

- aug	Institut für Angewandte Physik LINAC AG	IAP	Ø	CAS	GORTHE C
	Choic	ce of Techno	logy (NC	:-SC)	
ucting Cavities	Normal Conducting			Superconductin	ng
sus Supercond	Low Energy			High Energy	
nal Conducting ver	High Beam Power			Low Beam Power	
Norm	Low Duty Factor			High Duty Factor	
H. Podle	ech	17			

	FAI	R Protor	h Linac	(if superconducting)
3 N	1eV			70 Me
Ţ	СН 📕 СН 📕 СН	н 📕 СН 🛛 СН	CH CH	
L]
	RF Structure	SC CH-DTL		
	Gradient	5	MV/m	Assumption: Patatia=10 W/m
	Length	25	m	Static
	RF Pulse	200	μs	
	Repetion Rate	4	Hz	Heat load cryo system: 250 W @ 4K
	Duty Factor	0.08	%	→ P_#=85 kW
	Duly Faciol	500	kW	
	Klystron	500		
	Klystron No. Klystrons	14		
	Klystron No. Klystrons Operation	14 SC		Much more expensive:

CW Heavy-Ion SHE	-Linac at GS	il (if NC)	SLINE CVT 7 Institution
1.4 AMeV			7.3 AMeV
150 KW 150 KW	12x50 k	W	
RF power: 750 kW	Particles Frequency	Heavy ions	 MHz
Plug power: 1250 kW	Gradient	1.8-3.0	MV/m
Superconducting version:	Current	200	μA
ightarrow Savings more than 6 Mio kWh/a	RF Structure Length	NC IH-DTL 25	 m
	Duty Factor	100	%
	No. RF Driver	14	
	Operation	NC	

There are several lines projects under design construction or comissioning						
What is the two	ical transition				aducting caviti	
vilat is the typ		l ellergy betweet		e and supercon	iducting cavit	
Project	Particles	Current (pulse)	Transition energy	Duty factor	Final energy	
SNS	Protons	38 mA	180 MeV	6%	1000 MeV	
SARAF	Deuterons	2 mA	1.5 AMeV	100%	20 AMeV	
SPIRAL-2	Deuterons	5 mA	1.5 AMeV	100%	20 AMeV	
FRIB	Heavy lons	0.3 mA	0.3 AMeV	100%	200 AMeV	
LINAC-4/SPL	Protons	80 mA	160(180) MeV	0.08%	4000 MeV	
Myrrha	Protons	4 mA	3.5 MeV	100%	600 MeV	
GSI cw Linac	Heavy lons	0.2 mA	1.4 AMeV	100%	7.3 AMeV	
IFMIF	Deuterons	125 mA	2.5 AMeV	100%	20 AMeV	

