Future Circular Colliders

CERN Accelerator School, 20 May 2021 Michael Benedikt, CERN on behalf of the FCC collaboration

LHC

FCC

Work supported by the European Commission under the HORIZON 2020 projects EuroCirCol, grant agreement 654305; EASITrain, grant agreement no. 764879; ARIES, grant agreement 730871, FCCIS, grant agreement 951754, and E-JADE, contract no. 645479

ARIES

SPS

Horizon 2020 European Union funding for Research & Innovation

photo: J. Wenninger

CERN Future Circular Collider Study

hh ee he

International FCC collaboration (CERN as host lab) to study:

- ~100 km tunnel infrastructure in Geneva area, linked to CERN
- e⁺e⁻ collider (FCC-ee), as potential first step
- *pp*-collider (*FCC-hh*)
 → long-term goal, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

• lepton-hadron collisions as options to FCC-hh

Experiments

Physics Cases

Cost Estimates

FCC integrated program h ee he inspired by successful LEP – LHC programs at CERN

comprehensive cost-effective program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & and top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures
- building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after HL-LHC

LHC

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

FCC study: physics and performance targets

FCC-ee:

- Exploration of 10 to 100 TeV energy scale via couplings with precision measurements
- ~20-50 fold improved precision on many EW quantities (equiv. to factor 5-7 in mass) $(m_{Z_{,}} m_{W}, m_{top}, \sin^2 \theta_w^{eff}, R_b, \alpha_{QED} (m_z) \alpha_s (m_z m_W m_{\tau})$, Higgs and top quark couplings)
- > Machine design for highest possible luminosities at Z, WW, ZH and ttbar working points

FCC-hh:

- Highest center of mass energy for direct production up to 20 30 TeV
- Huge production rates for single and multiple production of SM bosons (H,W,Z) and quarks
- > Machine design for ~100 TeV c.m. energy & integrated luminosity ~ 20ab⁻¹ within 25 years

FCC-ee basic design choices

double ring e+e- collider ~100 km

- follows footprint of FCC-hh, except around IPs
- asymmetric IR layout & optics to limit synchrotron radiation towards the detector
- presently 2 IPs (alternative layouts with 3 or 4IPs under study), large horizontal crossing angle30 mrad, crab-waist optics
- synchrotron radiation power 50 MW/beam at all beam energies; tapering of arc magnet strengths to match local energy
- **common RF** for $t\bar{t}$ running

top-up injection requires booster synchrotron in collider tunnel

Future Circular Colliders Michael Benedikt CAS, 20 May 2021 *FCC-ee: The Lepton Collider*, **Eur. Phys. J. Spec. Top. 228**, 261–623 (2019) K. Oide et al., **Phys. Rev. Accel. Beams 19**, 111005 (2016)

FCC-ee Collider Parameters (stage 1)

parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

FCC-ee design concept

based on lessons and techniques from past colliders (last 40 years)

B-factories: KEKB & PEP-II: double-ring lepton colliders, high beam currents, top-up injection

DAFNE: crab waist, double ring

S-KEKB: low β_v^* , crab waist

LEP: high energy, SR effects

VEPP-4M, LEP: precision E calibration

KEKB: *e*⁺ source

HERA, LEP, RHIC: spin gymnastics

combining successful ingredients of several recent colliders → highest luminosities & energies

h ee he

FCC-ee: efficient Higgs/electroweak factory

electrical wallplug power P_{WP} is shown as a function of centre-of-mass energy for proposed future lepton colliders

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

h ee he

M. Benedikt, A. Blondel, P. Janot, et al., **Nat. Phys. 16**, 402-407 (2020), and

European Strategy for Particle Physics Preparatory Group, *Physics Briefing Book* (CERN, 2019)

FCC-ee figures of merit

Luminosity vs. capital cost

- for the H running, with 5 ab⁻¹ accumulated over 3 years and 10⁶ H produced, the total investment cost (~10 BCHF) corresponds to
 → 10 kCHF per produced Higgs boson
- for the Z running with 150 ab⁻¹ accumulated over 4 years and 5x10¹² Z produced, the total investment cost corresponds to → 10 kCHF per 5×10⁶ Z bosons

This it the number of Z bosons collected by each experiment during the entire LEP programme !

Capital cost per luminosity dramatically decreased compared with LEP !

CERN

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

Luminosity vs. electricity consumption

Highest lumi/power of all H fact proposals

Electricity cost ~200 CHF per Higgs boson

luminosity per wall plug power [10³⁴ cm⁻²s⁻¹/ 100 MW]

FCC-ee asymmetric crab-waist IR optics

Novel asymmetric IR optics to suppress synchrotron radiation toward the IP, E_{critical} <100 keV from 450 m from IP (e) – lesson from LEP

H. Burkhardt, A. Blondel, M. Koratzinos, K. Oide, et al.

only two sextupoles per final focus side:
minimum nonlinearity,
large dynamic apertureyellow boxes:
dipole magnets

4 sextupoles (a–d) for local vertical chromaticity correction combined w. crab waist, optimized for each working point – novel "virtual crab waist", standard crab waist demonstrated at DAFNE

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

K. Oide et al., **Phys. Rev. Accel. Beams 19**, 111005 (2016)

FCC-ee RF staging

time (operation years)

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

FCC-ee physics program staging

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]			
Z first 2 years	100 (50% nominal)	26 ab ⁻¹ /year	150 ab ⁻¹	4			
Z later	200	48 ab ⁻¹ /year					
W	25	6 ab ⁻¹ /year	10 ab ⁻¹	2			
Н	7.0	1.7 ab ⁻¹ /year	5 ab ⁻¹	3			
machine modification for RF installation & rearrangement: 1 year							
top 1st year (350 GeV)	0.8 (50% nominal)	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1			
top later (365 GeV)	1.4	0.34 ab ⁻¹ /year	1.5 ab ⁻¹	4			

total program duration: 15 years - including machine modifications phase 1 (*Z*, *W*, *H*): 9 years, phase 2 (top): 6 years

FCC-ee R&D: RF, cryo-modules, power sources

R&D aimed at improving performance & efficiency and reducing cost:

- improved Nb/Cu coating/sputtering, partner STFC (e.g. ECR fibre growth, HiPIMS)
- new cavity fabrication techniques, partner STFC (e.g. EHF, improved polishing, seamless)
- coating of A15 superconductors (e.g. Nb₃Sn), · cryo-module design optimisation
- bulk Nb cavity R&D at FNAL, Cornell, JLAB, also KEK and CEPC/IHEP
- MW-class fundamental power couplers for 400 MHz; · novel high-efficiency klystrons

Seamless 400 MHz single-cell cavity formed by spinning at INFN-LNL

h ee he

Tooling fabricated and successfully tested with an Aluminium cavity.

high-efficiency klystron at CERN

SRF R&D program, FCC-eh option and ERL

F. Marhauser et al F. Marhauser et al FCC-ee (top mode) & FCC-eh; also single-cell cavities for all FCC's

optimized for high current operation

JLAB, October 25, 2017

FCC-eh: 60 GeV e⁻ from Energy Recovery Linac (ERL) PERLE@Orsay ERL test facility

Prototypes of FCC-ee low-power magnets

1.0 T

Twin-dipole design with 2× power saving 16 MW (at 175 GeV), with AI busbars

Twin F/D arc quad design with 2× power saving 25 MW (at 175 GeV), with Cu conductor

FCC-ee injector complex (baseline)

SLC/SuperKEKB-like 6 GeV S-band linac accelerating **1** or **2** bunches (2E10/b), with repetition rate **100-200 Hz**

Same linac used for e+ production @ 4.46 GeV e+ beam emittances reduced in DR @ 1.54 GeV

Injection @ 6 GeV into pre-booster Ring (SPS or new ring) & accel. to 20 GeV, or 20 GeV linac

injection to main Booster @ **20 GeV** and interleaved filling of e+/e- (**<20 min for full filling**) and continuous top-up, typical rate 1/minute (Z) to 1/10s (tt)

FCC-hh (pp) collider parameters (stage 2)

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	16		8.33	8.33
circumference [km]	97.75		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2400		7.3	3.6
SR power / length [W/m/ap.]	28.4		0.33	0.17
long. emit. damping time [h]	0.54		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8.4		0.7	0.36

FCC-hh: highest collision energies

- order of magnitude performance increase in both energy & luminosity
- 100 TeV cm collision energy (vs 14 TeV for LHC)
- 20 ab⁻¹ per experiment collected over 25 years of operation (vs 3 ab⁻¹ for LHC)
- similar performance increase as from Tevatron to LHC

from LHC technology 8.3 T NbTi dipole

via • key technology: high-field magnets HL-LHC technology 12 T Nb₃Sn quadrupole

FNAL dipole demonstrator 14.5 T Nb₃Sn

FCC-hh operation phases and luminosity

phase 1: $\beta^*=1.1 \text{ m}, \Delta Q_{tot}=0.01, t_{ta}=5 \text{ h}$ 250 fb⁻¹/ year phase 2: $\beta^*=0.3 \text{ m}, \Delta Q_{tot}=0.03, t_{ta}=4 \text{ h}$ 1 ab⁻¹/ year

Transition via operation experience, no HW modification

Total integrated luminosity over 25 years operation: O(20) ab⁻¹/experiment consistent with physics goals

n ee he

Worldwide FCC Nb₃Sn program

Main development goal is wire performance increase:

- J_c (16T, 4.2K) > 1500 A/mm² \rightarrow 50% increase wrt HL-LHC wire
- Reduction of coil & magnet cross-section

After 1-2 years development, prototype Nb₃Sn wires from several new industrial FCC partners already achieve HL-LHC J_c performance

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

FCC conductor development collaboration:

• Bochvar Institute (production at TVEL), Russia

5400 mm²

~10% margin

HL-LHC

~1.7 times less SC 3150 mm²

~10% margin

FCC ultimate

- KEK (Jastec and Furukawa), Japan
- KAT, Korea, Columbus, Italy
- University of Geneva, Switzerland
- Technical University of Vienna, Austria
- SPIN, Italy, University of Freiberg, Germany
- Bruker, Germany, Luvata Pori, Finland

2019/20 results from US, meeting FCC J_c specs:

- **Florida State University:** high-J_c Nb₃Sn via Hf addition
- **Hyper Tech /Ohio SU/FNAL**: high-J_c Nb₃Sn via artificial pinning centres based on Zr oxide.

16 T dipole design activities and options

hh ee he

US – MDP: 14.5 T magnet tested at FNAL

- 15 T dipole demonstrator
- Staged approach: In first step prestressed for 14 T
- Second test in June 20209 with additional pre-stress reached 14.5 T

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

h ee he

Cryoplants – energy efficiency

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

2.5 GeV ANKA/KIT

storage ring

synchrotron radiation (~ 30 W/m/beam (@16 T field) (cf. LHC <0.2W/m) ~ 5 MW total load in arcs

- absorption of synchrotron radiation at higher temperature (> 1.8 K) for cryogenic efficiency
- provision of beam vacuum, suppression of photo-electrons, electron cloud effect, impedance, etc.
 31.65

FCC-hh vs ANKA: SR spectra

KARA e⁻ photon spectrum

= FCC – hh spectrum

 10^{14} 10^{13} 10^{12}

10¹¹

FCC-hh beam-screen test set-up at ANKA/Germany: beam tests with three prototype beam screens, confirming vacuum design simulations

FCC-hh injector options and transfer lines

FCC implementation - footprint baseline

present baseline position was established considering:

- lowest risk for construction, fastest and cheapest construction
- feasible positions for large span caverns (most challenging structures)
- 90 100 km circumference
- 12 surface sites with few ha area each

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

h ee he

civil engineering studies

- Total construction duration 7 years
- First sectors ready after 4.5 years

CERN Michael Benedikt CAS, 20 May 2021

supply & distribution of electrical energy

additional 200 MW available for FCC

at each of the three 400 kV sources

per-point power requirements as input for infrastructure-optimized conceptual design (peak FCC-ee: 260-340 MW, total FCC-hh: 550 MW)

If one power source goes down fall back to "degraded mode": FCC remains cold, vacuum preserved, controls on, RF off, no beam ("standby"); all FCC points supplied from 2 other 400 kV points, through the power transmission line

3 x 400 kV connections + 135 kV underground power distribution (NC)

FCC-tunnel integration in the arcs

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

h ee he

FCC-hh reference detector

- 4T, 10m solenoid, unshielded
- Forward solenoids, unshielded
- Silicon tracker
- Barrel ECAL LAr
- Barrel HCAL Fe/Sci
- Endcap HCAL/ECAL LAr
- Forward HCAL/ECAL LAr

Subdetector performance (tracker, calorimeter etc.) was simulated and parametrized for fast physics simulation (DELPHES).

50m length, 20m diameter

similar to size of ATLAS

- Challenges:
- Pileup of 1000
- Radiation levels up to 10¹⁸ cm⁻² 1MeV neutron equivalent vs. 10¹⁶ cm⁻² at HL-LHC
- Integration, opening and maintenance scenarios

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

Distance between detector cavern and service cavern 50 m. Strayfield of unshielded detector solenoid < 5mT.

Less than 5mT in the Service Cavern, 200-300mT outside the detector.

Preliminary design of access and cable paths

FCC integrated project technical schedule

34 35 36 37 38 39 40 41 42 43 ~25 years operation 15 years operation

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

h ee he

FCC-integrated project cost estimate

total construction cost FCC-ee (Z, W, H) : ~10,500 MCHF & 1,100 MCHF (tt)

total construction cost for subsequent FCC-hh: 17,000 MCHF.

(FCC-hh stand alone cost ~25 BCHF)

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

h ee he

Snowmass AF-EF Meet 2020

FCC CDR and Study Documentation

Core sentence and main request "order of the further FCC study":

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update."

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

Feasibility Study of FCC integrated project

Feasibility study to be delivered end 2025 as input for next ESPP Update expected by 2026/2027, to enable a project decision:

- feasibility study of the 100 km tunnel (infrastructure aspects, administrative aspects, local authorities, environment, energy, etc.)
- high-risk areas site investigations included, to confirm principle feasibility
- host-state related processes, to allow start of construction early 2030ies.
- CDR+ for colliders and injectors, including key technology proofs.
- **HFM program intermediate milestones,** in line with long-term R&D plan.
- physics and experiments CDR + for FCC integrated project.
- financing concept & organization model for project and operation phases.
- for all these activities sequential nature of implementation and overall timeline need to be taken into account !

FCC roadmap towards stage 1

h ee he

FCC key deliverables: prototypes by 2025

FCC-ee complete arc half-cell mock up

including girder, vacuum system with antechamber + pumps, dipole, quadrupole + sext. magnets, BPMs, cooling + alignment systems, technical infrastructure interfaces.

key beam diagnostics elements

bunch-by-bunch turn-by-turn **longitudinal charge density profiles** based on electro-optical spectral decoding (beam tests at KIT/KARA) ;

> ultra-low emittance measurement (X-ray interferometer tests at SuperKEKB, ALBA); beam-loss monitors (IJCLab/KEK?); beamstrahlung monitor (KEK); polarimeter ; luminometer

• Freg : 2.856 GHz 90 cells per structure

Length: 3.254 m

Gradient: 20 MV/m

· Aperture: 30 mm

400 MHz SRF cryomodule, + prototype multi-cell cavities for FCC ZH operation **High-efficiency RF power sources**

positron capture linac

large aperture S-band linac

high-yield positron source

target with DC SC solenoid or flux DC Solenoid concentrator SC S band Linac Target

beam test of e⁺ source & capture linac at SwissFEL – yield measurement

strong support from Switzerland via CHART II program 2019 – 2024 for FCC-ee injector, HFM, beam optics developments, geology and geodesy activities.

Future Circular Colliders Michael Benedikt CAS, 20 May 2021

Implementation studies with host states

- Classification of zones along/around the perimeter of FCC according to "realisation risk levels" defined with host states.
- Study of variants following the approach "Avoid Reduce Compensate"

Territorial constraints – Canton Geneva

collider placement optimisation

- layout & placement optimisation across both host states (Switzerland and France);
- following "avoid-reduce-compensate" directive of European & French regulatory frameworks ; diverse requirements and constraints:
 - permitting world-leading scientific research
 - **technical feasibility of civil engineering** and subsurface constraints
 - territorial constraints on surface and subsurface
 - **nature, accessibility**, technical infrastructure, resource needs & constraints
 - economic factors including benefits for, and synergies, with the regional developments

collaborative effort: CERN technical experts, consulting companies, government-notified bodies

- 1st phase of FCC design study completed → baseline machine designs, performance matching physics requirements, in 4 CDRs.
- Integrated FCC programme submitted to European Strategy Update 2019/20
 → Request for feasibility study as basis for project decision by 2026/27
- Next steps: concrete local/regional implementation scenario in collaboration with host state authorities, accompanied by machine optimization, physics studies and technology R&D, performed via global collaboration and supported by EC H2020 Design Study FCCIS, to prove feasibility by 2025/26
- Long term goal: world-leading HEP infrastructure for 21st century to push the particle-physics precision and energy frontiers far beyond present limits.
- Success of FCC relies on strong global participation !

