

What we will do ...

... introduce some "funny" keywords that you always wanted to understand and never really asked for.

```
trajectory / closed orbit / tune / resonances / chromaticity & dispersion
Higgs / structure of matter / beam emittance / adiabatic shrinking
beam size / beta function, focusing matrix / lattice cell
mini-beta insertion / "beta-star" / dynamic aperture
```

... and why do the particles not follow gravity and just drop down to the bottom of the vacuum chamber (... or do they do so ?)

Transverse Beam Dynamics I

Linear Beam Optics / Single Particle Trajectories / Magnets and Focusing Fields / Tune \& Orbit

Luminosity Run of a typical storage ring:
intensity (10 ${ }^{11}$)

\rightarrow guide the particles on a well defined orbit (,"design orbit")
\rightarrow focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

, ... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

$$
\begin{aligned}
& \text { Lorentz force } \quad \vec{F}=q *(\vec{v} \times \vec{B}) \\
& \text { typical velocity in high energy machines: } \quad v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example:

$$
\begin{gathered}
B=1 T \rightarrow F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \\
F=q * \underbrace{300 \frac{\mathrm{MV}}{\mathrm{~m}}}_{\begin{array}{l}
\text { equivalent } E \\
\text { electrical field: }
\end{array}}
\end{gathered}
$$

Technical limit for electrical fields:

$$
E \leq 1 \frac{M V}{m}
$$

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit
\rightarrow Magnetic Guide Field

condition for circular orbit:

Lorentz force

$$
F_{L}=e v B
$$

centrifugal force

$$
\begin{aligned}
& F_{\text {centr }}=\frac{\gamma m_{0} v^{2}}{\rho} \\
& \left.\frac{\gamma m_{0} v^{\gamma}}{\rho}=e\right\rangle B
\end{aligned}
$$

Dipole Magnets: define the ideal orbit homogeneous field created by two flat pole shoes

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$
B \approx 1 \ldots 8 T
$$

The dipole magnets of a storage ring (or synchrotron) create a circle (... better polygon) of circumference $2 \pi \rho$ and define the maximum momentum of the particle beam.

Example LHC: $\longrightarrow \quad 2 \pi \rho=17.6 \mathrm{~km}$

$$
\approx 66 \%
$$

About 1/3 of the ring size is still needed for straight sections, rf cavities, diagnostics, injection, extraction, high energy physics detectors etc etc

The Problem:

LHC Design Magnet current: I=11850 A

and the machine is $\mathbf{2 7} \mathbf{~ k m}$ long !!!
Ohm's law: $\quad U=R * I, \quad P=R * I^{2}$

Task:
with $I=12000 A$ we have to reduce
Born ohmic losses to the absolute minimum

17 March 1789
Erlangen, Germany

The Solution: Super Conductivity ... and why we run at 1.9 K

discovery of sc. by H. Kammerling Onnes,

Leiden 1911

thermal conductivity of fl. Helium in supra fluid state

LHC: The -1232- Main Dipole Magnets

required field quality: $\Delta B / B=10-4$

$6 \mu \mathrm{~m}$ Ni-Ti filament

3.) Focusing Properties - Transverse Beam Optics

... keeping the flocs together:
In addition to the pure bending of the beam we have to keep 10^{11} particles close together

Quadrupole Magnets:

Storage Rings: linear increasing Lorentz force to keep trajectories in vicinity of the ideal orbit
linear increasing magnetic field

$$
B_{y}=g \boldsymbol{x} \quad B_{x}=g \boldsymbol{y}
$$

$$
F(x)=q * v^{*} B(x)
$$

LHC main quadrupole magnet

$$
\boldsymbol{g} \approx 25 \ldots 220 \mathrm{~T} / \mathrm{m}
$$

Table 7.13: Parameter list for main quadrupole magnets (MQ) at 7.0 TeV

Integrated Gradient	690	T
Nominal Temperature	1.9	K
Nominal Gradient	223	$\mathrm{~T} / \mathrm{m}$
Peak Field in Conductor	6.85	T
Temperature Margin	2.19	K
Working Point on Load Line	80.3	$\%$
Nominal Current	11870	A
Magnetic Length	3.10	M
Beam Separation distance (cold)	194.0	mm

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{\beta} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet
$\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

4.) A Bit of Theory

The large Storage Rings and „Synchrotrons"

The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} n<x^{2}+\frac{1}{3!}+x^{3}+\ldots
$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:
Split the magnets and optimise them according to their job:
bending, focusing etc

Example:
heavy ion storage ring TSR
*

The Equation of Motion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}+k\right)=0
$$

$x=$ particle amplitude
$x^{\prime}=$ angle of particle trajectory (wrt ideal path line)

Equation for the vertical motion:

$$
\begin{gathered}
\frac{1}{\rho^{2}}=0 \quad \text { no dipoles ... in general ... } \\
k \leftrightarrow-k \quad \begin{array}{c}
\text { quadrupole field changes sign } \\
\rightarrow \text { UPSSSSS }
\end{array} \\
y^{\prime \prime}-k y=0
\end{gathered}
$$

Remarks:

* $\quad x^{\prime \prime}+\left(\frac{1}{\rho^{2}}-k\right) \cdot x=0$

$$
\boldsymbol{k}=0 \quad \Rightarrow \quad x^{\prime \prime}=-\frac{1}{\rho^{2}} \boldsymbol{x}
$$

... there seems to be a focusing even without a quadrupole gradient
,weak focusing of dipole magnets"
even without quadrupoles there is a retriving force (i.e. focusing) in the bending plane of the dipole magnets
... in large machines it is weak. (!)

Mass spectrometer: particles are separated according to their energy and focused due to the $1 / \rho^{2}$
effect of the dipole

$$
\begin{aligned}
& x^{\prime \prime}+\left\{\frac{1}{\rho^{2}}-k\right\} x=0 \\
& x^{\prime \prime}(s)+\left\{\frac{1}{\rho^{2}(s)}-k(s)\right\} x(s)=0
\end{aligned}
$$

... this equation is not correct !!!

bending and focusing fields ... are functions

 of the independent variable „s"Inside a magnet we assume constant focusing properties!

$$
\frac{1}{\rho}=\text { const } \quad k=\text { const }
$$

Field or multipole component

$$
B \boldsymbol{I}_{e f f}=\int_{0}^{I_{\operatorname{mag}}} \boldsymbol{B} d s
$$

5.) Solution of Trajectory Equations

Define ... hor. plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
\boldsymbol{x}^{\prime \prime}+\boldsymbol{K} \boldsymbol{x}=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l})
\end{array}\right)
$$

hor. defocusing quadrupole:

$$
x^{\prime \prime}-\boldsymbol{K} x=0
$$

Remember from school:

$$
f(s)=\cosh (s), \quad f^{\prime}(s)=\sinh (s)
$$

Ansatz: $\quad x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s) \quad M_{\text {defoc }}=\left(\begin{array}{cc}\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\ \sqrt{|K|} \sinh \sqrt{|K|} & \cosh \sqrt{|K|} l\end{array}\right)$
drift space: $K=0$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

Combining the two planes:

Clear enough (hopefully ... ?) : a quadrupole magnet that is focussing in one plane acts as defocusing lens in the other plane ... et vice versa.
hor foc. quadrupole lens

$$
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K| s} \\
-\sqrt{|K|} \sin (\sqrt{|K| s}) & \cos (\sqrt{|K|} s)
\end{array}\right)
$$

matrix of the same magnet in the vert. plane: $\quad M_{\text {defoc }}=\left(\begin{array}{cc}\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K| l} \\ \sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K| l}\end{array}\right)$

$$
\left(\begin{array}{l}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)_{f}=\left(\begin{array}{cccc}
\cos (\sqrt{|k|} \mid s) & \frac{1}{\sqrt{|k|}} \sin (\sqrt{|k|} s) & 0 & 0 \\
-\sqrt{|k|} \sin (\sqrt{|k|} s) & \cos (\sqrt{|k| s} & 0 & 0 \\
0 & 0 & \cosh (\sqrt{|k|} s) & \frac{1}{\sqrt{|k|}} \sinh (\sqrt{|k|} s) \\
0 & 0 & \sqrt{|k|} \sinh (\sqrt{|k|} s) & \cosh (\sqrt{|k|} \mid
\end{array}\right) *\left(\begin{array}{l}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)_{i}
$$

* we can calculate the trajectory of a single particle, inside a storage ring magnet (lattice element)
* for arbitrary initial conditions $\mathrm{x}_{0}, \mathrm{x}^{\prime}{ }_{0}$
* we can combine these trajectory parts (also mathematically) and so get the complete transverse trajectory around the storage ring

$$
M_{t o t a l}=M_{Q F} * M_{D} * M_{Q D} * M_{B \mathbf{e n d}} * M_{D * \ldots . .}
$$

Beispiel:
Speichering für Fußgänger
(Wille)

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices

$$
\begin{gathered}
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D^{*} \ldots \ldots} \\
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
\end{gathered}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator !!!
typical values in a strong foc. machine:

LHC Operation: Beam Commissioning

First turn steering "by sector:"
-One beam at the time
\square Beam through 1 sector ($1 / 8$ ring), correct trajectory, open collimator and move on.

6.) Orbit \& Tune:

Tune: number of oscillations per turn

64.31
59.32

Relevant for beam stability: non integer part

LHC revolution frequency: 11.3 kHz

$0.31 * 11.3=3.5 \mathrm{kHz}$

... and the tunes in x and y are different.
i.e. we can apply different focusing forces in the two planes
i.e. we can create different beam sizes in the two planes

Dipole Magnets
... bend the particle trajectories onto a "polygon" (... welll kind of ring),
... define the geometry of the machine
... define the maximum momentum (... or energy) that the particle beam will have
... have a small contribution to the focusing of the beam

Quadrupole Magnets
... focus every single particle trajectory towards the centre of the vacuum chamber
... define the beam size
... „produce" the tune
... increase the luminosity

Trajectory
... under the influence of the focusing fields the particles follow a certain path along the machine. They are oscillating transversely, while moving around the "ring".

Closed Orbit ...
... There is one (!) trajectory that closes upon itself. It is given by the foc. fields and it is what we "see" when we observe the BPM readings
of the stored beam.
... The single particle will perform transverse oscillations and so the single particle trajectories will oscillate (= betatron oscillations) around this closed orbit.

The Tune ...
is the number of these transverse oscillations per turn and corresponds to the "Eigenfrequency" or sound of the particle oscilations.
There is a tune for the horizontal, the vertical and the longitudinal oscillation.
And we could even hear it ... if there were no vacuum.

