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Preamble
• We will use orthogonal frames (3 axes at 900) where the cartesian (or rectangular) coordinates of

a point in space are specified.

• Any frame may be made to coincide with any other by

translations and rotations.

– For this reason when considering frames attached to

moving observers we will just consider translational

motion along one common axis.

This simplifies the mathematics.

http://www.mechanik.tu-darmstadt.de
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WHY THE “THEORY OF RELATIVITY”?

Quantitive description of physical events needs a frame of reference, where the coordinates of the

observed object are specified. Euclidean geometry specifies how coordinates of points in different

frames are related. For instance, if S′ is translated by x0 wrt S along the common x̂-axis it is

x′ = x− x0 y′ = y z′ = z (1)

Suppose S′ is moving wrt S along the x̂-axis with velocity ~V . Thus

x0=V t (assuming O and O′ coincide at t=0) and making the first

and second derivates wrt time

ẋ′ = ẋ− V ẏ′ = ẏ ż′ = ż (2)

ẍ′ = ẍ ÿ′ = ÿ z̈′ = z̈ (3)

Eqs. 1, 2 and 3 are the Galilean transformations for coordinates, velocity

and acceleration. We implicitly assumed that t′=t and that the lengths

were invariant in the two frames.

• Eq.2 means that velocities add.

• Eq.3 says that the acceleration is invariant.

http://www.mechanik.tu-darmstadt.de
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The basis of the classical mechanics are the three lawsa of dynamics.

• The first dynamics law is the principle of inertia (Galileo) which states

“A free body remains in a state of rest or of uniform motion”

– A reference frame where the principle of inertia holds good is said inertial.

– Because of Galilean transformations, any frame in uniform motion wrt an inertial one is inertial

too.

• The second law (Newton) states

“In an inertial frame it holds good ~F = m~a ”

The variation of velocity with time (acceleration), ~a, is proportional to the applied force, ~F ,

through a constant, m (“inertial mass”).

– Implicitly it is assumed that m is a characteristic of the body which doesn’t depend upon its

motion.

• The third Newton law states

“ Whenever two bodies interact they apply equal and opposite forces to each

other.”

Third law combined with the second one gives the momentum conservation lawb for a closed system.

aPhysics laws are not mathematical axioms but statements based on reproducible observations.
bMomentum: ~p ≡ m~v

http://www.mechanik.tu-darmstadt.de
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The three laws of dynamics hold good in inertial frames. As those frames are all equivalent it is

reasonable to assume that mechanics laws are the same for inertial observers.

This is expressed by the principle of relativity:

“Mechanics laws have the same form for all inertial observers”.

Suppose that Alex (A) is studying the motion of a ball let to fall under

the earth gravitational force. A measures that the object is subject to

a constant acceleration of a ≈ 9.8 ms−2. By using different balls he

finds that the acceleration is always the same, g. A concludes that there

must be a force acting on the balls which is directed towards the center

of the earth and has magnitude mg.

Assuming that Galilean transformations hold good, observer Beth (B) on a train moving with uniform

velocity ~V =x̂V wrt A will describe the ball motion as

ẍ′ = ẍ = 0 ÿ′ = ÿ

and as the mass, m is a constant, will agree with A on magnitude and direction of the force.

Galilean transformations satisfy the the principle of relativity!

http://www.mechanik.tu-darmstadt.de
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Is EM invariant under Galilean transformations?

In the second half of the XIX century Maxwell had summarized the whole EM phenomena into 4

differential equations containing the constant c=
√
ε0µ0. From these equations far from sources one

finds the wave equation for fields and potentials.

Simplest case:

[
∂2

∂x2
−

1

c2
∂2

∂t2

]
Φ = 0

The constant c is the velocity of propagation of the wave and

is numerically equal to the speed of light in vacuum. Because

of the addition of the velocities it is weird that it is a constant,

unless we assume it is the velocity wrt a propagation medium

and that the equation is written in a frame connected with

that medium.

This medium would permeate the whole space and has to be

extremely rarefied to be undetectable directly. The supporting

medium was named “ether”.
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Under Galilean transformation the wave equation becomes

[
∂2

∂x′2
−

1

c2
∂2

∂t′2
−
V 2

c2
∂2

∂x′2
− 2

V

c2
∂2

∂x′∂t′

]
Φ = 0

Indeed the equation is not invariant.

• EM laws are written in a frame connected to the ether.

• According to Galilean transformations, the speed of light for an observer moving wrt ether wouldn’t

be c.

http://www.mechanik.tu-darmstadt.de
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Hypotheses

1. The relativity principle holds good only for the mechanics; for the EM exists a preferred frame of

reference where the speed of the light is c (the reference system where the ether is at rest).

• A bunch of experiments (starting with the famous Michelson-Morley experiment in 1887) aiming

to prove the existence of the ether failed. Their results suggested instead that the speed of the

light was a constant non dependent upon the status of motion of source or observer.

2. The at the time relatively young EM laws are wrong.

• Attempts at modifying the EM in such a way that it would be invariant under Galilean trans-

formations led to predictions of new phenomena which couldn’t be proven by experiments.

3. EM laws are correct, but the Galilean transformations (and mechanics laws) must be modified.

http://www.mechanik.tu-darmstadt.de
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Relativity of time

In the “Annus Mirabilis” 1905 Einstein published 4 fundamental papers. The third of them contained

the idea of relativity of time and the basis of the theory of special relativity.

At that time the “mainstream” idea was that the relativity principle did not apply to EM laws. However

the negative results for instance of the first Michelson-Morley experiments were already known.

Einstein starts, on the basis of the experimental evidence, by giving up the existence of ether and

introducing instead a “Principle of Relativity” based on two postulates

1) Physics laws are the same in all inertial reference systems, there is no preferred reference frame.

2) The speed of the light in the empty space has the same finite value c in all inertial reference frames.

http://www.mechanik.tu-darmstadt.de
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The paper goes on demonstrating that it is not possible to synchronize clocks attached to frames in

relative motion.

To find out whether two clocks at rest in different

locations of an inertial frame S run synchronously

we proceed as follows. The observer A has a clock

and sends a light ray at time tA to observer B

which receives it at tB.

A mirror reflects the light back to A which receive

it at t′A.

Because of the second postulate, the clocks are syn-

chronized if

tB − tA = t′A − tB
If the clocks are identical they stay synchronized.

All clocks attached to S can be synchronized in this way.

Any other inertial observer S′ can synchronize its clocks by the same procedure. How the time measured

by observers in relative motion are related?

http://www.mechanik.tu-darmstadt.de
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Let’s look for instance to the synchronizing oper-

ation for two clocks attached to the ends, A and

B, of a rod moving along the x-axis as seen by a

stationary observer.

While the light moves to B, B moves further and

once reflected back toA, Amoves toward the light.

Therefore for the resting observer the time needed to reach B is obtained by setting

c(tB − tA) = L+ V (tB − tA) → tB − tA = L/(c− V )

while the time needed to reach A is obtained from

c(t′A − tB) = L− V (t′A − tB) → t′A − tB = L/(c+ V )

∆tB→A −∆tA→B =
2V L

c2[1− (V/c)2]
6= 0 consequence of c being finite!���


If the clocks in the moving frame would be synchronous with the stationary ones they wouldn’t be

synchronous in their own frame. The “stationary” frame would dictate the timing. However stationarity

is relative, the inertial frames are all equivalent: if there exist no privileged frame, we must abandon

the idea of universal time.

http://www.mechanik.tu-darmstadt.de
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Lorentz transformations “abridged”

By assuming the speed of light constant in all reference frames, the Galilean transformations, implying

the velocity addition rule, must be modified. The new transformations must reduce to the Galilean ones

when the relative motion is slow (V � c). According to the first Einstein postulate, the empty space

is isotropic (all direction are equivalent) and homogeneous (all points are equivalent); it would make

no sense to postulate that the laws are invariant in a space which is not homogeneous and isotrope.

Homogeneity implies linearity:

x′ = a11x+ a12y + a13z + a14t

y′ = a21x+ a22y + a23z + a24t

z′ = a31x+ a32y + a33z + a34t 16 unknowns!

t′ = a41x+ a42y + a43z + a44t

http://www.mechanik.tu-darmstadt.de
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For the case we are considering of motion along the common x-axis the coordinates y and z do not

play a role and therefore it is reasonable to write a

x′ = a11x+ a14t

y′ = y

z′ = z

t′ = a41x+ a44t
���
 ���


The origin of the S′ frame is described in S by x0 = V t and by definition it is x′0=0 at any time.

Therefore

0 = x′0 = a11x0 + a14t = a11V t+ a14t

that is a14/a11 = −V and

x′ = a11(x+ a14t/a11) = a11(x− V t)
���


We are left with a11, a41 and a44.

asee script for complete derivation.

http://www.mechanik.tu-darmstadt.de
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For finding the remaining 3 coefficients we resort to the fact that, according to the two postulates, the

speed of light is the same in S and S′ and that the wave equation is invariant in form.

Suppose an EM spherical wave leaves the origin of

the frame S at t=0.

The propagation is described in S by the equation

of a sphere which radius increases with time as

R2 = x2 + y2 + z2= c2t2 (4)

In S′ the wave propagates with the same speed c

and therefore

x′2 + y′2 + z′2 = c2t′2

which expressing the primed coordinates in terms of the un-primed ones becomes

a2
11x

2 + a2
11V

2t2 − 2a11xV t+ y2 + z2 = c2a2
41x

2 + c2a2
44t

2 + 2a41a44xt

(a2
11 − c

2a2
41)x2 + y2 + z2 − 2(V a2

11 + c2a41a44)xt = (c2a2
44 − V

2a2
11)t2 (5)

Comparing Eqs. 4 and 5 we get a system of 3 equations in the 3 unknown a11, a41 and a44.

http://www.mechanik.tu-darmstadt.de
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Solution: a11 = a44 = γ

a41 = −γβ/c

with

β ≡ V/c and γ ≡
1√

1− β2

The coordinate transformation for a translational motion along x̂ with (constant) velocity ~V = x̂V

are (Lorentz transformations)

t′ =
t− xV/c2√
1− V 2/c2

≡ γ(t− V x/c2)

x′ =
x− V t√
1− V 2/c2

≡ γ(x− V t)

y′ = y z′ = z

The inverse transformations are obtained replacing V with −V .

http://www.mechanik.tu-darmstadt.de
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The transformation can be written also in matrix form


ct′

x′

y′

z′

 = γ


1 −β 0 0

−β 1 0 0

0 0 1 0

0 0 0 1




ct

x

y

z

 ≡ L

ct

x

y

z



http://www.mechanik.tu-darmstadt.de
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Some comments

t′ =
t− xV/c2√
1− V 2/c2

≡ γ(t− V x/c2)

x′ =
x− V t√
1− V 2/c2

≡ γ(x− V t)

y′ = y z′ = z

• V � c the Lorentz transformations reduce to the Galilean ones. Good!

• For V > c the transformations are meaningless because the argument

of the square root, 1− V 2/c2, becomes negative!

Therefore

0 ≤ β ≤ 1

1 ≤ γ ≤ +∞

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1
γ

β

• The existence of a signal with V > c would yield to a violation of the causality principle, as we

will see.

http://www.mechanik.tu-darmstadt.de
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Time is one of the 4 coordinates describing an event and as the space coordinates is subject to a

(Lorentz) transformation between moving frames.

For space coordinates it is always possible if for instance x2 > x1 to find a new coordinates frame

such that x′2 < x′1.

Is it possible to find a Lorentz transformation which inverts the temporal order of events?

Assume an event happening at the time t1 at the location x1 in S and a second event happens at t2

in x2 with t2 > t1. Is it possible to find a Lorentz transformation such that t′2 < t′1? In S′ it is

ct′1 = γ(ct1 − βx1) and ct′2 = γ(ct2 − βx2)

c(t′2 − t
′
1) = γ[c(t2 − t1)− β(x2 − x1)]

Therefore t′2 < t′1 if β(x2 − x1) > c(t2 − t1), that is if V (x2 − x1)/(t2 − t1) > c2. This may

be possible depending on the values of x2 − x1 and t2 − t1. However if the first event in S drives

the second one, x2 and t2 are not arbitrary.

If w is the speed of the signal which triggers the second event from the first one it is

x2 − x1 = w(t2 − t1)

c(t′2 − t
′
1) = γ[c(t2 − t1)− βw(t2 − t1)] = γc(t2 − t1)

(
1−

V w

c2

)
> 0
↓

w ≤ c and V < c

Causality is not violated.

http://www.mechanik.tu-darmstadt.de
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Some consequences of Lorentz transformations:

time dilation and relativity of simultaneity

Suppose a clock at rest in S measuring a time interval t2 − t1 between two events happening at the

same location, x1=x2. The time interval in the moving frame S′ is measured by two different clocks

because according to Lorentz transformations, the events happen in S′ in different locations. The time

difference in S′ is

t′2 − t
′
1 = γ(t2 − t1) ≥ t2 − t1 time dilation

↙
proper time (time measured by the same clock)

The proper time interval is always the shortest.

Events which in S are simultaneous (t1=t2), but happen in different places (x1 6= x2), will be no

more simultaneous in the moving frame S′

c(t′2 − t
′
1) = γβ(x1 − x2) 6= 0

http://www.mechanik.tu-darmstadt.de
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Some consequences of Lorentz transformations:

length contraction

Consider a rod of length L′ along the x-axis and at rest in the moving frame S′.

The length in S is determined by the position of the rod ends at the same time (t1=t2) and therefore

L′ = x′2 − x
′
1 = γ(x2 − x1) = γL → L = L′/γ length contraction

↓
length at rest

However the length of a rod aligned with one of the two axis perpendicular to the direction of motion

is invariant. Angle are in general not invariant.

http://www.mechanik.tu-darmstadt.de
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The transformation for the components of the velocity, ~v, are obtained from the coordinate transfor-

mations

v′x ≡
dx′

dt′
=

dx− V dt
dt− V dx/c2

=
vx − V

1− vxβ/c

v′y ≡
dy′

dt′
=

dy

γ(dt− V dx/c2)
=

vy

γ(1− vxβ/c)
(6)

v′z ≡
dz′

dt′
=

dz

γ(dt− V dx/c2)
=

vz

γ(1− vxβ/c)

with β ≡ V/c, vx ≡ dx/dt, vy ≡ dy/dt and vz ≡ dz/dt.
Remember β (=V/c) refers to the motion of the frame.

• As time is not invariant, despite the lengths perpendicular to the motion direction being unchanged,

the time needed to cover them is different.

– Unlike classical kinematics, the velocity components perpendicular to the motion,

unless vanishing, are affected by the motion of the frame.

• For vx=c and vy=vz=0 it is

v′x =
c− V

1− V/c
= c

c− V
c− V

= c and v′y = v′z = 0

For vy=c and vx=vz=0 it is v′x=−V , v′y=c/γ, v′z=0 and

v′2x + v′2y = V 2 + c2(1− (V/c)2) = c2

http://www.mechanik.tu-darmstadt.de
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In a similar way as for the velocity, it is possible to find the transformations for the acceleration ~a

a′x =
ax

γ3(1− vxβ/c)3

a′y =
ay

γ2(1− vxβ/c)2
+

axvyβ/c

γ2(1− vxβ/c)3

a′z =
az

γ2(1− vxβ/c)2
+

axvzβ/c

γ2(1− vxβ/c)3

• Acceleration in general is not invariant under Lorentz transformations.

http://www.mechanik.tu-darmstadt.de
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A historical curiosity

The relativistic transformations were named by Poincaré after the dutch physicist

Hendrik Lorentz who introduced them, before Einstein paper.

Lorentz had discovered that those transformations leave Maxwell equations invariant.

He had also introduced the notion of “local time” and of “contraction of bodies” for explaining the

negative results of the Michelson-Morley experiment because he was convinced, as many other leading

scientists, of the validity of the ether theory.

It seems that Einstein was not aware of Lorentz work... Anyway Einstein gave to the transformations a

deep physical meaning making them extendable also to mechanics and causing a revolution of classical

dynamics.

http://www.mechanik.tu-darmstadt.de
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Experimental evidence of relativistic kinematics
Light aberration
Light aberration is the apparent motion of a light source due to the

movement of the observer. It was first discovered in astronomy.

Source emitting photons at an angle θ wrt to the x-axis in the S

frame where vy=c sin θ and vx=c cos θ.

In S′ it is v′y=c′ sin θ′ and v′x=c′ cos θ′.

Using Galilean transformations for the velocity components

v′y = vy and v′x = vx − V

tan θ′ = v′y/v
′
x = vy/(vx − V )

tan θ′ =
sin θ

cos θ − β
Using instead Lorentz transformations

tan θ′ =
sin θ

γ(cos θ − β)

 0
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• High energy experiments involving emission of photons confirm the relativistic expression.
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Lifetime of unstable particles

Beside e−, p and n, in nature there are particles which are

produced by scattering process and unlike e+, p̄ and n̄, are

“short-living”. Their number decays in time as

N(t) = N0e
−t/τ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

N
(t

)

t[s]

τ=0.1 s
τ=0.05 s

The lifetime of charged pions at rest is τ0=26×10−9 s. Time needed for the pions at rest to decay
by half

N(t) = N0e
−t/τ =

N0

2
→ t = 18 ns

They are produced by bombarding a proper target by high energy protons and leave the target with

v ≈2.97×108 m/s that is β=0.99 and γ ≈ 7. It is observed that they are reduced to the half after

37 m from the target. If their lifetime would be as at rest they should become the half already after

about 5 m.

The experimental observation is explained if the pion lifetime in the laboratory frame is

τ = γτ0

as predicted by time dilation.

Time dilation may allow us realizing future colliders smashing unstable particles like muons!

http://www.mechanik.tu-darmstadt.de
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Doppler shift of light

Doppler effect exists also classically: we experience it when we

hear the siren of a police car or an ambulance. The frequency

perceived by an observer at rest is higher when the car is

approaching because the number of the acoustic wave knots

per unit time is larger, while the frequency decreases when

the source is moving away. Classically there is no “transverse”

(wave propagation direction perpendicular to motion) Doppler

effect: in the moment the car is at the minimum distance it

is ∆ω=0.
Relativistically for a light wave the situation source (S) or receiver (R) in motion are identical. When

the angle, θ, between wave propagation direction and motion is 0 the angular frequency is

ω = ω0

√
1− β
1 + β

with β < 0 for R and S approaching, β > 0 when they move away

In addition because of the time dilation there is also a transverse Doppler effect.

For θ=900 in the source frame

∆ω = ω0(γ − 1)

This was predicted by Einstein who suggested an experiment using hydrogen ions for measuring it. The

experiment realized for the first time by Ives and Stilwell in 1938 proved the correctness of Einstein

prediction.

http://www.mechanik.tu-darmstadt.de
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Relativistic Dynamics

Assuming ~F invariant and m constant, Newton law, ~F = m~a, is not invariant under Lorentz trans-

formations because we have seen that ~a is not invariant.

In addition mass can’t be a constant because by applying a constant force to an object its speed would

increase indefinitely becoming larger than c.

• Classical mechanics must be modified to achieve invariance under Lorentz transformations.

• The new expressions must reduce to the classical ones for v/c�1.

In the 1905 paper, Einstein used the Lorentz force and the electro-magnetic field transformations to

achieve the generalization of the definition of momentum and energy.

http://www.mechanik.tu-darmstadt.de
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In 1909 two MIT professors of chemistry, Lewis and Tolman, suggested a different more straightforward

approach involving purely mechanical arguments.

Let’s assume there are two observers,

Alex and Betty, moving towards each

other with the same speed as seen by a

third observer, Charlie.

Betty sits in S and Alex in S′.

Alex and Betty have identical elastic

balls.

http://www.mechanik.tu-darmstadt.de


30/56 P�i?�	�≫≪><

Betty releases the red ball with vBx =0 and vBz =u 6= 0, while Alex

releases the green ball with speed v′Ax =0 and v′Az numerically equal

and opposite to the red ball velocity, that is

v′Az = −u

�
�
�
�↗

Green ball in S′
↖

�
�
�
�

Red ball in S

The experiment is set so up that the two balls collide and rebound.

Now let’s consider Betty point of view. For Betty it is

∆pBx = 0 ∆pBz = 2mBu

∆pAx = 0 ∆pAz = 2mAv
A
z

We need here the inverse velocity transformation because we know the

numerical value of the z direction component in the moving frame S′

vz =
v′z

γ(1 + v′xβ/c)

In our case v′x=0 and v′z=−u and therefore

vAz = v′Az /γ = −u/γ with γ =
1√

1− (vAx /c)
2

http://www.mechanik.tu-darmstadt.de
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Momentum is conserved if

∆pBz = −∆pAz

that is

2mBu = −2mAv
A
z = 2mA

u

γ
→ mA = γmB

We may assume that u is small so that mB is the mass at rest, m0, and mA=m(v).

So we have found that

m(v) = γm0

We can keep the momentum definition from classical dynamics by giving up the invariance of mass.

Relativistically mass is not conserved.

A clear example is the annihilation of a e+e− pair into 2 photons.

Let’s try modifying the classical Newton law

~F = m~a = m
d~v

dt

into

~F =
d~p

dt
=

d

dt
(γm0~v) = m0~v

dγ

dt
+m0γ

d~v

dt
~F and ~a are not parallel!

http://www.mechanik.tu-darmstadt.de
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By scalar multiplication by ~v it is

~F · ~v = ~v ·
d~p

dt

�
�
�
�↗

work/unit time = dE/dt

~v ·
d~p

dt
= m0γ~v ·

d~v

dt
+m0

v2

c2
γ3v

dv

dt
= m0γv(1 +

v2γ2

c2
) = m0γ

3v
dv

dt

that is
dE

dt
= ~F · ~v = m0γ

3v
dv

dt

It is easy to verify that this equation is satisfied by defining the energy as

E = mc2 = γm0c
2

For v=0 it is E0=m0c
2 which is the energy at rest.

The (relativistic) kinetic energy is obtained by subtracting the rest energy from the total energy

T = mc2 −m0c
2 = m0c

2(γ − 1) 6=
1

2
γm0v

2

which gives the classical kinetic energy T ' m0v
2/2 for v � c.
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Measurement of T and ~v relationship

Experiments confirmed the validity of the relativistic relationship between T and ~v.

Bertozzi experiment measured directly the velocity of e− accelerated in a linear accelerator.

• e− speed was measured through the time of flight.

• Kinetic energy computation relied on the knowledge of the accelerating field and on the measure-

ment of the heat deposited at the aluminum target.

The results also show clearly the presence of a limit speed, c.

me = e− rest mass
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Importance of relativity for accelerators

Example of CERN PS Booster.

Circumference: L=157 m.

Particles are injected from Linac4 with

T=160 MeV and accelerated to T=2 GeV.

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

T[GeV]

cp[GeV]
frev[MHz]

• The dipole field must be ramped up according to momentum for keeping the particles on the design

orbit (ρ=p/eB).

• frf = hfrev. For large γ it is frf ≈ h cL(1− 1
2γ2 )

→ almost constant at high energy as the speed approaches c.

– Particularly true for e± which have 1836 larger γ for the same energy.

Relativity has basic relevance for accelerators!
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Transformations of momentum, energy and force

The transformations for momentum and energy follow from the definition ~p=m~v and from the trans-

formations of the velocity. The result is

p′x = γV (px − E V/c2) with γV =
1√

1− V 2/c2

����↗
γvm0c

2

����↖
frame speedp′y = py p′z = pz

E′ =
E − V px√
1− V 2/c2

The transformations have the same form as the coordinates transformations with

~r → ~p and t→ E/c2

• Vectors which 4 components transform according to Lorentz transformations are called

4-vectors.

– (E/c, ~p) is therefore a 4-vector.
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4-vectors

Classically time intervals and distances are invariant. This is not true in relativity. However the interval

defined as (
ds
)2 ≡ [d(ct)]2 − (dx)2 − (dy)2 − (dz)2

is invariant under Lorentz transformations, ie it has the same value in any frame. It can be easily

proven by using the Lorentz transformations.

In general for any 4-vector the quantities

AνBν ≡ A0B0 −
(
AxBx +AyBy +AzBz

)
and in particular

AνAν = A2
0 −

(
A2
x +A2

y +A2
z

)
are invariant.
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Let us consider a particle moving with velocity ~v(t), non necessarily uniform, in S. The time interval

dτ evaluated in a inertial frame S′ where the particle is instantaneously at rest is called proper time.

It is related to the time measured in S by

dτ =
√

1− v2/c2dt ≡
dt

γ

and for a finite time interval

t2 − t1 =

∫ τ2

τ1

dτ√
1− v2/c2

The proper time is by definition an invariant. This results also from the fact that c2dτ2 is the invariant

ds2 evaluated in the frame where the particle is instantaneously at rest (dx=dy=dz=0).
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Owing to the fact that the proper time interval dτ = dt/γ is an invariant and that (cdt, dx, dy, dz)

transforms obviously as (ct, x, y, z), the quantity defined as

(c dt
dτ

,
dx

dτ
,
dy

dτ
,
dz

dτ

)
=
(
γ
c dt

dt
, γ
dx

dt
, γ
dy

dt
, γ
dz

dt

)
≡ (γc, γ~v) (7)

transforms according to Lorentz transformations (4-velocity). Multiplying the 4-velocity by the rest

mass we get

m0(γc, γ~v) = (E/c, ~p)

which is also a 4-vector (energy-momentum or 4-momentum vector) and therefore transforms according

to Lorentz transformation.

Relativistic energy and momentum are closely connected, they are components of the same 4-vector.

• The quantity (E/c)2 − (p2x + p2y + p2z) is invariant.

• If energy and momentum are conserved in one inertial frame of reference they are conserved in all

inertial frames (a vector which components are all zero has zero components in any frame).

• If momentum in conserved in two inertial frames, energy too is conserved in both frames.
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Newton and Minkowski force

We may write the relativistic Newton law ~F=d~p/dt in terms of 4-vectors. In the particle proper frame

dpν

dτ
= fν

with (p0, p1, p2, p3) ≡ (E/c, px, py, pz) and (f0, f1, f2, f3) ≡ (f0, fx, fy, fz).

The l.h.s. is a 4-vector and therefore also ~f , the Minkowski force, on the r.h.s. must be a 4-vector

related to the Newton force ~F .

The space part of the equation of motion is

d~p

dτ
= ~f → γ

d~p

dt
= ~f → ~f = γ ~F
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The time part of the equation is

f0 =
dp0

dτ
=

1

2p0
d(p0)2

dτ
=

1

2p0
d(E/c)2

dτ

The invariance of (E/c)2 − ~p · ~p = (m0c)
2 implies that

0 =
d

dτ

[(
E

c

)2

− ~p · ~p
]

=
d

dτ

(
E

c

)2

−
d

dτ
(~p · ~p)

→
d

dτ

(
E

c

)2

= 2~p ·
d~p

dτ

which inserted in the equation for f0 gives

f0 =
1

2p0
d(E/c)2

dτ
=

1

2p0
2~p ·

d~p

dτ
=
m0γ~v

E/c
·
(
γ ~F
)

= γ~β · ~F

The Minkowski force is therefore

(f0, f1, f2, f3) = (γ~β · ~F , γ ~F )
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In absence of external forces (~F=0) the Minkowski force components are vanishing and momentum

and energy are conserved.

Being a 4-vector, Minkowski force transforms following Lorentz transformations.

Attention must be paid to distinguish between the particle velocity, ~v, in the S frame and the frames

relative speed ~V .

Using the general expression of Lorentz transformations (see lecture script) we have

f ′0 = γV
(
f0 − ~βV · ~f

)
~f ′ = ~f +

γV − 1

β2
V

(
~βV · ~f

)
~βV − γV f0~βV

The Newton force transformation writes

γ ′ ~F ′ = γ ~F +
γV − 1

β2
V

[
~βV ·

(
γ ~F
)]
~βV − γV ~βV

(
γ~β · ~F

)
The inverse transformation is obtained by replacing ~βV with −~βV
For V � c (βV → 0 and γV → 1) it is ~F ′=~F which is the classical result.
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For the translational motion along x̂ the transformations write

F ′x = Fx −
vyV

c2 − vxV
Fy −

vzV

c2 − vxV
Fz

F ′y,z =

√
1− V 2/c2

1− vxV/c2
Fy,z

If the force ~F is acting on a particle which is instantaneously at rest in S (v=0), the transformations

simplify

F ′x = Fx F ′y =
1

γ
Fy F ′z =

1

γ
Fz
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Transformations of EM fields

The transformations are found by applying the force transformations to the force experienced by a

charged particle moving with velocity ~v in an EM field

~F = q ~E + q~v × ~B (Lorentz force)

The corresponding Minkowski force is

fν =
(
γ~β · ~F , γ ~F

)
= q

[
γ~β ·

(
~E + ~v × ~B

)
, γ
(
~E + ~v × ~B

)]
with γ = 1/

√
1− (v/c)2. This equation can be written in matrix form

f0

f1

f2

f3

 =
q

c


0 Ex Ey Ez

Ex 0 cBz −cBy
Ey −cBz 0 cBx

Ez cBy −cBx 0




γc

γvx

γvy

γvz


In the moving frame S′ the Minkowski force will be expressed in the same form in terms of primed

quantities.
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Minkowski force and the 4-velocity (γc, γ~v) are 4-vectors. Using the Lorentz transformation L from

S to S′ and L−1 from S′ to S we get
f ′0

f ′1

f ′2

f ′3

 = L


f0

f1

f2

f3

 =
q

c
L


0 Ex Ey Ez

Ex 0 cBz −cBy
Ey −cBz 0 cBx

Ez cBy −cBx 0

L−1


γ′c

γ′v′x

γ′v′y

γ′v′z


Requiring that the Minkowski force in S′ has the same form as in S, it must be

0 E′x E′y E′z

E′x 0 cB′z −cB′y
E′y −cB′z 0 cB′x

E′z cB′y −cB′x 0

 = L


0 Ex Ey Ez

Ex 0 cBz −cBy
Ey −cBz 0 cBx

Ez cBy −cBx 0

L−1
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By carrying out the matrix multiplications and equating the same indices elements, the field components

in S′ are found:

E′x = Ex B′x = Bx

E′y = γV (Ey − V Bz) B′y = γV

(
By +

V

c2
Ez

)
E′z = γV (Ez + V By) B′z = γV

(
Bz −

V

c2
Ey

)

Denoting by “parallel” and “normal” the fields components wrt to direction of motion the field trans-

formations can be written in the general form

E′‖ = E‖ B′‖ = B‖

E′⊥ = γ(~E + ~V × ~B)⊥ B′⊥ = γ( ~B − ~V × ~E/c2)⊥

For the inverse transformations ~V mus be replaced by −~V .
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Transformation of Source Distributions

Let us consider a distribution of charges at rest in S′. The

charge density is given by

ρ′(x′, y′, z′, t′) =
qN

dx′dy′dz′

In S, moving with velocity −V wrt S′, the volume element

is
dx dy dz =

dx′

γ
dy′dz′

�
�
�

↖ length contraction

Charge density in S

ρ =
qN

dx dy dz
= γ

qN

dx′ dy′ dz′
= γρ′

As the charge distribution moves in S with velocity +x̂V , in S there is a current with density

jx = ρV = γρ′V (in general: ~j = ρ~V = γρ′~V )

Multiplying the 4-velocity by the charge density at rest ρ0 we get the 4-vector

ρ0(γc, γ ~V ) = (ρc, ρ~V ) = (ρc,~j)

(charge-current 4-vector).
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Invariance of Maxwell Equations

Knowing how fields and sources transform one can prove that Maxwell equations are invariant under

Lorentz transformation. This was demonstrated by Lorentz before Einstein formulated the special

relativity theory.

We want to show that if the Maxwell equations hold good in S, they hold with the same form also in

S′.

For example let’us prove that

↙

∂Ex

∂x
+

∂Ey

∂y
+ ∂Ez

∂z

∇ · ~E =
ρ

ε0
⇒ ∇′ · ~E′ =

ρ′

ε0

The partial derivatives in S′ and in S are related by the cyclic rule

∂

∂ct′
=
∂ct

∂ct′
∂

∂ct
+

∂x

∂ct′
∂

∂x
+

∂y

∂ct′
∂

∂y
+

∂z

∂ct′
∂

∂z
= γ

(
∂

∂ct
+ β

∂

∂x

)
∂

∂x′
=
∂ct

∂x′
∂

∂ct
+
∂x

∂x′
∂

∂x
+
∂y

∂x′
∂

∂y
+
∂z

∂x′
∂

∂z
= γ

(
β
∂

∂ct
+

∂

∂x

)
∂

∂y′
=

∂

∂y

∂

∂z′
=

∂

∂z
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By using these expressions, the field transformations and the fact that Maxwell equation hold good in

S, we find

∇′ · ~E′ =
∂E′x
∂x′

+
∂E′y

∂y′
+
∂E′z
∂z′

= γ
∂E′x
∂x

+
∂E′y

∂y
+
∂E′z
∂z

+ γβ
∂E′x
∂ct

= γ
∂Ex

∂x
+ γ

∂Ey

∂y
+ γ

∂Ez

∂z
− γV

∂Bz

∂y
+ γV

∂By

∂z
+ γβ

∂Ex

∂ct

= γ∇ · ~E − γV
(
∂Bz

∂y
−
∂By

∂z

)
+ γβ

∂Ex

∂ct

= γ
ρ

ε0
− γV

(
∇× ~B −

1

c2
∂ ~E

∂t

)
x

= γ
ρ

ε0
− γV

jx

ε0c2

=
γ

ε0c
(ρc− βjx)

=
ρ′

ε0
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Forces between moving charges

Let us consider an uniform cylindrical beam of radius R of

equally charged particles moving with velocity ~v=x̂v in S.

In the reference frame S′ where the particles are at rest there is

no magnetic field and the electric force acting on each charge

is purely radial and repulsive.

Inside the beam (r′ ≤ R) it is

F ′r′ = qE′r′ =
1

2πε0R2
q2λ′r′ λ′ = line density in S′

By using the Newton force transformation

Fx = F ′x Fy = F ′y/γ Fz = F ′z/γ

we get

F‖ = 0 Fr =
1

γ
F ′r′ =

1

2πε0R2
q2λr

1

γ2
λ = γλ′ (length contraction! )���


In the reference frame S the force is still radial and repulsive, but it is reduced by a factor 1/γ2.

Beam in accelerators may be approximated by a uniform cylindrical charge distribution, the repulsive

force between the equally charged particles of the beam becomes smaller at high energy.
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The field of a moving charge

The EM fields generated by a charge at rest in the

origin of the S′ frame is

~E′ =
q

4πε0

~r ′

r ′3

~B′ = 0

The electric field components in S where the particle is uniformly moving are

(inverse field transformations with ~B′=0)

Ex = E′x =
q

4πε0

x′

r′3
Ey = γE′y = γ

q

4πε0

y′

r′3
Ez = γE′z = γ

q

4πε0

z′

r′3

Primed particle coordinates in terms of the unprimed coordinates in S

x′ = γ(x− vt) y′ = y z′ = z
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Electric field components in S in terms of S coordinates are

Ex =
q

4πε0

γ(x− vt)
[γ2(x− vt)2 + y2 + z2]3/2

Ey =
q

4πε0

γy

[γ2(x− vt)2 + y2 + z2]3/2

Ez =
q

4πε0

γz

[γ2(x− vt)2 + y2 + z2]3/2

In S the particle is moving, in S there is also a magnetic field.

Using the magnetic field transformations

0 = ~B′ = ~B‖ + γV
(
~B⊥ −

~V

c2
× ~E

)#
"

 
!↖
⊥ to motion

which means

~B‖ = 0

~B⊥ =
1

c2
~v × ~E
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We may evaluate the electric field at the time t = 0 a

~E =
q

4πε0

γ~r

[γ2x2 + y2 + z2]3/2

Denoting with θ the angle between the x̂-axis and

~r and using the relationship

γ2x2 + y2 + z2 = γ2r2(1− β2 sin2 θ)

we get

~E =
q

4πε0

1− β2

(1− β2 sin2 θ)3/2
r̂

r2

�
�
�



• The electric field is still radial and follows the 1/r2 law, but has no more a spherical symmetry.

• The magnetic field is perpendicular to the plane defined by ~r and ~v.

In accelerators, particles are often “ultra-relativistic” that is their speed in the laboratory frame is

almost c. For β → 1 it is ~E → 0, unless θ=900 or 2700 where the field is enhanced by a factor γ

1− β2

(1− β2)3/2
= γ

aAt a different time t̄ the fields take at (x, y, z) the same values as at (x − vt̄, y, z) for t=0.
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The CM Energy
The center of momentum for an isolated ensemble of particles is defined as the inertial frame where it

holds ∑
i

~pi =
∑
i

m0,i~vi√
1− V 2/c2

= 0���

↖

frame velocity

We have seen that (E/c)2 − |~p|2 = m2
0c

2.

For the total energy and momentum of the ensemble

E =
∑
i

Ei and ~P =
∑
i

~pi
���
↗

total energy

���

↑
total momentum

the invariant in the CM frame is just the total energy in the CM(∑
i

Ei/c

)2

−
∑
i

~pi ·
∑
i

~pi =

(∑
i

E′i/c

)2���

↙

energy in CM

Let us consider two simple cases:

a) two ultra-relativistic particles colliding “head-on”;
b) one ultra-relativistic particle hitting a particle at rest.
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For the system of two particles it is

(E′1 + E′2)2

c2
=

(E1 + E2)2

c2
− (~p1 + ~p2) · (~p1 + ~p2)

=
(E1 + E2)2

c2
− p21 − p

2
2 − 2~p1 · ~p2

Moreover for ultra-relativistic particles it is

p = mv ' mc =
E

c

a) ~p1/p1 = −~p2/p2

(E′1 + E′2)2

c2
=
E2

1

c2
+
E2

2

c2
+ 2

E1E2

c2
−
E2

1

c2
−
E2

2

c2
+ 2

E1E2

c2
= 4

E1E2

c2

and thus

E′1 + E′2 = 2
√
E1E2

LHC (p/p): E1=E2=6.5 TeV→ energy in the center of mass E′1 + E′2=2×6.5=13 TeV.

HERA (p/e±): E1=920 GeV and E2=27.5 GeV→ E′1 + E′2=318 GeV.
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b) ~p2 = 0 and E2 = m0,2c
2

(E′1 + E′2)2

c2
=

(E1 + E2)2

c2
− p21 − p

2
2 − 2~p1 · ~p2

(E′1 + E′2)2

c2
=
E2

1

c2
+
E2

2

c2
+ 2

E1E2

c2
−
E2

1

c2
=
E2

2

c2
+ 2

E1E2

c2

and therefore

(E′1 + E′2) =
√
E2(E2 + 2E1) =

√
E2(m0,2c2 + 2E1) '

√
2E1E2

For example, with E2 = 0.938 GeV (proton rest mass) to get in the CM an energy of 318 GeV must

be E1 =54 TeV.

From this example we see the advantage of collider experiments wrt. fixed target ones, beam intensity

permitting...
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