Vacuum I

G. Franchetti CAS - Bilbao

Index

Introduction to Vacuum

Vacuum and the Beam

Flow Regimes

Creating Vacuum

Vacuum in accelerators

All beam dynamics has the purpose of controlling a charged beam particle

$$\frac{d}{dt}m\gamma\vec{v} = e\vec{E} + e\vec{v}\times\vec{B}$$

Structure of magnets and RF structure have the purpose of creating a proper guiding (E,B) structure

However in an accelerator are present a jungle of unwanted particles which creates a damaging background for beam operation

Characteristic of Vacuum

Typical numbers

	Particles m ⁻³	
Atmosphere	2.5 x 10 ²⁵	
Vacuum Cleaner	2 x 10 ²⁵	
Freeze dryer	10 ²²	
Light bulb	10 ²⁰	
Thermos flask	10 ¹⁹	
TV Tube	1014	
Low earth orbit (300km)	1014	
H ₂ in LHC	~10 ¹⁴	
SRS/Diamond	1013	
Surface of Moon	1011	
Interstellar space	10 ⁵	

R.J. Reid

Particle – Wall collision

Pressure

other units: $1 \text{ Pa} = 10^{-2} \text{ mbar} = 7.5 \times 10^{-3} \text{ Torr} = 9.87 \times 10^{-6} \text{ atm}$

Particle – Particle interaction

In a gas large number of collisions

Most likely process P-P collision

For elastic collisions:1) Energy conservation2) Momentum conservation

Temperature
$$\frac{1}{2}m\langle v^2 \rangle = \frac{3}{2}k_BT$$

 $k_B = 1.38 \times 10^{-23} ~ [JK^{-1}]$

Typical numbers

Air at T= 20° C 20%
$$O_2 \rightarrow M_0 = 8x2 \text{ g-mole} = 8x2/N_A = 2.65 \text{ x } 10^{-23} \text{ g}$$

80% $N_2 \rightarrow M_N = 7x2 \text{ g-mole} = 7x2/N_A = 2.32 \text{ x } 10^{-23} \text{ g}$

Therefore
$$< v_{N_2}^2 >= \frac{3K_BT}{M_{N_2}} = \frac{3 \times 1.38 \times 10^{-23} \times 293}{2 \times 2.32 \times 10^{-26}}$$

$$\sqrt{< v_{N_2}^2 > = 511 \,\mathrm{m/s}}$$
 Molecules run fast !

But the average velocity is $v_a = \langle v \rangle = 0.92 \sqrt{\langle v^2 \rangle} = 470 \, \mathrm{m/s}$

Velocity Distribution

When a gas is at equilibrium the distribution of the velocity follows the Maxwell-Boltzmann distribution

Equation of state

An ideal gas in a container of volume V satisfies the equation of state

For a gas in equilibrium

$$PV = nR_0T$$

SI units

- $P \rightarrow Pressure [Pa]$
- $V \rightarrow Volume in [m^3]$
- $n \rightarrow moles [1]$
- $T \rightarrow$ absolute temperature [K]

 $R_0 = 8.314$ [Nm/(mole K)] universal constant of gas

 $k_{\rm B} = 1.38 \times 10^{-23} [\rm JK^{-1}]$ Boltzmann constant

 $N_A = 6.022 \times 10^{23}$ [1] Avogadro's Number

 $R_0 = k_B N_A$

Mean free path

free path = path of a particle between two collisions

Mean free path

Mean free path

How many particles collide between l and $l + \Delta l$?

 $dN = N(l)\sigma \tilde{n}dl$

Therefore dN particles travelled a distance I and then collided

Probability that a particle travel I and then collide is

$$dP = \frac{N(l)}{N_0} \sigma \tilde{n} \, dl$$

In a gas

 $\overline{/2\sigma\tilde{n}}$

Mean free path
$$\lambda = \int_0^\infty l dP(l) = \frac{1}{\sigma \tilde{n}}$$
 $\lambda =$

30/5/2011

Example

Air at T = 20° C and P = 1 atm

From equation of state

 $\tilde{n} = \frac{P}{k_B T} = \frac{10^5}{1.38 \times 10^{-23} 293} = 2.47 \times 10^{25} \text{ atom/m}^3$

Diameter of molecule of air $d = 3.74 \times 10^{-10} \,\mathrm{m}$ \rightarrow $\sigma = \pi d^2 = 4.39 \times 10^{-19} \,\mathrm{m}^2$

Mean free path
$$\lambda = 6.51 \times 10^{-8} \,\mathrm{m}$$

Pressure	Р	n	ρ	v	l
	Pa	m ⁻³	kg m ⁻³	m ⁻² s ⁻¹	m
atm	10 ⁵	2.5 10 ²⁵	1.16	2.9 10 ²⁷	9 10 ⁻⁸
primary	1	2.5 1020	1.16 10-5	2.9 1022	9 10 ⁻³
vacuum	10-1	2.5 10 ¹⁹	1.16 10-6	2.9 10 ²¹	9 10 ⁻²
high	10-4	2.5 1016	1.16 10-9	2.9 1018	9 10 ¹
vacuum	10-7	2.5 10 ¹³	1.16 10 ⁻¹²	2.9 10 ¹⁵	9 10 ⁴
uhv	10-10	2.5 1010	1.16 10-15	2.9 10 ¹²	9 10 ⁷
xhv	<10-11				

Vacuum and Beam

Beam lifetime

After a beam particle collides with a gas atom, it gets ionized and lost because of the wrong charge state with respect to the machine's optics

Beam of particles going through a vacuum gas survives according to

$$N(l + \Delta l) = N(l) - \frac{\sigma \Delta l A \tilde{n}}{A} N(l) \qquad \Longrightarrow \qquad \frac{dN}{dl} = -\sigma \tilde{n} N(l)$$
As beam particle have a velocity v₀, then
$$\frac{dN}{dt} = -\sigma \tilde{n} v_0 N(t)$$
From the equation of state
$$\tilde{n} = \frac{P}{k_B T} \qquad \Longrightarrow \qquad \frac{dN}{dt} = -\frac{\sigma P v_0}{k_B T} N(t)$$
Beam lifetime
$$\tau = \frac{k_B T}{\sigma P v_0}$$
Beam lifetime sets the vacuum constrain

Example

It is important to know the cross-section of the interaction beam-vacuum

Of what is formed the vacuum ? Does it depends on the energy ? $Example LHC H_2 \text{ at 7 TeV at T} = 5^0 \text{ K}$ $\sigma = 9.5 \times 10^{-30} \text{ m}^2$ for $\tau = 100 \text{ hours}$ $P = 6.7 \times 10^{-8} \text{ Pa}$

Nuclear scattering cross section at 7 TeV for different gases and the corresponding densities and equivalent pressures for a 100 hours beam lifetime

GAS	Nuclear scattering	Gas density (m ⁻³)	Pressure (Pa) at 5 K,	
GAS	cross section(cm ²)	for a 100 hour lifetime	for a 100 hour lifetime	
H_2	9.5 10 ⁻²⁶	9.810 ¹⁴	6.710 ⁻⁸	
He	1.26 10 ⁻²⁵	7.410 ¹⁴	5.110-8	
CH_4	5.66 10 ⁻²⁵	1.610 ¹⁴	1.110-8	
H_2O	5.65 10 ⁻²⁵	1.610 ¹⁴	1.110-8	
CO	8.54 10 ⁻²⁵	1.110 ¹⁴	7.510 ⁻⁹	LUC Design Denert
CO ₂	1.32 10 ⁻²⁴	7 10 ¹³	4.910 ⁻⁹	LHC Design Report

Electron cloud

Synchrotron radiation $Y(E,\phi)$ photoelectric yield $\delta(E,\phi)$ second. electron Y Second. electron energy residual gas ionization Photon reflectivity Beam pipe shape Bunch intensity and spacing External fields (magnetic, electric, space charge)

Impingement rate

For a Maxwell-Boltzmann distribution

$$J = \frac{1}{4}\tilde{n}v_a$$

 $J \rightarrow$ units: [#/(s m²)]

and

$$v_a = \sqrt{\frac{8}{\pi} \frac{k_B T}{m}}$$

More on collision

Knudsen Number

The Throughput

P, V, N, T

Number of particles $N = \frac{PV}{k_BT}$

The quantity Q = PVis proportional to the number of particles

G. Franchetti

Conductance

In absence of adsorption and desorption processes the throughput does not change

Composition (Series)

Conductance of 1+2 $C_{1+2} = C_1 + C_2$

T = constant

Molecular Flow

Regime dominated by Particle – Wall interaction

 $K_n > 0.5$ P < 1.3 x 10⁻³ mbar D = 0.1 m

Cosine-Law

- 1. A particle after a collision with wall will loose the memory of the initial direction
- 2. After a collision a particle has the same velocity |v|
- 3. The probability that particles emerge in a certain direction follow the cosine law

Consequences

In the molecular regime two fluxes in opposite direction coexist

particle flux = $\alpha(N_1 - N_2)$ N₁ = particle per second through 1 N₂ = particle per second through 2

Conductance of an Aperture

Gas currentVolumetric flowDownstream $I_d = J_d A = \frac{1}{4} \tilde{n}_d v_a A$ $\frac{I_d}{\tilde{n}_d} = \frac{1}{4} v_a A$ Upstream $I_u = J_u A = \frac{1}{4} \tilde{n}_u v_a A$ $\frac{I_u}{\tilde{n}_u} = \frac{1}{4} v_a A$ Throughput1 $\sqrt{1 R_0 T}$

$$\dot{Q} = \dot{Q}_u - \dot{Q}_d = P_u \dot{V}_u - P_d \dot{V}_d = \frac{1}{4} v_a A (P_u - P_d)$$

 $C_a = A\sqrt{\frac{1}{2\pi}\frac{R_0T}{M}}$

Conductance of a long tube

$$C_L = \alpha C_a \qquad \alpha = \frac{4}{3} \frac{d}{L}$$

 $L \rightarrow 0$ make $\alpha \rightarrow \infty$ which is wrong: <u>This result is valid for L long</u> The dependence of 1/L is consistent with the rule of composition of conductance

Continuum flow regime

 $K_n < 0.01$ P > 6.5 x 10⁻² mbar V = 0.1 m

 $K_n < 0.01$ Roughly more than 100 collision among particles before wall collision

Local perturbation of \tilde{n}, P, T propagate through a continuum medium

Collision among particles create the **Viscosity**

Collision with walls cancel the velocity

Viscous/Laminar regime

Reynold Number

$$Re = \frac{\rho v D_h}{\eta}$$

 $\rho = \text{density of gas [Kg/m^3]}$ v = average velocity [m/s] $D_h = \text{hydraulic diameter [m]}$ $D_h = \frac{4A}{B}$ A = cross sectional area B = perimeter

 η = fluid viscosity [Pa-s]

Laminar Regime Re < 2000

Turbulent Regime Re > 3000

M. Lesiuer, Turbulence in Fluids, 4th Edition, Ed. Springer

Reynold Number as function of Throughput

$$Re = 4\frac{\dot{Q}}{B}\frac{M}{R_0T}\frac{1}{\eta}$$

For air (N₂) at T=20C η = 1.75 x 10⁻⁵ Pa-s $Re = \frac{\dot{Q}}{B}k_b$ with $k_b = 2.615 s/(m^2Pa)$

Therefore the transition to a turbulent flow takes place at the throughput of

For a pipe of d = 25 mm $\dot{Q}_T = 600 ext{ mbar l/s}$ At P = 1 atm this threshold corresponds to v = 0.389 m/s

G. Franchetti

Laminar Regime

- 1. Fluid is incompressible: true also for gas when Ma < 0.2
- 2. Fluid is fully developed
- 3. Motion is laminar $\leftarrow \rightarrow$ Re < 2000
- 4. Velocity at Walls is zero

Fully developed flow

Conductance in Laminar Regime

The conductance now depends on the pressure!

Conductance in Turbulent Regime

The throughput becomes a complicated relation (derived from the Darcy-Weisbach formula)

$$\dot{Q} = A\sqrt{\frac{R_0T}{M}}\sqrt{\frac{D_h}{f_DL}}\sqrt{P_u^2 - P_d^2}$$

 $f_D =$ Darcy friction factor, dependent from the Reynold number

Sources of vacuum degradation

Evaporation/Condensation

At equilibrium
$$J_C = J_E$$

 $J_E = P_E N_A \frac{1}{\sqrt{2\pi R_0 T M}}$
 P_E = saturate vapor pressure

Example: water vapor pressure

Outgassing

The outgassing is the passage of gas from the wall of the Vessel or Pipe to the vacuum

 Θ = fraction of sites occupied

$$\frac{d\Theta}{dt} = -\frac{\Theta}{\tau_d}$$

"Throughput" due to outgassing

$$\dot{Q}_G = k_B T \frac{N_s \Theta}{\tau_d}$$

 $N_s = A \times 3 \times 10^{15}$ A = surface in cm²

Mean stay time

$$\tau_d = \tau_0 e^{\frac{E_d}{RT}}$$
 $\tau_0 = 10^{-13} \text{ s}$

E _d [Kcal/mole]	Cases	τ _d [s]
0.1	Helium	1.18 x 10 ⁻¹³
1.5	H ₂ physisorption	1.3 x 10- ¹²
3-4	Ar,CO,N ₂ ,CO ₂ physisorption	1.6 x 10 ⁻¹¹
10-15	Weak chemisorption	2.6 x 10⁻ ⁶
20	H ₂ chemisorption	66
25		3.3 x 10 ⁵ (~half week)
30	CO/Ni chemisorption	1.6 x 10 ⁹ (~50 years)
40		4.3 x 10 ¹⁶ (~half age of earth)
150	O.W chemisorption	1.35 x 10 ⁹⁸ (larger than the age of universe)

P. Chiggiato, CAS 2007

Leaks

Pumps and Conductance

As the throughput is preserved

 $\frac{1}{S} = \frac{1}{C} + \frac{1}{S_0}$

Example: if the pipe is long l=100d

$$S_{eff} = rac{0.922}{1+3l/(4d)} = 0.012 \, \mathrm{m^3/s}$$

Pumping Process -- Pump-down Time -- Ultimate Pressure

Pumping Process -- Pump-down Time -- Ultimate Pressure

Multistage pumps

Creating the Vacuum: Pumps

Examples of vacuum in some accelerators

Table 1: SNS Vacuum	Level Rec	uirements
---------------------	-----------	-----------

Front End	1×10 ⁻⁴ to 4x10 ⁻⁷ Torr	
DTL	2x10 ⁻⁷ Torr	
CTL	5x10 ⁻⁸ Torr	
SCL	<1x10 ⁻⁹ Torr	
HEBT	5x10 ⁻⁸ Torr	
Ring	1x10 ⁻⁸ Torr	
RTBT	1x10 ⁻⁷ Torr	

J.Y. Tang ICA01, TUAP062

LHC $\rightarrow 10^{-10} - 10^{-11}$ mbar (LHC Design Report)

FAIR HEBT $\rightarrow 10^{-9}$ mbar

SIS100 \rightarrow 10⁻¹² mbar A. Kraemer EPAC2006, TUPCH175

Positive Displacement Pumps

Principle:

A volume of gas is displaced out of the Vessel

A compression of the volume V is always necessary to bring the pressure from $\rm P_{in}$ to a value larger then $\rm P_{out}$

and from now on the gas entered into the pump goes out

Therefore if the pumps make N_c cycles per second

$$S = N_c(V_{max} - V_i) = S_0 \left(1 - \frac{P_0}{P_i} \frac{V_{min}}{V_{max}}\right)$$

Conclusion: the pumping speed depends on the ratio of outlet/inlet pressure

When the inlet pressure is too low the pump stops pumping

If the gas compression/expansion is isentropic then all transformation follow the law

$$PV^{\gamma} = const.$$

hence

$$S = S_0 \left[1 - \left(\frac{P_0}{P_i}\right)^{1/\gamma} \frac{V_{min}}{V_{max}} \right]$$

Clearly the dependence affects the ultimate pressure even in absence of sources of throughput

General Pump

Pumping speed of ideal pump S₀

But in real pumps there is a backflow

 $\dot{Q}_0 = P_0 S_0$

Zero Load Compression Rate

Zero Load compression rate

$$K_0 = \frac{P_0}{P_{i0}}$$

The backflow is found

$$\dot{Q}_b = \frac{S_0 P_0}{K_0}$$

Rotary Pumps

S = $1-1500 \text{ m}^3/\text{h}$ Pl = 5 x 10^{-2} mbar (1stage) Pl = 10^{-3} mbar (2stage)

Gas Ballast

During the compression there can be gas component (G), which partial pressure P_G can be too high \rightarrow condensation

But the maximum pressure during compression do not exceed P_0 therefore by injectionng non condensable gas during the compression rate P_G is lowered blow the condensation point

Liquid Ring Pumps

 $S = 1 - 27000 \text{ m}^3/\text{h}$ P = 1000 mbar \rightarrow 33 mbar

The gas enter in the cavity which expand. When the pressure in the cavity reaches the sature vapor pressure P_s the water boils.

During the compression the vapor bubbles implode creating the **CAVITATION**

At T = 15° C \rightarrow P_s = 33 mbar which sets the P_{limit}=Ps

Dry Vacuum Pumps: Roots

Kinetic Vacuum Pumps

Molecular drag pump

Turbo molecular Pump

Diffusion Ejector pump

Molecular Drag Pumps

Volumetric flow:
$$S_0 = wh \frac{U}{2}$$

Taking into account of the backflow
$$S_i = S_0 rac{K-K_0}{1-K_0}$$

$$K_0$$
 = zero load compression rate, $K = \frac{P_{outlet}}{P_{inlet}}$

The zero load compression rate is $K_0 = e^{S_0/C}$

But for a long tube
$$\frac{S_0}{C} = \frac{3}{4} \frac{U}{h} \frac{L}{v_a}$$
 if $U \sim v_a$ \implies $\frac{S_0}{C} = \frac{3}{4} \frac{L}{h}$

Example L = 250 mm, h = 3 mm \rightarrow S₀/C > 10 and K₀ >> 1

$$S = S_0 \left(1 - \frac{K}{K_0} \right)$$

A. Chambers, Modern Vacuum Physics, CRC, 2005

Example of Molecular drag pump

In the reference frame of the rotating blades

In the reference frame of the rotating blades

Returning in the laboratory frame

The vacuum particle has received a momentum that pushes it down

but the component of velocity tangential becomes too large

The rotational component is lost and another stage can be placed

G. Franchetti

Probability of pumping

$$W = \frac{\dot{N}}{J_i A}$$

The maximum probability W_{max} is found when $P_i = P_o$

And we also find that

$$W = W_{max} \frac{K_0 - K}{K_0 - 1}$$

 K_0 = compression rate at zero load
The compression rate at zero load $K_0 \propto g(\phi) \exp(U/v_{lpha})$

Therefore $K_0 \propto \exp(\sqrt{M}) \rightarrow$ therefore different species have different pumping probability

In addition the maximum pumping probability W_{max} is

$$W_{max} \propto U/v_{lpha} \propto \sqrt{M}$$

Therefore we find that the maximum pumping speed $S_{max} = W_{max}J$ is independent on the gas mass

$$\frac{S}{S_{max}} = \frac{K_0 - K}{K_0 - 1}$$

Maximum compression as function of foreline pressure

Pumping speed as function of the inlet pressure

pumping speed: 35- 25000 l/s

ultimate pressure 10⁻⁸ to 10⁻⁷ Pa

End of Vacuum I