0T )

2 =
1

2

(V0T )2

ω2
0L

I

V0T

Rc C L
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Lumped circuit Field description

cavity transformed into a lumped circuit

ω0W =
1

2
ω0C(V0T )

2 ⇒ 1

ω0C
=

�
L

C
=

(V0T )2

2ω0W
=

�
Rc

Q

�
=

1

2

�
R

Q

�

1

2
RRc

C

2

ω0

�
R
Q

�

L
1

2ω0

�
R

Q

�
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3 quantities to define a resonator

Lumped circuit Field description

Q0 =
ω0W

Pd

ω0 =
2.405c

a
(pillbox)ω0 =

1√
LC

�
R

Q

�
=

(V0T )2

ω0W

Instead of R, L, C, we can also use the derived quantities to 
define a cavity resonator:

Q0 = ω0CRc =
Rc

ω0L
�
Rc

Q

�
=

�
L

C
=

1

2

�
R

Q

�
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Power couplers
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Getting power into a cavity
i) Linac4 waveguide coupler
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ion pump
stiffening

coupler body
coupling iris

connection 
flange to wave-
guide window

vacuum 
diagnostics

coupling iris

tuning port for 
impedance 
matching 73



ii) Antenna coupler (e.g. SPL version for SC cavities)

inner coax line penetrates cavity

cylindric ceramic 
to separate cavity 
vacuum from air in 

wave-guides 
standard wave-guide 
flange with a wave 
impedance of 50 Ω 

 “matching” the 
cavity impedance to 

the wave-guide 
impedance
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Power coupler in the lumped circuit model

The power coupler not only feeds the cavity with power but it also 
transforms the impedance of the cavity into the impedance of the 
attached wave-guide. 
For the sake of simplicity we assume that the generator was 
matched to the same impedance as the wave-guide.

I

V0T

1:n

Vgen

Igen

RF

Rc C LZ0 Z0

matched generator wave-guide coupler cavity
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Power coupler in the lumped circuit model

cavity impedance:

cavity + coupler impedance:

voltage & current transformation:

stored energy in resonator:

V0T = nVgen

I =
Igen
n

�
⇒ Zc =

V0T

I
= n2Z �

c

W =
C

2(V0T )2
= n2 C

2V 2
gen

Zc =
1

iωC +
1

iωL
+

1

Rc

Z �
c =

1

iωn2C +
n2

iωL
+

n2

Rc

I

V0T

1:n

Vgen

Rc C LZ0

wave-guide coupler

Z′

c

cavity

Zc
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Power coupler in the lumped circuit model

power dissipated in the cavity:

Pex =
V 2
gen

2Z0

power leaking out through 
coupler:

this power is dissipated 
only after the generator is 
switched off and the cavity 
fields “leak” out of the 
couplerquality factor of the cavity 

(unloaded Q):

quality factor of external load
(external Q):

Qex =
ω0W

Pex
= n2ω0Z0C

I

V0T

1:n

Vgen

Rc C LZ0

wave-guide coupler

Z′

c

cavity

Zc

Q0 =
ω0W

Pd
= ω0R

cC

Pd =
(V0T )2

2Rc
= n2V

2
gen

2Rc
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power balance for an un-driven cavity (RF off, no beam)

total power and loaded Q: 

The coupling between wave-guide and cavity is qualified by the 
coupling parameter:

Assuming that the cavity is driven on resonance ω = ω0

we get (in this case: no beam) optimum power transfer for  

β =
Pex

Pd
=

Q0

Qex
=

Rc

n2Z0

Zc =
1

iωC +
1

iωL
+

1

Rc

= Rc

Ptot = Pd + Pex ⇒ 1

Ql
=

1

Qex
+

1

Q0

β = 1 ⇒ Pex

Pd
= 1 ⇒ Rc = n2Z0
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now we add the beam
The power given to the beam can be treated as an additional loss, 
which we add to the dissipated power in the cavity wall.

Pdb = Pd + Pb

in analogy to the unloaded case we assume zero reflections (a 
matched condition) to define the matched case

and for the quality factors in the matched case we can write: 

Q0b = Qex =
ω0W

Pb + Pd
=

Q0

1 + Pb
Pd

=
Q0

β
and Ql =

Q0

1 + β
=

Q0

2 + Pb
Pd

Pex

Pdb
= 1 =

Q0b

Qex
⇒ Pex

Pd
= 1 +

Pb

Pd
⇒ β = 1 +

Pb

Pd

1

Ql
=

1

Qex
+

1

Q079



finally a driven SC cavity 

In superconducting cavities we can assume that

and with

we can write

Pb � Pd ⇒ β = 1 +
Pb

Pd
≈ Pb

Pd

Pb = IbeamV0T cosφs

Ql ≈ Qex ≈ Q0

Pbeam/Pd
=

V0T

(R/Q)Ibeam cosφs
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undriven cavity driven cavity with beam

1

Ql
=

1

Qex
+

1

Q0

β =
Pex

Pd
=

Q0

Qex

Pex

Pd
=

Q0

Qex
= 1 ⇒ β = 1

Pex

Pdb
=

Q0b

Qex
= 1 ⇒ β = 1 +

Pb

Pd

Qex = Q0 =
ω0W

Pd
Qex = Q0b =

ω0W

Pd + Pb

Ql =
Q0

2
Ql =

Q0

2 + Pb
Pd

Ql =
Q0

1 + β matched case
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what is 
“matching”?
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matching and reflections
•Above we stated that for a “perfectly matched” coupler, there is 

no reflected power. Let us have a look at a mismatched case. 
•For this purpose we remind ourselves that we are dealing with 

electromagnetic waves in wave-guide structures, which can travel 
in positive and negative z-direction. 

•We use this concept to describe forward and reflected voltage 
(and current) waves along a transmission line, which describe the 
electric fields along the wave-guide. 

V = V0e
i(kz−ωt) + ΓV0e

i(−kz−ωt)

I =
V0

Z0
ei(kz−ωt) − Γ

V0

Z0
ei(−kz−ωt)

Z0

V+, V−

I+

I−

Γ - Reflection coefficient
transmission line (wave-guide)83



matching and reflections

Let us say the cavity (the load Z’c) is connected at z=0

the load Z’c can then be expressed as: 

and the reflection factor becomes:

(the last term is only valid 
without beam)

The cavity is matched when the reflection factor becomes zero: 
Z’c=Z0

Z �
c =

V

I
= Z0

1 + Γ

1− Γ

Γ =
Z �
c − Z0

Z �
c + Z0

=
1− β

1 + β

84

V = V0e
−iωt(1 + Γ)

I =
V0

Z0
e−iωt(1− Γ)



matching a cavity to a wave-guide
• The power coupler transforms the cavity impedance (at resonance) 

into the impedance of the feeding wave-guides.

• In case of mismatch a certain fraction of the feeding power gets 
reflected back to the RF source.

➡Since the cavity impedance depends on the cavity Q, each cavity type 
needs a different matching. 

➡If the cavity is resonating off-resonance, we also get reflected power.

➡If we accelerate beam, we need additional power in the cavity, which 
changes the loaded Q and the cavity impedance. The coupler 
matching is usually done for the loaded case. 

➡During the start of the RF pulse (before the arrival of the beam), 
when the cavity is “filled” with RF power, the cavity is always 
mismatched, which means we need to make sure that the reflected 
power does not damage the RF source (e.g. with a circulator). 85



pulsed operation of a SC cavity

• beam duty cycle: covers only the 
beam-on time,

• RF duty cycle: RF system is on and 
needs power (modulators, klystrons)

• cryo-duty cycle: cryo-system needs 
to provide cooling (cryo-plant, cryo-
modules, RF coupler, RF loads)

• RF and cryo-duty cycle have to be 
calculated as integrals of voltage over 
time. 
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Since Pbeam >> Pd, SC cavities are completely mismatched when 
the RF pulse starts, so all RF power is reflected at t=0.
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Thank you
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Annex: differential operators in cylindrical coordinates
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∇φ =





∂φ
∂r

∂φ
r∂ϕ

∂φ
∂z





∇ · a =
∂(rar)

r∂r
+

∂aϕ
r∂ϕ

+
∂az
∂z

∇× a =





∂az
r∂ϕ − ∂aϕ

∂z

∂ar
∂z − ∂az

∂r

∂(raϕ)
r∂r − ∂ar

r∂ϕ





∆φ =
∂2φ

∂r2
+

∂φ

r∂r
+

∂2φ

r2∂φ2
+

∂2φ

∂z2

x = r cosϕ with 0 ≤ r ≤ ∞
y = r sinϕ with 0 ≤ ϕ ≤ 2π

z = z

dl =




dr
rdϕ
dz





dV = rdrdϕdz


