Short Introduction to

(Classical) Electromagnetic Theory

( .. and applications to accelerators)

(http://cern.ch/Werner.Herr/CAS2018_Archamps/eml.pdf)
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Variables, units and (CERN) conventions

Maxwell’s equations relate Electric and Magnetic fields from charge and
current distributions (Sl units).

=  electric field [V/m]
=  magnetic field [A/m]
electric displacement [C/m?]

magnetic field [T]

electric charge [C]

electric charge density [C/m"]

ST R o O =
Il

current density [A/m?]

permeability of vacuum, 4 7-10"" [H/m or N/A?]
permittivity of vacuum, 8.854 -10~'% [F/m]

c =  speed of light, 2.99792458 -10° [m/s]

=

0



It is all about interactions ....

Electromagnetic fields reveal themselves only through their interaction
with particles

Conveniently described by abstract models, i.e. vectors and potentials:

(Classical) fields are models of "reality”

Used here: fields in vacuum:

Electric phenomena: D

—

Magnetic phenomena: B

Electric and Magnetic potentials: ¢ and A

These are well described by Maxwell's equations

Note: theory of electromagnetism and electrodynamics is not complete
without Special Relativity ...



Objectives:

Establish (non-relativistic) Maxwell’s equations

Using a physical and relaxed/informal approach

Use them in these lectures to get relevant physics

(wave guides, cavities, magnet and cable design, energy ramping ...

Note: a simple list of formulae won’t do (but there are quite a
number of slides as a reference) !

Look at some mathematics first

Extension of previous lecture (R.S.), more related to this lecture

Required to formulate Maxwell’s equations but no need to
understand details (just follow me step by step)

Initially look abstract, but provide a much better intuitive picture

)



Recap: Vector Products (sometimes cross product)

Define a vector product for (usual) vectors like: @ x b,

a = (xaayaaza> b = (Cﬁb,yb,zb)
a X g = (ajaayaaza) X (wbaybazb)
:(ya‘zb_za'yﬁa Za Tb = Ta " 2, an'yb—ya‘CClz)

~~
Tab Yad Zab

This product of two vectors is a "vector”, not a number

Example:
(—2,2,1) x (2,4,3) = (2,8,—12)



Need also Scalar Products (essential for Relativity)
Define a scalar product for (usual) vectors like: @ - b,
d = (Ta,Ya,Za) b = (b, Yb, 2b)

Multiplication element by (corresponding) element:

C_I:E — (xayya,za> ) (xbyybazb):(xa'xb + Ya * Yb + Za,'zb)
S—— N—— S——

This product is a "scalar” (single value), not a vector.

Example:
(-2,2,1) - (2,4,3) = =22 +2-44+1-3 =7



Differentiation with vectors - several options:

Input or output can be a vector
Input or output can be a scalar (e.g. a function like: ¢(x, y, z))

One defines a special vector V

called the "gradient”: V = (=, = —)

Can be used like a vector (e.g. in vector and scalar products), for

example:

0F n OF5 n OF3
ox oy 0z
~ ((9F3 oF, O0Fy 0Fs; O0F, (9F1>

V.-F =

Oy 0z 0z or’  Ox oy




Specific example for the last operation on a scalar function ¢(x,y, z):

o o 0 96 06 8¢
(833’ Oy’ 8z)¢ N (833’ oy’ 82)

Vo = = (Gg,Gy,G2)

and we get a vector G. ltisa "slope” in the 3 directions.

Example: ¢(z,7,2) = 0.12° —0.2zy + 2°

0
( a—i \ [ 022002y )
0
V é(z,y,2) = a—;b _ —0.2x
% 2z

Vo= )\ /



—

V is very versatile !

V can be used like a "normal” vector in all products and can act on a
scalar function ¢ (e.g. Potential) as well as on a vector F' (e.g. Force)

but the results are very different:

V- F is ascalar ( e.g. "density” of a source, see later)
V-¢ is a vector ( e.g. electric field E, force )
V x Fis a pseudo-vector ( e.g. magnetic induction B )

V-V iscalled A (another important one !)

also contraptions like: V x (Vx F), V- (VxF), Vx(F xF).

If bored, prove: V x (VxF) = V-(V-F) — AF



Two operations with V have special names:

DIVERGENCE (scalar product of V with a vector):

. — def = % 8F2 8F3
div(F) = V-F = 8x+8y+8z

Physical significance: ”amount of density”, (see later)

CURL (vector product of V with a vector):

OFs O0Fy, OF1 O0Fs O0F%

OF,

cul(F) = VxF = (8y_8z’ dz  dx O

Physical significance: ”amount of circulation”, (see later)

Oy

)



Example: Coulomb field of a point charge Q

A charge Q generates a field E(r) according to :

depends only on r (rather: —)
”

all field lines pointing away from charge (source) : 7

expect that divergence div E has something to tell =
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We can do the (non-trivial*)) computation of the divergence:

- - dE dE dE
dvE = VE = &= 4 v 22 P
dx dy dz €0
(negative charges) (positive charges)
V-E<O0 V-E>0

Divergence related to charge density p generating the field E

Charge density p is charge per volume: p = Q —  [[[padV

v

*) see backup slides if interested



How to quantify electric (or magnetic) fields ?

Count field vectors (somehow)

passing through an area

Counting is Integrating

field E

area A

/ Q = ffﬁdff

() is the flux through the area A

- Larger field - more flux

- Larger area - more flux

What if the area is closed, i.e. a surface ?



Integrating fields (2D) - add field lines through the boundary:

ql ql
g3 ql 33 q3 gl 93
g 9 a5 gg az as
q4 g4
[ E dA = +4q [ EdA=
As Ay

Any closed surface around charges " counts” the charges enclosed
(independent of shape 1) !

=9 |f positive: total net charge enclosed positive
=% |f negative: total net charge enclosed negative

== |f zero: no charges enclosed




If the shape does not matter - make it a sphere (because it is easy to
compute):

\ closed surface (A)
\‘ Q = [[E-dA
A
dsed voum

Count how many go in ¢;, and how many go out ¢,

== Difference is the flux through the sphere

Measures somehow what is diverging from the inside ...

Sounds like we should make some use of div ?7?



Used in the following: Gauss’ theorem to evaluate flux integral:

[[E-dA= [[[V-E-dV or
A |4

[[E-dA= [[[div E-dV

Integral through closed surface

(flux) is integral of divergence

in the enclosed volume

Surface integral related to the divergence from the enclosed volume

Sum of all sources inside the volume gives the flux out of this region

(remember the pictures a few slides ago)



More formal: Maxwell’s first equation using Gauss’s

The higher the charge density:
- The larger the divergence of the field

- The more comes out/diverges




What about magnetic fields ? ...

> Field lines of B are always closed

> They have a direction (by definition): magnetic field lines from
North to South

> Qfcv: which is the direction of the earth magnetic field lines ?

What about divergence of magnetic fields ?



Enclose it again in a surface:

What goes into the closed surface also goes out

—

=P Maxwell’s second equation: VB = divB = 0

==» Physical significance: (probably) no Magnetic Monopoles



Enter Faraday

Again look at the flux through an area (enclosed by a coil)

static flux: Q = /é .dA changing flux : — /(5’—

=

static

A

/i

Moving the magnet changes the flux (density or number of lines)
through the area —

Induces a circulating (curling) electric field E in the coil which " pushes”
charges around the coil —

Current | in the coil  (observe its direction ..)



Experimental evidence:

It does not matter whether the magnet or the coil is moved:

J <A




Experimental evidence:

It does not matter whether the magnet or the coil is moved:

J <A

If you think it is obvious - not for everybody :

This was the reason for Einstein to develope special relativity !!!




A changing flux 2 through an area A produces circular electric field E,

" pushing” charges —> a current /

flux €
o0f 0
A C
N——

pushed charges

Flux can be changed by:
- Change of magnetic field B with time ¢ (e.g. transformers)

- Change of area A with time ¢ (e.g. dynamos)

How to count ”pushed charges” /E -dr is a line integral
C



Everyday example ..

Great Circle Route o

Jetstream Route

Line integrals: sum up " pushes” along the two Lines/Routes

Optimize: e.g. fuel consumption, time of flight

Note : /ﬁ-d?” can be written as /Vxﬁ-dﬁ’ or //curlﬁ-dﬁ
C A A



Used in the following: Stoke’s theorem

Line Integral of a vector field . . -
e ——————— §F.di = [[VxF-dA or
A C A
| $F-dF = [[curl F-dA
C A

obviously : div F =0

Summing up all vectors inside the area: net effect is the sum along the

closed curve

= measures something that is " curling” inside and how strongly



One case use this theorem for a coil enclosing a closed area

/——dA /VxEdA 7{]5 a7
A

Stoke’s formula

0B .
_ — E
5 V X

VO
same Integration

Re-written: changing magnetic field through an area induces curling

electric field around the area (Faraday)

Maxwell’ 3rd equation —%—lf = VxFE = curl E




Next: Maxwell’s fourth equation (part 1) ...

From Ampere’s law, for example current density ;

—

V x B :%B-dfz 1]
C

”amount” of charges through area A

,uof dA = o I (total current)

b\ .|

Static electric current induces circular magnetic field (magnets !)

Using the same argument as before:

VXEZMoj




For a static electric current I in a single wire we get Biot-Savart law
., we can easily do the integral):

(using the area of a circle A =r

Current
B = &7{;. rodr
r

Induced magnetic B =
field 2T r

Application: magnetic field calculations in wires



Part 2: Maxwell’s fourth equation

Charging capacitor: Current enters left plate - leaves from right plate,
builds up an electric field between plates produces a " current”

during the charging process

—
E
- - -

Jd Jd
—_— S—— —
I —_— |

_—
_—
+Q -Q




Part 2: Maxwell’s fourth equation

Charging capacitor: Current enters left plate - leaves from right plate,
builds up an electric field between plates produces a " current”
during the charging process

Displacement Current :

This is not a current from charges moving through a wire

This is a " current” from time varying electric fields

Once charged: fields are constant, (displacement) " current” stops



Cannot distinguish the origin of a current - apply Ampere’s law to j4

== Displacement current j; produces magnetic field, just like

"real currents” do ...

|

= Time varying electric field induces circular magnetic field (using the

current density j;)

_ . dE
V X B = ojqd = €opo—-



Magnetic fields B can be generated by two different currents:

V x B=poj (electrical current)

OF

5 (changing electric field)

V X B = pojaq = €ofto——

or putting them together to get Maxwell’s fourth equation:

V x B = po(j + ja) = poj + eopto—or 5

or in integral form:

— ok
VX B-dA= <u03+eoﬂo at>
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Written in Integral form



Qi =

=S SNVZNZ N BN
/Av \\\—‘ E

-/)//4
\

N% YgEng W W s
;\V{:—\\/) ’/\\M\\\“&\ b //,“ A\\\\\
VE =
€0

<

oy

|
o

dt
V x B =poj + poco—r

Written in Differential form (my preference)

=l 2 \\\ “\W"W .g\\" RN ,§“|n
WSS 2 NELS £ WS/ INS

dE
dt



Why
div E = I
€0
, dB
| E = ———
cur dt
div B =0

dE

curl B = ugj —
ur foJ + Ho€o 7

Why Not
/E.MZQ
€0
A
e df_/(@ i
dt
C A



something (E) spreading out

777

something (E) circulating

777



Maxwell’s Equations - compact

1. Electric fields F are generated by charges and proportional
to total charge

2. Magnetic monopoles do (probably) not exist

3. Changing magnetic flux generates circular electric
fields/currents

4.1 Changing electric flux generates circular magnetic fields

4.2 Static electric current generates circular magnetic fields




Changing fields: Powering and self-induction

primary magnetic field induced magnetic field

\A

primary  induced) I}
current  current y'._/ |

magnetic field building induced current tries
to stop field building

- Primary magnetic flux B changes with changing current

=% Induces an electric field, resulting in a current and induced

magnetic field B;

=% Induced current will oppose a change of the primary current

=» |f we want to change a current to ramp a magnet ...

Have to overcome this counteraction, applying a sufficient

Voltage: if pushed, push harder



Ramp rate determines required Voltage:

o1
U=-L=

Inductance L in Henry (H)

Example:

- Required ramp rate: 10 A/s

- With L = 15.1 H per powering sector
=% Required Voltage is ~ 150 V



Lorentz force on charged particles

Note:
Lorentz force is an ad hoc addition to Maxwell equations !

Can not be derived/understood without Relativity (but then it comes

out easily !)

Moving (¥) charged (q) particles in electric (E) and magnetic (B) fields
experience the Lorentz force f

—

f = q¢(E+ 7 x B)
for the equation of motion we get (using Newton’s law);

—(m¥) = f = q-(E + ¥ x B)



Motion in electric fields

T _F,
T T g
T\ >
v EY v Fy q E
v 1L E 7| E
Assume no magnetic field:
d — —
—(mv) = = E
Force always in direction of field E, also for particles at rest.




Motion in magnetic fields

eleciron

. magnetic field

Il
&h
Il

<
<y
X
wef}

Without electric field : %(mfﬁ’)

Force is perpendicular to both, v and B

No force on particles at rest - do we understand that ?

Or is it just a fabricated story to get the right answer ?



Motion in magnetic fields

eleciron

. magnetic field

Il
&h
Il
<
<y
X
wef}

Without electric field : %(mfﬁ’)

Force is perpendicular to both, v and B

No force on particles at rest - do we understand that ?

Or is it just a fabricated story to get the right answer ?

Yes, but see next lecture ...



Particle motion in magnetic fields - made visible

e Magnetic field perpendicular to motion
e Bending radius depends on momentum
e Bending radius depends on charge

» Direction of the magnetic field B 777



Practical units:

BT)-pm = LY/

¢ [m/s]

Example LHC:
B=833T, p=7“eV/c => p=2804m

More - bending angle o of a dipole magnet of length L:

~ BIT]-L[m] 03
- p [GeV/c]

Example LHC:
B=833T,p=7000GeV/c,L=143 m =» o = 5.11 mrad



En passant: Energy in electric and magnetic fields

Energy density in electric field:

ener 1
UE = &Y = —€0E2
volume 2

Energy density in magnetic field:

energy 1 B?
UB p— p— _
volume 2 Lo

Everyday example: B =5-10° T ( = 0.5 Gauss)

=»> Up ~ 1mJ/m3



. and some really strong magnetic fields

Example : CXOUJ164710.2 — 45516

Diameter : 10 — 20 km

Field: =~ 102 Tesla

As accelerator : ~ 10'? TeV

Very fast time varying electromagnetic fields - y-ray bursts up to 10*° W



Time Varying Fields - (Maxwell 1864)

B(t)A X \ A

0 = —

Time varying magnetic fields produce circular electric fields
Time varying electric fields produce circular magnetic fields
==» Can produce self-sustaining, propagating fields (i.e. waves)

==» Rather useful picture (but without ” Relativity”: BIG problems)



In vacuum: only fields, no charges (p = 0), no current (j = 0) ...

—

0B

From V x E = 5 educated guess and juggling with V:
. 0B
— VX(VXE) :—VX(E>
. o ﬂ
— — (V°E) Z—E(VXB)
. O°E
2 _
— — (V E) = —o€o 52
2 2
V?E = po-e€o- %75 = c%%tg (same equation for B)
==» Equation for a wave with velocity: ¢ = 1t
q y: o €0

Challenge: try to derive the wave equation from the Integral Form



Electromagnetic waves

Electric

Field
Magnetic
Field

|y\1A|cycIe

Time

i(wt—k-T)

o
|

Eoe
Boe

i(wt—k-T)

Important quantities :
k| = 2t — £ (propagation vector)
A = (wave length, 1 cycle)

w = (frequency - 2m)

Magnetic and electric fields are transverse to direction of propagation:

E 1 B 1 k

Short wave length — high frequency — high energy



Spectrum of Electromagnetic waves

s
-

Increasing energy

HIIIAVAVAVAVAVA VAN

Increasing wavelength

>

0.0001 nm 0.01 nm 10 nm 1000 pm  0.01 em 1em 1m 100 m
1 | 1 1 1 1
Gamma rays Krays Ulira- Intrared Radio waves
violet
Radar TV FM AM

400 nm 500 nm G600 nm 700 nm

Example: yellow light =» ~ 5-10" Hz (i.,e. ~ 2eV!)
LEP (SR) => < 2.10°° Hz (i.e. & 0.8 MeV !)
> <

gamma rays = 3-10*' Hz (i.,e. < 12 MeV !)

(For estimates using temperature: 3 K = 0.00025 eV )



Waves in material =—» Index of refraction: n

1
vV M0 €0

Speed of electromagnetic waves in vacuum: ¢ =

Speed of light in vacuum
Speed of light in material

For water n ~ 1.33

Depends on wavelength

n ~ 132 — 1.39



Waves impacting material

Need to look at the behaviour of electromagnetic fields at
boundaries between different materials

Important for highly conductive materials in accelerators, e.g.:
> RF systems
> Wave guides

> Impedance calculations

Can be derived immediately from Maxwell’s equations
(using all  divE, divB, curlE, curlB)

Here only the results !



Boundary conditions: air/vacuum and conductor

A simple case (E-fields on a conducting surface):

/
l;“

Field parallel to surface [/ cannot exist (it would move charges and we
get a surface current): [ = 0

> Only a field normal (orthogonal) to surface F,, is possible



Extreme case: ideal conductor

For an ideal conductor (i.e. no resistance) we must have:

—

E, =0, B, =0

otherwise the surface current becomes infinite

This implies:

> All energy of an electromagnetic wave is reflected from the surface
of an ideal conductor.

> Fields at any point in the ideal conductor are zero.

> Only some fieldpatterns are allowed in waveguides and RF cavities

A very nice lecture in R.P.Feynman, Vol. Il



Examples: cavities and wave guides

Rectangular, conducting cavities and wave guides (schematic) with
dimensions a X b X c and a X b:

X X

"

b ‘ b N T

/ c /

\

> RF cavity, fields can persist and be stored (reflection !)

> Plane waves can propagate along wave guides, here in z-direction

(here just the basics, many details in ” RF Systems” by Frank Tecker)



Fields in RF cavities - as reference

Assume a rectangular RF cavity (a, b, c¢), ideal conductor.

Without derivations, the components of the fields are:

E. = Eqo - cos(kex) - sin(kyy) - sin(k.z) - e **
—iwt

E, = Ey -sin(kgx) - cos(kyy) - sin(k,z) - e
E. = E. -sin(kzx) - sin(kyy) - cos(k.z) - e

—iwt

(Eyok. — E.oky) - sin(kex) - cos(kyy) - cos(k.z) - e "

B, =L
w

By = L (Esoks — Ewoks) - cos(kaz) - sin(kyy) - cos(k.z) - e
w
w



'Modes’ in cavities - 1 transverse dimension

2 T T T T

15 B

0.5

X
o
ot
PR MRS
\\\\\\\
P
.
o
o

-0.5 | B

2 1 1 1 1
0 0.2 0.4 0.6 0.8 1

dimension a

No electric field at boundaries, wave must have ”"nodes”’ = zero
fields at the boundaries

Only modes which ’fit’ into the cavity are allowed

A

In the example: 5 =

A

_ a _ a
) 2 10 .

A _a_
2 038

>

(then either "sin” or " cos” is 0)



Consequences for RF cavities

Field must be zero at conductor boundary, only possible if:

2
B+ k k=2

2
and for k., k,, k. we can write, (then they all fit):

My T
kx — : ky — : —
a b C

My T

The integer numbers m,, m,, m. are called mode numbers, important for

design of cavity !

— half wave length \/2 must always fit exactly the size of the cavity.

(For cylindrical cavities: use cylindrical coordinates )



Similar considerations lead to (propagating) solutions in (rectangular)
wave guides:

E. = Eqo - cos(kex) - sin(kyy) - e!F=7~«V
E, = Eyo - sin(kzx) - cos(kyy) - etF==7«1)

E. =1i-E.o-sin(kyz) - sin(k,y) - eF==7«"

By, = l(Eyokz — E.oky) - sin(kzx) - cos(kyy) - eF=27w1)
W
L l . . (k. z—wt)
By = —(E.oks — Exokz) - cos(kgx) - sin(kyy) - e
w
_ 1 i(kyz—wt)
B, = — (Ezoky — Eyoks) - cos(kgx) - cos(kyy) - e
i w

This part is new: ‘(%2  — something moving in z direction

In z direction: No Boundary - No Boundary Condition ...



Consequences for wave guides

Similar considerations as for cavities, no field at boundary.
We must satisfy again the condition:
w2
ko + ko + k= —

C2

This leads to modes like (no boundaries in direction of propagation 2):

My T My T
k, = : ky —

a b '’

The numbers m,, m, are called mode numbers for planar waves in wave

guides !



Re-writing the condition as:

w2 2

2 2 2 — _
K=" ki~ K > k=)= — k2 — k2

Propagation without losses requires k. to be real, i.e.:

w? My T My T

)+ (=)

which defines a cut-off frequency w.. For lowest order mode:

> ko + ky = (

c2 a

T C
We = ——
a
> Above cut-off frequency: propagation without loss
> At cut-off frequency: standing wave

> Below cut-off frequency: attenuated wave (it does not "fit in”").

There is a very easy way to show that very high frequencies easily propagate !!!



Classification of modes:

Transverse electric modes (TE): £, = 0 H, # 0
Transverse magnetic modes (TM): £, # 0 H, = 0

Transverse electric-magnetic modes (TEM): £, = 0 H, = 0

(Not all of them can be used for acceleration ... !)

Note (here a TE mode) :
Electric field lines end at boundaries

Magnetic field lines appear as ”loops”




Other case: finite conductivity

Starting from Maxwell equation:

J
S - dE —3 dE
B: ) _ = . _
V X ,uj—l—,uedt o-F —|—,uedt

Ohm'’s law

Wave equations:

—

E = E_’Oei(E-F—wt)’ B — B_’Oei(ﬁ-F—wt)

We want to know £ with this new contribution:




Consequence =% Skin Depth
Electromagnetic waves can now penetrate into the conductor !

For a good conductor o > we:

K o~ —iwpe = ko~ P20 14) =

5 (1+74)

S|

is the Skin Depth

» High frequency currents "avoid” penetrating into a
conductor, flow near the surface

} Penetration depth small for large conductivity



" Explanation” - inside a conductor (very schematic)

-
-

@D
D

( A\ add current

H subtract current

VA

N

-~

D
D

dt
I — L.

Eddy currents | from changing H-field: V x E = puo H

Cancel current flow in the centre of the conductor

Enforce current flow near the ”skin” (surface) I + Ie

Q: Why are high frequency cables thin ??



Attenuated waves - penetration depth

Skin Depth versus frequency Waves incident on conducting
‘ ‘ ‘ ‘ Copber ‘
Gold

caSaniss seel material are attenuated

Basically by the Skin depth :
(attenuation to 1/e)

—
S

=
<
=

o
[a)
o
£
=
»

Il Il Il Il Il Il
10000 1e+06 1e+08 le+10 le+12 le+14 le+16
Frequency (Hz)

Wave form:

ei(kz—wt) _ ei((l+i)z/6—wt) _ Q_TZ .ei(§—wt)

Values of 6 can have a very large range ..



> Skin depth Copper (¢ ~ 6-107 S/m):
245 GHz: § ~ 1.5 um, 50 Hz: § ~ 10 mm

(there is an easy way to waste your money ...)

> Penetration depth Glass (strong variation, o typically 6- 10" S/m):
2.45 GHz: 6 > km

> Penetration depth pig (strong variation, o typically 3-107% S/m):
245 GHz: 6 =~ 6 cm

> Penetration depth Seawater (0 ~ 4 S/m):

76 Hz: 6 ~ 25-30m



Done list:

Review of basics and write down Maxwell’s equations
Add Lorentz force and motion of particles in EM fields

Electromagnetic waves in vacuum

B L

Electromagnetic waves in conducting media
> Waves in RF cavities
> Waves in wave guides

> Important concepts: mode numbers, cut-off frequency,
skin depth

But still a few (important) problems to sort out =»>



- BACKUP SLIDES -



For a point charge ) with the field : E(z,y,2) = E(r) = @
Ameg 13
one can write all the derivaties (used for DIV and CURL):
OFE: Q@ ( 1 B 3:1:2) OE; _SQE OE; —3Q xz
Or  4meyp \ R3 R5 Oy  4dmweg RS 8z  4mep RS
OFE, —3Q zy oE,  Q ( I 3y2> OE, —3Q yz
Or  4meg RS Oy  4meg \ R3 R5 0z  4mweg RP
OFE.  —3Q zz OE.  —3Q yz OE. Q@ (1_%
Ox  4meg RP Oy  4mey RS 8z  4mep \ R3 R5

(it does

not get any worse than this horror ..)



OE.  Q ( 1 3x2>
Ox Ameg \ R3 R>
OEy —3Q xy
ox Ameg RO
OF, —3Q xz
Ox Ameg RO
R OF OF
div E = =+

ox oy

—30Q xy OFE —3Q =z
Ameg RO 0z Ameg RO
Q ( 1 3y2> OF, —-3Q yz
dmeg \ R3 R5 0z dmeng RO
—3Q yz OF, Q ( I %)
Ameg RO 0z Ameg \ R3 R5
Q ( 3 3 9 2 2 )
- — _|_ z
I \BB B T )



OF, Q ( 1 3:1:2) OF, —3Q zy OF ., —3Q =z

Ox Ameg \ R3 R5 Oy dmeg RS Oz Ameg RO
OFE, —3Q zy oE,  Q ( 1 3y2> OE, —3Q yz
Or  4meg RS Oy  4mweg \ R3 R5 0z  4mweg RP
OFE, —3Q zz OFE, —3Q yz oE, @ ( 1 322
Oxr  4meg RP Oy  4mey RS 8z  4meg \ R3 R5

OFE., OF OE, OF., OF E.
y’ — ) L — 0 ) - (07 0, O)
Oy 0z 0z ox ox 0z

curl E. =

(there is nothing circulating)



Interlude and Warning !!

Maxwell’s equation can be written in other forms.
Often used: cgs (Gaussian) units instead of Sl units, example:

Starting from (SI):

we would use:

— — 1

and arrive at (cgs):

—

Beware: there are more different units giving: V- E = p



Electromagnetic fields in material

In vacuum:
DZE()'E, B:/LQH

In a material:

¢, is relative permittivity ~ [1 — 10°]
1, is relative permeability ~ [0(!) — 109]

Origin: polarization and Magnetization



Once more: Maxwell’s Equations

VD = 0
VB =

= dB
V X E = — 7

3 dD
VxH= j+ =~

Re-factored in terms of the free current density ; and free charge
density P (/LQ = 1,60 = 1)



Some popular confusion ..

V.F.A.Q: why this strange mixture of E, 5, é, H 7?

Materials respond to an applied electric E field and an applied magnetic
B field by producing their own internal charge and current distributions,
contributing to E and B. Therefore H and D fields are used to re-factor
Maxwell’s equations in terms of the free current density j and free

charge density p:

O T

_ 5 g
NO_’ N
= ¢F + P

M and P are Magnetization and Polarisation in material



Is that the full truth ?

Magnetic field (B)

e — e . e,

—

electron

If we have a circular E-field along the circle of radius R ?
== should get acceleration !
Remember Maxwell’s third equation:

Podr — _ifédg
- dt
A
do
=»2rREy = — —-
mhik dt



Motion in magnetic fields

This is the principle of a Betatron
> Time varying magnetic field creates circular electric field !

> Time varying magnetic field deflects the charge !

For a constant radius we need:
2

m - v P
R € ¢ R
0 1 dp
EB(Tt) e Rdt

— B(rt) = 2WR2//Bds

B-field on orbit must be half the average over the circle = Betatron
condition



Other case: finite conductivity

Assume conductor with finite conductivity (c. = p. ') , waves will
penetrate into surface. Order of the skin depth is:

2pc
L

ds =

i.e. depend on resistivity, permeability and frequency of the waves (w).

We can get the surface impedance as:

Y A—

g
€

the latter follows from our definition of k£ and speed of light.

Since the wave vector k is complex, the impedance is also complex. We

get a phase shift between electric and magnetic field.



Boundary conditions for fields

-] Material 1 Material 2
€1 M1 € Mo

/Et

d

What happens when an incident wave encounters a boundary
between two different media ?

> Part of the wave will be reflected , part is transmitted

> What happens to the electric and magnetic fields ?



Boundary conditions for fields

Material 1 Material 2
€1 My €2 Mz
Ac
—»En

Assuming no surface charges:

Material
€& M

1

Material 2
& M2
A D,

_>D n

> tangential E-field constant across boundary (E1; = FEa)

> normal D-field constant across boundary (D1, = Day,)




Boundary conditions for fields

Material 1 Material 2 Material 1 Material 2
€W € Mo S VO & My
'™ As,
Hn B
— ——p

Assuming no surface currents:

> tangential H-field constant across boundary (Hy;, = Ho;)

> normal B-field constant across boundary (B1, = Ban)



