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Overview
• Introduction

• Electromagnetic Waves in Waveguides

• TE10-Mode

• Waveguide Elements 

• Waveguide Distributions

• Limitations, Problems and Countermeasures
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Introduction
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RF Transport

RF Source(s)

Load(s)

•Task: Transmission of RF power of typical several kW up to several MW at
frequencies from the MHz to GHz range. The RF power generated by an RF 
generator or a number of RF generators must be combined, transported and
distributed to a load or cavity or a number of loads or cavities. 

•Requirements: low loss, high efficieny, low reflections, high reliability, high 
stability, adjustment of phase and amplitude, ….
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Transmission Lines for RF Transport

• Two-wire lines  
(Lecher Leitung)
– often used for indoor 

antenna (e.g. radio or TV)
– problem: radiation to the 

environment, can not be 
used for high power 
transportation

• Strip-lines 
– often used for microwave 

integrated circuits 
– problem: radiation to the 

environment and limited 
power capability, can not be 
used for high power 
transportation

conductor

conductor

conductor

conductor

dielectric
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Transmission Lines for RF Transport 
(2)

• Coaxial transmission lines 
– often used for power RF 

transmission and connection of 
RF components

– problem: high loss above a 
certain frequency due to heating 
of inner conductor and dielectric 
material and limited power 
capability at higher frequencies 
due to small dimensions

• Waveguides  
(rectangular,cylindrical or 
elliptical) 
– often used for high power 

RF transmission (mostly 
rectangular) 

– problem: waveguide 
plumbing, rigidity

conductor

conductor

conductor

dielectric, gas or vacuum

dielectric, gas or vacuum
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Electromagnetic Waves in 
Waveguides
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Strategy for Calculation of Fields

• start with Maxwell equation
• derive wave equation
• Ansatz: separation into transversal and longitudinal field

components
• wave equation for transversal and longitudinal 

components
• rewrite Maxwell equation in transversal and longitudinal 

components
• solve eigenvalue problem for three cases

TEM (Ez=Hz =0), TE (Ez=0, Hz0), TM (Hz=0, Ez0)
• derive properties of the the solutions
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Maxwell Equations

RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain

Wave Equation
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Ansatz for Wave Equation

xy

z
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Derivation of Maxwell Equation for 
transversal and longitudinal Components
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Derivation Maxwell Equation for transversal 
and longitudinal Components (2)
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Equations of transversal and longitudinal 
Components as Function of transversal 

Coordinates

Wave equation

Maxwell 
equation for 

transversal and 
longitudinal 
components
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TEM-, TE-, TM- Waves

On the next slides we will try to find solutions for 
TE-waves. The treatment for TM- modes is similar. 
For TEM modes the treatment is even easier, but 
TEM-modes do not exist in hollow transmission 
lines, because transversal E components require 
longitudinal H components and transversal H 
components require longitudinal E components. 
These are 0 in TEM fields. TEM-modes exist in 
coaxial lines since on the inner conductor we 
might have j0.
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Derivation of TE-Wave Equations
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Derivation of TE-Wave Equations(2)
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Derivation of TE-Wave Equations(3)
Impedance of a TE-Wave
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TE-Wave Equation in rectangular Waveguides

TE wave equation

TE wave equation
written in components
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Solution of TE- Wave Equation
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Solution of TE-Wave Equation(2)

b

x

y

z

a
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Solution of TE-Wave Equation(3)
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Solution of TE-Wave Equation(3)
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TEnm -Fields
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Cut Off Frequency and Wavelength

Waves with frequency lower than the cut off frequency 
(f<fcnm) or wavelength longer than the cut off wavelength 
(>cnm) can not propagte in nm-mode.
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Guide Wavelength
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TM-Waves
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TMnm -Fields
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Rectangular Waveguide Mode Pattern

TE10 TE20

TE01 TE11
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Rectangular Waveguide Mode Pattern(2)

TM11TE21
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TE- and TM- Mode Pattern

Mode pattern images can be found for instance in

•N. Marcuvitz, Waveguide Handbook, MIT Radiation 
Laboratory Series, Vol. 10, McGraw Hill 1951
•H. J. Reich, P. F. Ordung, H. L.Krauss, J. G. Skalnik, 
Microwave Theory and Techniques, D. van Nostrand 1953

and probably in other books, too.
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TE10  (H10)-Mode
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Waveguide Size and Modes
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TE10 (H10) -Field
•The mode with lowest frequency 
propagating in the waveguide is the 
TE10 (H10) mode. For a<<2a only 
this mode can propagate.

E-Field
H-Field
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Some TE10 Properties

cut off
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Some TE10 Properties (2)
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Some Standard Waveguide Sizes

Waveguide
type

a
(in)

b
(in)

fc10
(GHz)

frequency range
(GHz)

WR 2300 23.000 11.500 .256 .32–.49

WR 2100 21.000 10.500 .281 .35 –.53

WR 1800 18.000 9.000 .328 .41 –.62

WR975 9.750 4.875 .605 .75 – 1.12

WR770 7.700 3.850 .767 .96 – 1.45

WR650 6.500 3.250 .908 1.12 – 1.70

WR430 4.300 2.150 1.375 1.70 – 2.60

WR284 2.84 1.34 2.08 2.60 – 3.95

WR187 1.872 .872 3.16 3.95 – 5.85

WR137 1.372 .622 4.29 5.85 – 8.20

WR90 .900 .450 6.56 8.2 – 12.4

WR62 .622 .311 9.49 12.4 - 18

a

b
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Some Waveguides of different Size

WR1800
e.g. for 500MHz

P-Band

WR650
e.g. for 1.3GHz

L-Band

WR284
e.g. for 3GHz

S-Band

18in,
46cm
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Power in TE10-Mode
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Theoretical Power Limit in TE10
The maximum power which can be transmitted theoretically in a 
waveguide of certain size a, b and frequency f is determined by the 
electrical breakdown limit Emax.
In air it is Emax=30kV/cm. From this one can find the maximum 
handling power in air filled waveguides.
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Attenuation in TE10
• The walls of the waveguides are not perfect conductors. 

They have finite conductivity , resulting in a skin depth of

• Due to current in the walls of the waveguides loss 
appears and the waves are attenuated.

• The attenuation constant for the TE10 is:

k1= 1.00 Ag, 1.03 Cu, 1.17 Au, 1.37 Al, 2.2 Brass
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Attenuation in Al-Waveguides in TE10
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Reflection and Impedance

Z1 Z2

Ef1

Er1

Ef2
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Travelling and Standing Wave

TE10 travelling wave TE10 standing wave due to 
full reflection =1.

The maximum electrical field strength in the standing 
wave is double the strength of the travelling wave. The 
same field strength can only be found in a travelling 
wave of 4-times power.
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Straight Waveguides
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Bellows
Sometimes it is necessary to use flexible waveguides because 
a small misalignment exists or for compensation of 
displacements or expansion e.g. because of heating during 
operation. This can be done by bellows.
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E- and H-Bends

E- and H-bends are used to change the direction of a 
waveguide. If the x-direction stays constant it is called E-
bend (direction of E  of the TE10 mode changes). If the y-
direction stays constant it is called H-bend (direction of H 
changes). Both types come as mitred or swept bends. 
The VSWR of both types is typically 1.02.
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H-Bends

Mitred bend

Swept bend

RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain

E- and H- Field of TE10 in a H-Bend

E-Field H-Field
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E-Bends

Swept-mitred bend Swept bend
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E- and H- Field of TE10 in a E-bend

E-Field H-Field
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Twisted Waveguide
It is necessary to change the orientation of the of the electric 
field. This can be accomplished by twisted waveguides.
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Combiner, Divider, Directional Coupler

a1
b1 a2

b2

bn

an

Incoming electromagnetic waves with amplitude aj entering at ports j 
are connected to the outgoing waves with amplitude bi leaving at 
ports i by the S-matrix with matrix elements Sij. 
Due to time and space restrictions only some examples can be 
discussed on the next transparencies.

Combiners, dividers and directional couplers are waveguide elements 
which have several ports. They allow to combine, divide, split or 
couple RF power. 
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Shunt Tee

A 3-port shunt tee is a device which allows to divide or 
combine power. It is not matched. Therefore reflections 
occur. By using additional elements, e.g. inductive posts 
one can achieve matching to one port.
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Shunt Tee as Divider

Shunt tee without 
matching post. Therefore 
reflections occur.

3-dB shunt tee with 
matching post. No 
reflections occur. The 
power is equally 
distributed.
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Shunt Tee as Combiner

The shunt tee works only as combiner without reflections 
at the input port, if both input ports are used with the right 
amplitude.

RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain

WR650 Asymmetric Shunt Tee Adjustment

post 1

post 2

3.01 dB
4.77 dB
6.02 dB

post 2

post 1
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Shunt Tee with 1dB (left) and 
8dB(right) Coupling Ratio
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Magic Tee

The magic tee is a combination of an E-
tee and and H-tee. It is usally used as 

power divider from port 1 to ports 2 and 3 
or vice versa as combiner from ports 2 
and 3 to port 1. It overcomes the short 

coming of shunt tees.
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Magic Tee
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Magic Tee

H part of a Magic Tee E part of a Magic Tee
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Hybrid (Riblet Coupler)

1

3

2

4

S-matrix of an ideal 3dB hybrid:

The power entering port 1 is 
equally divided between port 2 
and 4. The phase between port 2 
and 4 is 90degree. 

The hybrid is a 4-port device 
which works as divider or coupler. 
By proper choice of the 
dimensions of the hole between 
the two waveguides the S-
parameter can be adjusted.
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3dB Hybrid
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Two Examples of a Hybrid
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Directional Coupler
Directional coupler can be used to measure signals of waves in 
waveguides. They make use of holes or loops in the waveguides. 
The coupled signal of the waves between the ports 1 and 2 can be 
measured at port 3 and 4 for the reflected and the forward wave, 
respectively. Good directivity can be accomplished by proper size, 
seperation or orientation of the holes or loops. 
This makes use of constructive and deconstructive interference of 
the signals in the holes or loops.
The coupling is described by the coupling factor:

The directivity is described by:
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2-hole Directional Coupler

/4

forward wavereflected wave

1 2

3 4

One example of a directional coupler is hole coupler which has two 
holes between one wall of two waveguides. The separation of the holes 
is /4. Therefore constructive interference occurs for the forward wave 
in the forward direction of the other waveguide at port 4 and 
deconstructive interference at port 3. For the reflected wave it is vice 
versa. By adding more holes the directivity can be improved.
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Directional Loop Coupler
Another example of a directional coupler is a hole coupler with one hole and 
a loop in the hole. The coupling and the directivity is adjusted by adjusting 
the diameter of the couling, the distance to the loop  and the alignment of 
the loop. Electrical and magnetic field components are launched in the hole. 
Due to orientation of the field components for forward and reflected wave 
and choice of the loop orientation one achieves cancellation or summation 
for forward and reflected waves.  
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Fields in a Directional Coupler

YZ plane Reflected Wave
~0 Field in Coax

YZ plane Forward Wave
Max Field in Coax
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Fields in a Directional Coupler (2)

YX plane Reflected Wave
~0 Field in Coax

YX plane Forward Wave
Max Field in Coax
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S-Parameter of a Directional Coupler
Result of simulation. Directivity is 97.7 – 61.2 = 36.5 dB
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Two Examples of Directional 
Coupler
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Phase Shifter

•By adjusting the dimensions of the 
waveguide e.g. the width a the 
phase constant changes.
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Waveguides using Ferrites

Ferrites  have the  chemical formula XOFe2O3 where XO is a 
metal oxide. These materials have low electrical conductivity and 
are anisotropic in magnetic fields. Therefore they can pass 
electromagnetic waves with only low loss and with different 
velocities, depending on propagation direction and polarisation of 
the electromagnetic wave relative to the external magnetic field. 
The last property results in different phase advance and different 
propagation direction of the wave in the ferrite component. By the 
use of ferrites devices with non reciprocal properties can be built.
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Interaction of Electron Spin with B-Field

S S

m

m

B0

B0





Bt

BL

S

mB0



Bt

BR

Static B-Field results in 

precession at 

Static B-Field plus 
LHCP of frequency -

results in forced 
precession at 

Static B-Field plus 
RHCP of frequency 

results in forced 
precession at 
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Tensor of Permeability
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Tensor of the Permeability (2)
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Waves in Ferrite Waveguides
Now the Maxwell equation

could be solved, what will be not done here. 
One can distinguish two cases. Propagation of the wave parallel to 
the bias magnetic field and propagation perpendicular to the bias 
magnetic field. Within the last case one can distinguish polarisation 
of the waves H field parallel the bias field (ordinary wave) and 
perpendicular to the bias field (extraordinary wave).
A number of waveguide components make use of the anisotropic 
properties of ferrites. 
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3-Port Circulator
• A circulator is a device with ferrite material in the middle of 3 

waveguide connections. The bias field is applied perpendicular to the 
propagation direction. The circulator has an input port (1), output port 
(3) and load port (2). If power is entering (1) it is transfered to port (3), 
but if power is entering (3) it is tranfered to (2) and than absorbed in a 
load. The S-matrix of a lossless circulator is:

• The ciculator protects the RF source from reflected power. Usually the 
circulator is not ideal and lossless.The isolation is usually more than 
25dB. The insertion loss can be less then 0.15dB, but is sometimes 
larger. A typical VSWR is 1.1. 
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Example of a 3-Port Circulator

WR650 400kW circulator

Ferrites Matching elements Magnets
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Loads
• Loads absorb the power 

generated by an RF source

• Absorbing material can be 
ferrite, SiC or water.

• The amount of power reflected 
by a load is described by the 
VSWR defined as

and

with Z impedance of the 
waveguide and ZL load 
impedance

Three WR650 ferrite loads, 
200W air cooled, 500kW water cooled 
and 5MW water cooled
(from left to right)
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Some other Waveguide Elements

WR650 1MW isolator made 
of two 3-port circulators, two 
E-tees and two ferrite loads

Adjustable short circuit

WR650 4-port (phase 
shift) isolator weight ca 
280kg 

5MW RF waveguide gas window

3-Stub tuner
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Literature: Textbooks and School Proceedings
A large number of very good books on microwave and waveguide theory exists. Some of them are 
listed here.  One should use according to personal preference.

• R. E. Collin, Foundations For Microwave Engineering, McGraw Hill 
1992

• D. M. Pozar, Microwave Engineering, Wiley 2004
• N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory 

Series, Vol. 10, McGraw Hill 1951
• H. J. Reich, P. F. Ordung, H. L.Krauss, J. G. Skalnik, Microwave 

Theory and Techniques, D. van Nostrand 1953

• R. K. Cooper, R. G. Carter, High Power RF Transmission, in 
Proceedings of the CERN Accelerator School: Radio Frequency 
Engineering, 8-16 May 2000, Seeheim, Germany

• R. K. Cooper, High Power RF Transmission, in Proceedings of the 
CERN Accelerator School: RF Engineering for Particle Accelerators, 
3-10 April 1991, Oxford, UK

• A. Nassiri, Microwave Physics and Techniques, USPAS, Santa 
Barbara, Summer 2003

• Meinke, Gundlach, Taschenbuch der Hochfrequenztechnik
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Waveguide Distributions
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Task for a real distribution
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Waveguide Distribution Schemes

• Waveguide distributions are combinations of different 
waveguide elements

• One can distinguish two basic types :
linear distributions and tree like distributions.

• Combinations of both are possible. The layout depends 
on a number of requirements: e.g. power capability, 
isolation between cavities, weight, space availability, 
ease of assembly, cost, etc. 
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Linear Distribution

circulator

load

Hybrids of different 
coupling ratio branch off 
equal amount of power

power in

power out
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Tree-like Distribution

circulator
load

phase shifter

shunt tee

power in

power out
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A linear and a combined Distribution

Linear system with hybrids - FLASH like

Combined system with asymmetric shunt tees - XFEL like
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Combined XFEL-type Distribution 
for FLASH

By choosing the coupling ratio of the shunt tees, operation of 
the cavities at maximum gradient can be achieved (green 
line). In case of the same coupling ratio, the cavities can be 
operated only at the gradient of the weakest cavity (red line).
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Accelerator installation

Waveguides near the cavities

Waveguides near to klystron
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Limitations, Problems and
Countermeasures
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Maximum Power in TE10

•The maximum power which can be transmitted theoretically in a 
waveguide of certain size a, b and wavelength  is determined by
the breakdown limit Emax.
•In air it is Emax=30kV/cm. Therefore the theoretical limit is 58MW 
at 1.3GHz in WR650. 
•But experience shows that in real distributions it is lower, typically
5-10 times lower. One could increase the gas pressure inside the
waveguide, which due to Paschens law would increase the power 
capbility. But this requires enforced and gas tight waveguides. In 
addition the pressure vessel rules most be observed. 
•By using SF6 instead of air, which has Emax=89kV/cm (at 1bar, 
20°C), the power capability can be increased, too
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Maximum Power in TE10 (2)

• The  problem of SF6 is that although it is chemically very 
stable it is a green house gas and if cracked in sparcs 
products can form HF, which is a very aggressive acid. 
Other chemical poisonous chemicals e.g. S2F10 are being 
produced too.

• The practical power limit is lower, because of a variety of 
different reasons: smaller size ( e.g. within circulators), 
surface effects (roughness, steps at flanges etc.), dust in 
waveguides, humidity, reflections (VSWR) or because of 
higher order modes TEnm/TMnm. These HOMs are also 
generated by the power source. If these modes are not 
damped, they can be excited resonantly and reach very 
high field strength above the breakdown limit.
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Fluorides inside a WR650 Waveguide
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Staff for opening and cleaning SF6 filled 
waveguide must use protection clothes
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Damaged Waveguide due to bad Connection of 
two Waveguide Flanges
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HOMs
HOMs can be sometimes damped by installing small antenna which are 
than connected to small loads. The exact mode pattern is proberbly not 
known, but if these antanna couple to HOMs, the HOMs are damped. 
The disadvantage of this solution is that one always couple out part of 
the fundamental mode.


