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Suitable Filter Structures
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H-Bridge
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H-Bridge with CM filter
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2nd order filter - Transferfunction

R. Künzi      Power Filter Design     CAS 2014      10.05.2014 6

� � �
1

��� �
1

�	 �
1
�	�

�
�	�	� � 1

���	�	�

 � ��� � �	��


 � � 	
�
 �

�� �
�

����

��� � ����
�

R�C�s � 1

L�C�R�C�	s
� � L� C� � C� s


 � R�C�s � 1

�� � �	�	

�
 � �� �� � �	

�� � �����	�	


 � � 	
��� � 1

���
� � �
�


 � ��� � 1
with

3rd order PT
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1st order PD
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3rd order PT in its
normalized form:

(2)
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By expanding (2) and comparing the coefficients with (1) we get:
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(3a)

(3b)

(3c)

The 3 independent equations (3a….3c) contain 5 unknowns (L1, C1, RD, CD and 
ω0). Therefore we have the choice to select 2 of them and the remaining 3 depend 
on that selection.



2nd order filter - Selection of ω0
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For a given frequency ωB well in the blocking area (ωB >> ω0) we can define the 
desired attenuation GB. In the blocking area the highest order terms of both the nu-
merator and denominator in equation (1) dominate, therefore (1) can be simplified to:
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For cost reasons L1 should 
be as small as possible, 
but a too small inductance 
will result in an excessive 
ripple current!

The DC-voltage across C1 is m*VDC. When the IGBT is on, the current in L1 increases 
and the peak-peak ripple current ∆IL1 can be calculated:

"#� � �� ∙
$%#�

$&
� "	' − "'� � "	' ∙ 1 − (

∆*#�� ( ∙ + ∙
$%#�

$&
� ( ∙

1

,-
∙
"	' ∙ 1 − (

��
�
"	' ∙ 1 − ( ∙ (

,- ∙ ��

�� �
"	' ∙ 0.25

,- ∙ ∆*#�

Maximum 0.25 
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Alternative approach to determine L1:
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Substitute (3a) in (3c) and we receive:
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Selection: L1 and ω0 Selection: C1 and ω0 Selection: L1 and C1
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Solve (3b) for CD:

Solve (3a) for RD:

(7a) (7b) (7c)

(8)

(9)
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• DC-link voltage: 200V
• DC-link current: 500A
• ∆IL1 ≤ 50App.
• C1 must be ≥ 22mF (because of high ripple current) 

Design a 2nd order filter for all three given optimization methods and compare the results.
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Select L1 to meet the ripple 
current requirement:

Select C1:

Calculate the remaining 
filter elements 

(6)

(7c, 8, 9)

�� �
��_345567_55

2 ∙ 8 ∙ ,345567 ∙ *#�_345567_55

�� �
200 ∙ 0.13 "::

2 ∙ 8 ∙ 300�;� ∙ 50<::
� 300=>

�� � 22(?



2nd order filter – Example 1

R. Künzi      Power Filter Design     CAS 2014      10.05.2014 15

x3 x5 x8

Results:
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Maximum amplitude of resonance:
Butterworth 4.5 dB
Bessel 3.1 dB
Critical damping 2.3 dB

Frequency, for -3 dB attenuation:
Butterworth 74 Hz
Bessel 67 Hz
Critical damping 59 Hz

Attenuation: -28dB @ 300Hz
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• DC-link voltage: 120V
• fs = 20kHz
• IOut_max = 500A
• ∆IL1 ≤ 50App.
• Attentuation: GB = 250  @ ωB = 2*π*20kHz

Same premises as
for example 3

Design a 2nd order filter for all three given optimization methods and compare the results.
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Select L1 to meet the ripple 
current requirement:

Select ω0 to meet the 
attenuation requirement:

Calculate the remaining 
filter elements 

(5)

(7a, 8, 9)
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x3 x5 x8

Results:
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Maximum amplitude of resonance:
Butterworth 4.5 dB
Bessel 3.1 dB
Critical damping 2.3 dB

Frequency, for -3 dB attenuation:
Butterworth 1.5 kHz
Bessel 1.4 kHz
Critical damping 1.2 kHz

Attenuation: -48dB @ 20kHz
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1st order PD

5th order PT

(10)
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5th order PT in its normalized form:

(11)
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Optimisation methods:
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By expanding (11) and comparing the coefficients with (10) we get:
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(12a)

(12b)

(12c)

(12d)

(12e)
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The 5 independent equations (12a….12e) contain 7 unknowns (L1, C1, L2, C2, RD, CD
and ω0). Therefore we have the choice to select 2 of them (ω0 and L1) the remaining 5 
depend on that selection.

For a given frequency ωB well in the blocking area (ωB >> ω0) we can define the 
desired attenuation GB. In the blocking area the highest order terms of both the 
numerator and denominator in equation (10) dominate, therefore (10) can be 
simplified to:
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Select L1 according to ripple current requirements with (5) or (6)
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By solving the equation system (12a……12e) we get:

�� �
�� � �
 � ��

��

�� �
�
�� � ���
 � ���� � ���
�� � ���


��
�

�
 �
�� � �
�� � �
 � ���� � ���


��



�B �
�
�� � ���
�� � �����


��
B

�A �
���
��

��
A

�
 �
��

����B − �
�A�����
 − ���

����B−�A�

 − 1

�
 �
�A����
 − ���

������B−�A���� � �
�

�� �
�A

�����
�


�	 �
���A

�
����B − �A�

�	 �
��

�	

with

(14a)

(14b)

(14c)

(14d)

(14e)



4th order filter – Example 3

R. Künzi      Power Filter Design     CAS 2014      10.05.2014 27

Design a 4th order filter for all three given optimization methods and compare the results.

• DC-link voltage: 120V
• fs = 20kHz
• IOut_max = 500A
• ∆IL1 ≤ 50App.
• Attentuation: GB = 250  @ ωB = 2*π*20kHz

Same premises as
for example 2
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Select L1 to meet the ripple 
current requirement:

Select ω0 to meet the 
attenuation requirement: �� � �� ∙
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Calculate the remaining 
filter elements 

(5)

(14a….e)

(13)
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Results:
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Maximum amplitude of resonance:
Butterworth 8.6 dB
Bessel 5.4 dB
Critical damping 3.8 dB

Frequency, for -3 dB attenuation:
Butterworth 5.5 kHz
Bessel 5.0 kHz
Critical damping 3.9 kHz

Attenuation: -48dB @ 20kHz
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+64%

+42%



Comparison of different filter designs

R. Künzi      Power Filter Design     CAS 2014      10.05.2014 32



Practical Aspects - Wiring

• Effect of a 0.5m long
wire 16mm2 (wiring of C1
and C2)
– Skin Effect

• Skin depth in Cu @ 
20kHz: 0.5mm

• Reduces the effective
cross section to 6.3 mm2

• Wire resistance @ 
20kHz: 1.4mΩ

– Wire inductance is
approx. 0.5µH
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To be avoided !



Practical Aspects – low inductive setup
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C1

L1

L2

C2

RD

CD



Life time of electrolytic capacitors
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The useful life time of an electrolytic capacitor depends very 
much on the ripple current and the ambient temperature. 

• Nominal ripple current at
• nominal frequency (100Hz) and 
• nominal capacitor temperature (85ºC).
• 17.4A in our example



Life time of electrolytic capacitors
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Apply frequency factor: 

For 10kHz a current factor
of 1.35 is applicable
→ 23.5A @ 10kHz



Life time of electrolytic capacitors
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Determine the allowed ripple 
current for a desired useful 
life and Ta:

For 25’000h (3 years)
and Ta = 50ºC,
→ 2.6 * 23.5A = 61A

For 250’000h (30years)
and Ta = 50ºC 
→ 0.85 * 23.5A = 20A

The useful life time dramatically decreases at higher ambient temperatures! 
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