

Elettra Sincrotrone Trieste

Power Converters for Accelerators

CERN Course on Power Converters, Baden (CH)

Roberto Visintini – May 14th, 2014 2

WWW (i.e. Where Were We)?

Different Power Supplies for different machines Hans-Jörg Eckoldt CAS THE CERN ACCELERATOR SCHOOL

Different power supplies for different machines

Hans-Jörg Eckoldt DESY Warrington, UK 17.05.04

- Focused on magnet power converters
- ✓ Good overview with many examples

Where do we go now?

Eckoldt's contribution:

- \checkmark Detailed compendium of
 - Topologies of Power Converters
 - Connection of Power Converters to magnets (cycling and ramping)
 - Solution adopted by several Facilities

My talk:

Performances required to power converters

VS.

Particle Accelerators' Applications

Particle Accelerators

Cockcroft-Walton accelerator at the Cavendish Laboratory in Cambridge, England (1932). Ernest O. Lawrence and his 4.5" (11 cm) cyclotron (1930)

(Photos collected from internet)

Classification functional to this talk

- ✓ High Energy Physics Colliders (HEP-C)
- ✓ Ion Sources/Cancer Therapy (IS/CT)
- ✓ Neutron Sources (NS)
- ✓ Light Sources (LS)
- ✓ Linear or "Open" Structures (e.g. LINACs and FELs)
- Circular or "Closed" Structures (e.g. Synchrotrons and Storage Rings)

What is it normally done?

- ✓ Production of particles
- \checkmark Acceleration^{*} of particles
- ✓ "Handling" of particles
- Measure the energy of particles

*Increase the Energy of particles

CERN Course on Power Converters, Baden (CH)

How is it done?

Specialized and dedicated equipment and subsystems

involving

Power Converters:

- AC
- DC
- Pulsed
- High Voltage
- High Current
- High Power
- ...

- ✓ "Limit" the field
- ✓ Fascinating World (in my opinion)
- ✓ Magnets, they are everywhere:
 - Magnetic lenses on the "gun" (particles source)
 - Focusing coils (e.g. on Klystrons)
 - Solenoids on accelerating structures
 - Magnets and Coils
 - Normal Conducting
 - Super Conducting
 - DC operated
 - AC operated (often with "exotic" waveforms)
 - Pulsed
 - ..
 - Compensation (or correction) coils on Insertion Devices
 - .

During and – especially – after the "Acceleration" phase:

"Quality" of particle beam(s) \equiv "Quality" of the magnetic fields

"Quality" of the magnetic field (in electromagnets):

- 1. "Good" electromechanical design of the magnet (e.g. pole profile, coil shape, etc.)
- 2. "Good" excitation current \Rightarrow "Good" Power Converter!

Machine Physicist's view: a System

FERMI O

The chosen tolerators of $n_c/l = 0.01\%$ for all the quadrupoles induces a trajectory line level less dual 15% in both the transverse plateas. Thes behaviors of $\alpha_c/l = 0.009\%$ for all the steering magnets induces a trajectory line level of 5% in both plateas. These values have been included, together with the telerance for the chicare dipole magnets, in the particle tracking global little study. This has continued the suppressions of the 200 Lineability in possesce of the induced shot-ba-shot trajectory little [4]. The long term PS stability are supervalues on that the sittle of the reasonable order of magnitudes on that the sittle can be composed and by a trajectory indication be composed by a trajectory fieldbal. The tolerances for the PS stability are supremarked by a trajectory fieldbal.

Table 1.2 Power supply tolerances for the dipole traggets in the LS, BC1 and BC2 chicards.

Layout Area	LH	IC1	- BCI	Spreader
I of Dipoles	4		4	
t of Power Supply	1	7.8	1	3
PS short term (ft1Ha) stability RMS [5]	8.02	2/13	6.21	8.01
PS long term (P+1Hz) stability RM8 (%)	6.08	1.05	1.09	1.05

Table 1.5: Percer supply tolerances for the quadrapole magnets of the main lines and transfer line up to the undulators.

I al Quadropolas		11	801	12	13	BC2	1.4	
	7	4		- 4	1	1	1	
F of Power Supple		4	1	4	1	1	- 7	
PS abort term (B119a) etablity RMS 25.1	0	9.00						
PS long term (Pr1Hz) stability RMS [%]		0.05						
Layout Area	TLS, DBD	TLS, DBD SCL SPELI SPELI						
I of Qualitypiles	12				1			
# of Power Supply	12	-						
PS short term (friista) stability EMS [%]	- 90 -	2	.0.	00.				
P5 long turns (#128s) stability #345 [%]			0.	08				
stability 2528 (%) de 1.4: Power sapply b (transfer line up in the	deranzes for D and slaters.	ue stawi	0. ng (1000	olior) o	ugoan	el the ro	-	

- ✓ Beam energy
- 🗸 Beam size

/

 Magnetic field and its components

Power converters

required to the power supplies (e.g. $di/dt \ge 500 \text{ A/s}$, sinusoidal waveform, from to 0A to 500 A). This fact has been taken into account in defining the maximum output voltage in Table 1.

Table 1 - Power Supplies for the Dipole Magnets of the Spreader

ſ		Value		11.0	Comment
		va	шe	unit	Comment
	Type of Power Supplies	Single	quadra	nt, DC	, current regulated
	Output Characteristics				
	T	AP			A = PSB_SCL-SFEL1
	Type	A	D		B = PSB_SFEL2
	‡ of Power Supplies	3	3	2+1	spare units
ſ	Max. Output Voltage	25		v	Including the dynamics
	Max. Output Current	50	500		
U	Max. Output Power	12.5		kW	
	Output current Range	10 - 100		%	Or better
7	Current Ripple	±0.01		%	Vs. max current (inductive load)
	Current Stability	±0.	05	%	Vs. max current (≥8 hrs)
	Remote current readout precision	0.	.1	%	Or better
	Local Display Precision	0.	.1	%	Or better
	Load Characteristics				
	Load Resistance	40	24	mΩ	Magnets in series + cables
	Load Inductance		7.2	mH	Magnets in series
	Interfaces				
	To Control System	Ethe	ernet	TCP	IP socket (see paragraph 4.3.2)
	To interlock System	Con	Contacts		aragraph4.3.5

Notes

- Maximum Output Voltage: the voltage required to supply the nominal load with the maximum current – including dynamics.
- Maximum Output Current: the maximum current required by the magnets (the safety margins have been included in the magnetic design)
- Maximum Output Power: the maximum DC power of the power supplies.
- Output Current Range: the range within which it must be possible to vary the DC level
 of the output current without exceeding the required performances; the range can be
 wider with reduced performances.

FTSD-PS #05 rev. 0.1 – Author: Roberto Visintini Page 6 of 9 Power Supplies for the Dipole Magnets of the Spreader of FERMI

Physics, Magnetics, Power, Control: a System

Defining the Parameters of the power converters is not a Chess Tournament where players meet singularly...

Physics, Magnetics, Power, Control: a System, integrated in the plant!

...it is more a poker game, with spectators waiting for their turn to play! Electrical Plant Responsible

Cooling Plant Responsible

Magnet Designer

Power Converter Designer

CERN Course on Power Converters, Baden (CH)

Particle Physicist

Controls Expert

Some Definitions – 1

✓ Current Stability

Long term drift (a percentage of full-scale), over some hours at fixed line, load, and temperature, after a warm-up period.

✓ Current Ripple

Noise on the output current specified as a percentage of full scale. The frequency spectrum depends on the technology adopted and frequency of commutation of the switches.

Some Definitions – 2

✓ Resolution (set and read-back)

The smallest possible steps for adjustment of the current set-point or the current read-back, specified as a percentage of full-scale or number of bits.

✓ Reproducibility

Reproducibility of the actual output current, for the same current setpoint (at different times) of a desired output value under constant conditions, specified as a percentage of full-scale.

✓ Accuracy (set and read-back)

How close the actual output current is to the current set-point or to the current read-back, specified as a percentage of full-scale.

Particle Accelerators vs. Power Converters

- A. Very large number of Particle Accelerators (also taking in account only those currently in operation...)
- B. Large number of magnet power converters' types in each Particle Accelerator

A x B = C with $C \rightarrow \infty$

(practically, NOT mathematically)

- ✓ HEP-C, IS, CT, NS, and LS
- ✓ Limited Number of Examples

I apologize for not citing YOUR Facility!

(The following images are taken from Facilities' Web Sites)

- ✓ Very High Energy of particles (TeV)
- ✓ Large Dimensions (counting in some km)
- ✓ Superconducting magnets
- ✓ Great number of magnet power converters

HEP-C: LHC (CERN, CH, 2008-2009)

- ✓ Large complex of accelerators
- ✓ 7 TeV (3.5 TeV + 3.5 TeV) energy
- ✓ 27 km circumference
- ✓ ~9600 Superconducting magnets

HEP-C: LHC (CERN, CH, 2008-2009)

PC type	Qty	Switch Type	¹ ∕₂ hour stability
MB [13kA/±190V]	8	SCR	3 ppm
MQ [13kA/18V]	16	SM	3 ppm
Inner Triplet [57kA/8V]	16	SM	5 ppm
IPD and IPQ [46kA/8V]	174	SM	5 ppm
600A type 1 [±0.6kA/±10V]	400	SM	10 ppm
600A type 2 [±0.6kA/±40V]	37	SM	10 ppm
120A [±120A/±10V]	290	SM	50 ppm
Orbit correctors [±60A/±8V]	752	SM	50 ppm
Warm magnets [1kA/450950V]	16	SCR	20 ppm

- ✓ More than 1700 PCs
- ✓ High Current (up to 13 kA)
- ✓ Thyristor (SCR) of Switch Mode (SM)
- ✓ Smaller Units in Parallel
- ✓ Custom-made PCs
- Collaboration with Industry in developing the PCs
- ✓ High reliability: almost all PCs are located underground and not easily accessible

Ion Sources (IS)

- ✓ Low Energy of particles (hundreds of MeV)
- Medium Dimensions (in some hundred meters)
- ✓ Different Accelerators (Cyclotrons, LINACs,...)
- ✓ Superconducting and Normal conducting magnets
- ✓ Great variety and number of magnet power converters

IS: FRIB (USA, under construction)

- ✓ Rare Isotope Beams
- ✓ Linear Accelerators (LINACs)
- Mix of Magnetic and Electrostatic elements (Dipoles and Quadrupoles)
- Mix of Normal- & Super-Conducting Magnets
- ✓ High Current and High Voltage
- ✓ 1-Q, 2-Q, 4-Q Power Converters
- ✓ Use of COTS (Commercial Off The Shelf) power converters
 - Cost
 - Availability
 - Reliability
 - Maintanance and Spares

IS: FRIB (USA, under construction)

	Electrostatic Devices										
Qty	lout (mA)	Vout (kV)	Long Term (ppm)	Ripple (ppm)	Accuracy (ppm)	Resolution (ppm)					
11	1 – 60	1 – 100	±100 - ±500	100 - 200	1000	500					

Magnetic Devices										
Qty	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Accuracy (ppm)	Resolution (ppm)				
194	2 - 3500	6 - 600	±200 - ±1000	50 - 400	2500-4000	20 – 200				

Cancer Therapy (CT)

✓ Accelerator Facility <u>and</u> Clinical Facility

- ✓ Low Energy (hundreds of MeV)
- ✓ Small Dimensions (counting in tens of meters)
- Different Types of accelerators (Synchrotrons, Cyclotrons,...)
- Different Types of Power Converters (SCR, Switched mode, linear)
- ✓ Extremely high reliability (e.g. avoid failures during treatment)
- ✓ Minimize time for repair of systems

CT: PROSCAN (PSI, CH, 2007)

The COMET cyclotron (under construction in 2004).

- ✓ Super Conducting Cyclotron
- ✓ Protons (250 MeV)
- ✓ Treatment beamlines for eye radiotherapy, for deep-seated tumors

CT: PROSCAN (PSI, CH, 2007)

Туре	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Reprod. (ppm)	Accuracy (ppm)	di/dt [A/s]
IGBT	500	350	100	50	100	500	125
IGBT	220	320		1000		1000	11.000
IGBT	220	285	15	15	100	500	100
IGBT	150	175		1000		1000	40.000
IGBT	150	90	100	50	100	500	100
MOSFET	50	50	500	100	500	500	
MOSFET	10	24	500	100	500	500	

- ✓ About 100 Power Converters
- ✓ All 4Q PC
- ✓ PWM (IGBT & MOSFET)
- ✓ Focus on dynamics: tight requirements on di/dt and regulation delays

CT: CNAO (Italy, 2010-2012)

- ✓ Synchrotron based (80 m circ.)
- ✓ 250 MeV (protons)
- ✓ 480 MeV (carbon ions)
- Heavy, large deflection angle dipole (90 deg)

CT: CNAO (Italy, 2010-2012)

Mag	Туре	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Reprod. (ppm)	Res'n (ppm)
Dip	SCR + SM-AF	3000	±1600	±5	±5	±2.5	±5
Dip	SCR + SM-AF	3000	±110	±25	±25	±13	±25
Dip	SCR + SM-AF	2500	±450	±5	±5	±2.5	±5
Dip	PWM	±550	±660	±200	±100	±100	±60
Dip	PWM	±30 - 300	±20 - ±35	±50 - ±500	±50 - ±250	±25 - ±500	±50 - ±1000
Q + Sxt	PWM	150-650	±17 - ±65	±50 - ±100	±50 - ±100	±25 - ±50	±50 - ±100
Corr	Bip. Linear	±30 - ±150	±15 - ±30	±500	±250	±500	±1000

- ✓ Over 200 Power Converters
- ✓ HV & HI at the same time (at LHC: 13 kA but "only" 200 V...)
- ✓ High reproducibility requirements
- ✓ SCR, PWM, Linear
- ✓ Active filtering on the AC side of the large SCR Bridges

CT: MedAustron (Austria, under construction)

- ✓ Synchrotron based (80 m circ.)
- $\checkmark\,$ Ion sources with LINAC pre-accelerator
- ✓ Protons (60 250 MeV)
- ✓ Protons 800 MeV (non-clinical research)
- ✓ Carbon Ions (120 240 MeV/n)
- ✓ Built in collaboration with CERN

CT: MedAustron (Austria, under construction)

- ✓ More than 200 Power Converters
- ✓ Repetition rate 0.5 Hz
- ✓ 1.5 kW up to 4.5 MW of peak output power
- ✓ 4Q PWM
- ✓ Precision range 10 ppm 100 ppm
- ✓ Dynamics: 100 Hz (most of PC) and 2 kHz (scanning magnets)
- PC as Voltage Sources from manufacturer and High precision digital current regulation system provided by CERN/MedAustron

Neutron Sources (NS)

- ✓ Mid-Low Energies (0.8 2.5 GeV)
- Medium Dimensions (up to some hundred meters)
- ✓ Linear or Circular accelerators
- ✓ Spallation principle

From Wikipedia, file:Spallation.gif

NS: ISIS (UK, 1985)

- ✓ 800 MeV proton accelerator
- ✓ Linac Pre-accelerator (70 MeV)
- ✓ Synchrotron (~165 m circumference)
- ✓ 50 Hz cycles

NS: ISIS (UK, 1985)

- ✓ White-Circuit arrangement (10 chokes)
- ✓ 50 Hz resonant
- ✓ 1 MJ (10 x 100 kJ) energy storage in normal conducting chokes
- ✓ DC Power converter: ~660 A DC bias
- ✓ AC Power Converter: 4x300 kVA UPS
- ✓ The rated secondary AC rms voltage is 14.4 kV at 1022 A

Light Sources (LS) – SRs and FELs

Storage Ring

- ✓ Circular
- ✓ Mid-High Energy of particles (1.5 8 GeV)
- Mid Dimensions (hundreds of meters up to few km)
- Normal and Superconducting magnets
- ✓ Great number of magnet power converters

✓ Linear

✓ High Energy of particles (1.5 – 20 GeV)

FEL

- Mid Dimensions (hundreds of meters up to few km)
- Normal and Superconducting magnets
- ✓ Great number of magnet power converters

Light Sources (LS) – SRs and FELs

Storage Ring

- 1. Elettra (Italy, 1993)
- 2. APS (USA, 1995)
- 3. LNLS (Brazil, 1997)
- 4. SLS (Switzerland, 2000)
- 5. SSRL-SPEAR3 (USA, 2003)
- 6. Soleil (France, 2006)
- 7. DLS (UK, 2006)
- 8. ALBA-CELLS (Spain, 2010)
- 9. DESY (Germany, 2010)
- 10. MaxIV (Sweden,...)

FEL

- 1. LCLS (SLAC, USA, 2009)
- 2. FERMI (Elettra, Italy, 2011)
- 3. SwissFEL (PSI, Switzerland,...)
- 4. XFEL (DESY, Germany,...)

LS-SR: Elettra (Italy, first beam 1993)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (bit)	Туре
Dip SR	2000	560	±200	±40	16	SCR
Q + Sxt SR	300	40 - 660	±200 - ±500	±20 - ±50	16	SCR
Corr SR	±16	±80	±500	±50	16	Bipolar Linear

- ✓ 2.0 and 2.4 GeV
- ✓ 264 m circumference
- ✓ About 300 Power Converters
- ✓ SCR and Bipolar Linear

LS-SR: APS (USA, first beam 1995)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (bit)
Dip SR	550	750	±30	±40	16
Q SR	500	20	±60	±800	16
Sxt SR	250	25	±300	±200	13
Corr SR	±150	±20	±30	±1000	13

Ph.Tigerhill Studio, Argonne National Laboratory.

✓ 7 GeV

- ✓ 1100 m circumference
- ✓ More than 1100 Power Converters
- ✓ SCR and PWM

LS-SR: LNLS (Brazil, first beam 1997)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (bit)	Туре
Dip SR	300	950	±100	±70	16	SCR
Q + Sxt SR	10 - 220	10 - 45	±1000 - ±100	±1000 - ±100	16	SCR/PWM
Corr SR	±10	±10	±1000	±100	16	Bipolar Linear

- ✓ 1.37 GeV
- ✓ 93 m circumference
- ✓ About 200 Power Converters (including Booster)

LS-SR: SLS (PSI, CH, first beam 2000)

Mag PC	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (bit)	Accuracy (ppm)
Dip SR	500	880	100	15	16	100
Q + Sext SR	70 - 140	35 - 145	100	40 - 100	16	100
Bipolar SR	±7	±24	100	15	18	1000

✓ 2,4 GeV

- ✓ 288 m circumference
- ✓ About 640 Power converters (Overall)

LS-SR: SSRL-SPEAR3 (USA, first beam 2003)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Туре
Dip SR	800	1200	20	12p SCR Bridge +PWM
Q SR	100	100 - 700	100	12p Diode Bridge +PWM / PWM
Sext SR	225	600	100	12p Diode Bridge +PWM / PWM
Corr SR	±30	±50		PWM
Dip TL	500	45		PWM
Q TL	60	80		PWM

✓ 3 GeV

- ✓ 234 m circumference
- ✓ About 250 Power Converters (incl. TLs)

CERN Course on Power Converters, Baden (CH)

LS-SR: Soleil (France, first beam 2006)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Resolution (ppm)
Dip SR	580	610	10	10
Q + Sxt SR	250 - 350	14 - 140	20 - 50	5 - 50
Corr SR	±7 - ±14	±3.5 - ±14	20 - 50	2 - 30
Dip TL	250 - 580	20 - 80	50 - 100	60 - 100
Q TL	10 - 275	9 - 10	50 - 100	20 - 60
Corr TL	±1.5 - ±10	±2.5 - ±9	100 - 500	60 - 100

✓ 2.75 GeV

- ✓ 354 m circumference
- ✓ About 350 Power Converters (incl. TLs)
- ✓ 12p Diode Bridge +PWM (D & S), PWM (Q & C)

LS-SR: DLS (UK, first beam 2006)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (ppm)	Reprod. (ppm)	Bandw. (Hz)
Dip SR	1500	530	±10	±10	4	10	DC
Q + Sxt SR	100 - 350	17 - 41	±10	±10	4	10	DC
Corr SR	±5	±20			4	10	50

✓ 3 GeV

- ✓ 560 m circumference
- ✓ About 1000 Power Converters
- ✓ PWM with Digital Regulation

LS-SR: ALBA-CELLS (Spain, first beam 2010)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (ppm)
Dip SR	600	750	±10	10	5
Q SR	200 - 225	15 - 25	±10	10	5
Sxt SR	215	100 - 350	±50	50	15
Corr SR	±12	±60	±20	10	5
Dip TL	12 - 180	12 - 60	±15	15	15
Q TL	15 - 170	15 - 20	±15	15	15
Corr TL	±2 - ±6	±2 - ±10	±100		100

✓ 3 GeV

- ✓ 267 m circumference
- ✓ Almost 400 Power Converters (including Booster-based Injector)
- ✓ PWM with digital regulation

LS-SR: PETRA III (DESY, Germany, 2010)

Note	Туре	lout (A)	Vout (V)	Ripple (Vout rms)	Accuracy (ppm)	Res'n (bit)
	TL to PETRA	200 - 400	60 - 120	2-3 V	100	16
White C.	Dipole AC	1004	1330		10	20
White C.	Dipole DC	520	1560		10	20
White C.	Quad	650	250		10	20
White C.	Sextupole	200	85		10	20
SCR	PETRA III	600	300	3	100 (30)	18
PWM	PETRA III	200 - 600	60 - 120	2-3 V	100 (10)	20
PWM Cor.	PETRA III	±5 - ±55	±40 - ±60	2-3 V	500 (10)	20

- ✓ Electron-Positron Collider in 1980s
- ✓ Pre-accelerator for HERA
- ✓ 2.3 km circumference
- ✓ Analog or Digital regulation
- ✓ Mix of technologies and topologies

LS-SR: Max IV (Sweden, under construction)

Mag PC (3 GeV)	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (bit)	Accuracy (ppm)
Main Dip	450 - 750	145 - 210	±10	±10	16	±100
Dip strip	175	44 - 80	±1000	±1000	16	±1000
Quad	44 - 85	9 - 44	±100	±100	16	±1000
Sxtp	66 - 86	8 - 20	±100	±100	16	±1000
Octp	58 - 217	45 - 104	±100	±100	16	±1000
Corr SR	±5	±8	±25	±25	18	

✓ 3 GeV

- ✓ 528 m circumference
- ✓ About 1000 Power converters (overall)
- ✓ Full Energy Linac Injector
- ✓ Two SR (1.5 and 3.0 GeV)

LS-FEL: LCLS (SLAC, USA, first beam 2009)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)
Intermediate PS	Up to 375	Up to 200	100 rms	100 rms
Corr	±6 - ±30	±40	400 rms	30 rms

✓ 13,6 GeV

✓ 1000 m length

CERN Course on Power Converters, Baden (CH)

LS-FEL: FERMI (Italy, first beam 2011)

Mag	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (bit)
Dipoles	50 - 750	15 - 55	500	100	16
Q	5 - 100	10 - 30	25 - 500	10 - 100	16
Corr	±5 - ±20	±10 - ±20	25 - 30	10 - 15	16

✓ 1.5 GeV

- ✓ 360 m length
- ✓ 400 Power Converters
- ✓ 37 types of magnets
- ✓ 17 types of PC (2 cover 88%)

LS-FEL: SwissFEL (PSI, CH, under Construction)

Туре	lout (A)	Vout (V)	Ripple [10 Hz – 30 kHz] (ppm)
1-Quadrant IGBT	220	40-100	50
4-Quadrant IGBT	±150 - ±200	±40 - ±1100	3.5 - 50
4-Quadrant MOSFET	±10 - ±50	±10 - ±20	10 - 100

✓ 2.1 – 5.8 GeV

- ✓ 740 m length
- ✓ 600 Power Converters
- ✓ Feedback System for correcting slow drift
- Absolute Accuracy not a key factor

LS-FEL: XFEL (DESY, D, under Construction)

Note	Туре	lout (A)	Vout (V)	Ripple (Vout rms)	Accuracy (ppm)	Res'n (bit)
SCR	Main	600 - 800	200 - 350	1% f.s.	100	20
PWM	Chopper	200 - 600	60 - 120	1.5 - 3	100	20
PWM	Small Main	5 – 10	40 - 60	2 - 3	100	20
PWM	Correctors	±5 - ±10	±40 - ±60	2 - 3	100	20

- ✓ 17.5 GeV (up to 20 GeV)
- ✓ 3.4 km length
- ✓ Super Conductive Linac
- \checkmark Mix of technologies and topologies
- Fully digital regulation (analog for correctors)

Light Sources – Booster Synchrotrons

- "White Circuit" (since 1956)
- ✓ Two (AC + DC) Power Converters
- ✓ Resonating Circuit sinusoidal
- ✓ "High" frequency (10 Hz, 12 Hz)
- ✓ High Voltage

A 3-BEV HIGH INTENSITY PROTON SYNCHROTRON

M.G. WHITE, F.C. SHOEMAKER and G.K. O'NEILL Princeton University, Princeton (N. J.) (presented by M. G. White)

Fig. 5. Magnet power circuit with distributed capacitor bank (Drawn for magnet with 8 sections.)

"Direct Ramping" (after1998)

- ✓ Direct connection to Power converter
- ✓ Not-Sinusoidal ramping
- ✓ "Low" frequency (1 Hz, 3 Hz)

✓ "Low" Voltage

"White Circuit"

✓ BESSY II (HZB, D, 1998)

"Direct Ramping"

- ✓ SLS (Switzerland, 2000)
- ✓ LNLS (Brazil, 2001)
- ✓ Soleil (France, 2005
- ✓ DLS (UK, 2005)
- ✓ Elettra (Italy, 2007-2008)
- ✓ ALBA-CELLS (Spain, 2010)

LS-BS: BESSY II (HZB, D, 1998)

Туре	lout (A)	Vout (V)	Long Term (ppm)	Peak Values on Magnet Circuit
Dipole AC	778	311		
Dipole DC	1375	120	±20	2211 A/ 3112 V @ 10 HZ
Quad AC	200	184		
Quad DC	340	70	±20	492 A / 527 V @ 10 HZ

"White Circuit"

LS-BS: SLS (PSI, CH, 2000)

Туре	lout (A)	Vout (V)	Short Term (ppm)	LongTerm (ppm)
Dipole	950	±1000	10	100
Quadrupole	140	±120	100	100

- ✓ Repetition rate: 3Hz
- ✓ First fully digital control for all Power converters of an accelerator
- ✓ 100 MeV to 2.7 GeV
- $\checkmark\,$ 1 PC for all dipoles in series

LS-BS: LNLS (Brazil, 2001)

Туре	lout (A)	Vout (V)	Short Term (ppm)	Ripple (mA)
Dipole	300	420	10	±120
Quadrupole	10	21	10	±10
Sextupole	10	26	10	±10
Correctors	±5 - ±6	±10	10	±1

- ✓ Repetition rate: 1 pulse / 6 seconds
- ✓ 120 MeV to 500 MeV
- $\checkmark~$ The Booster operates also as a SR

LS-BS: SOLEIL (France, 2005)

Туре	lout (A)	Vout (V)	Accuracy (ppm)	PC Number
Dipole	±580	±1000	50	2
Quadrupole	±250	±450	50	2
Sextupole	±30	±30	50	2
Correctors	±1.5	±2.5	50	44

- ✓ Repetition rate: 3 Hz
- ✓ 100 MeV to 2.75 GeV
- ✓ Dipoles in series but "split" on 2 PC
 - Peak voltage ≤1000 V

CERN Course on Power Converters, Baden (CH)

LS-BS: DLS (UK, 2005)

Туре	lout (A)	Vout (V)	Reproducibility (ppm)	Resolution (ppm)	PC Number
Dipole	1000	±2000	±50	±4	1
Quadrupole	200	±421	±50	±4	2
Sextupole	20	±60			2

- ✓ Repetition rate: 3 Hz (5 Hz Max)
- ✓ 100 MeV to 3 GeV
- ✓ Dipoles in series, 1 power converter
- ✓ Modular design

LS-BS: Elettra (Italy, 2007-2008)

Туре	lout (A)	Vout (V)	Accuracy (ppm)	PC Number
Dipole	800	±1000	±15	2
Quadrupole	±400	±400	50	2
Sextupole	±35	±35	50	2

- ✓ Repetition rate: 3 Hz
- ✓ 100 MeV to 2.5 GeV
- $\checkmark\,$ Dipoles in series but "split" on 2 PC
 - Peak voltage ≤1000 V

Iout PSQD
lout PSQF
lout PSB1 & PSB2

LS-BS: CELLS-ALBA (Spain, 2010)

Туре	lout (A)	Vout (V)	Stability (ppm)	Resolution (ppm)	Reproducibility (ppm)	PC Number
Dipole	±750	±1000	±15	5	±50	2
Quadrupole	±180	±120 - ±750	±15	5	±50	4
Sextupole	±8	±70	±50	15	±100	2
Correctors	±6	±12	±50	15	±100	72

- ✓ Repetition rate: 3 Hz
- $\checkmark~$ 100 MeV to 3 GeV
- $\checkmark\,$ Dipoles in series but "split" on 2 PC
 - Peak voltage ≤1000 V

CERN Course on Power Converters, Baden (CH)

Remarks and Conclusions

- ✓ Few examples from a vast world of PCs
- ✓ Clear differences among Accelerators' applications
 - Maximum current
 - Output current stability
 - Output current reproducibility
 - Output current accuracy
 - Output current di/dt (dynamics)
- ✓ Same application, different requirements
 - Accelerator type
 - Accelerator age
 - New technologies in PC field (components, low-level control, and local control)
 - New technologies in feedback and remote control fields (higher level)

Example: Storage Rings' Corrector power supplies

Storage Rings' Corrector power supplies

Facility	lout (A)	Vout (V)	Long Term (ppm)	Ripple (ppm)	Res'n (bit)	Туре
Elettra (1993)	±16	±80	±500	±50	16	Bipolar Linear
APS (1995)	±150	±20	±30	±1000	13	
LNLS (1997)	±10	±10	±1000	±100	16	Bipolar Linear
SLS (2000)	±7	±24	100	15	18	PWM
Soleil (2006)	±7 - ±14	±3.5 - ±14	20 - 50		16 - 18	PWM
DLS (2006)	±5	±20			18	PWM
ALBA (2010)	±12	±60	±20	10	18	PWM
Max IV ()	±5	±8	±25	±25	18	PWM

Strong integration in particle trajectory/orbit feedback systems:

- Fast particle beam position monitors (detectors)
- Fast connection to control systems
- Real-time environment

•

- ✓ My colleagues of the Power Supplies Laboratory at Elettra
- Colleagues from Facilities worldwide (private comm.):
 H.-J. Eckoldt (DESY), K. Holland (FRIB), R. Kuenzi (PSI), S. Murphy (ISIS), R. Petrocelli (ALBA), C. Rodriguez (LNLS), P. Tavares (MaxIV), J. Wang (APS)
- ✓ Power Converter Companies (Not Traceable info!)
 - Bruker/SighmaPhi Electronics
 - EEI
 - OCEM

- ✓ Facilities' web sites
- Joint Accelerator Conferences Website http://www.jacow.org/index.php?n=Main.Proceedings
- ✓ Wikipedia

http://en.wikipedia.org

More sources (not free)

✓ IEEEXplore Digital Library

http://ieeexplore.ieee.org/xpl/conferences.jsp (available for IEEE members or purchase)

European Power Electronics And Drives Conferences

http://www.epe-association.org/epe/index.php (available for download to EPE members)

Thank you!

CERN Course on Power Converters, Baden (CH)

Roberto Visintini – May 14th, 2014 61

www.elettra.eu