

Designing a synchrotron - A real life example

Yannis PAPAPHILIPPOU

Accelerator and Beam Physics group
Beams Department
CERN

CERN Accelerator School

Introduction to Accelerator Physics 2019 Atrium Hotel, Vysoké Tatry, Slovakia 20 September 2019

Purpose of the Lectures

Review several **aspects** of **beam dynamics** (mostly) presented in the introductory CAS lectures, applied to the **design** and **operation** of a **real synchrotron**

Purpose of the Lectures

- Review several aspects of beam dynamics (mostly) presented in the introductory CAS lectures, applied to the design and operation of a real synchrotron
 - □ Choice of **basic parameters**
 - Energy, bending field and circumference
 - Optics design
 - ■Cell optics, insertions, transition energy
 - Collective effects
 - ■Instabilities, Space-charge
 - □ Electron/Positron beam dynamics
 - Equilibrium beam properties, energy loss/turn, damping time

Choosing a Synchrotron

- Our choice is the CERN Super Proton Synchrotron (SPS)
- From its design and operation, it has shown enormous versatility used for several purposes and serving various applications

Choosing a Synchrotron

- Our choice is the CERN Super Proton Synchrotron (SPS)
- From its design and operation, it has shown enormous versatility used for several purposes and serving various applications
 - ☐ High energy **synchrotron** serving **fixed target** experiments (West Area, North Area, CNGS, HIRADMAT)
 - **Collider** of protons and anti-protons (W and Z bosons discovery in 1983)
 - Accelerating **electrons** and **positrons** and injecting them to the Large Electron-Positron (**LEP**) Collider
 - Accelerating protons for the Large Hadron Collider (LHC)
 - Accelerating ions for fixed target physics and the LHC
 - Extracting protons for exciting plasma for a **plasma wakefield acceleration** experiment (AWAKE)

Basic parameters: energy, bending field and circumference

Energy and bending field

Consider accelerator ring for particles with energy E with N dipoles of length L or effective length l, i.e. measured on beam path

Energy and bending field

Consider accelerator ring for particles with energy E with N dipoles of length L or effective length l, i.e. measured on beam path

 $oldsymbol{\square}$ Bending radius $ho = rac{t}{ heta}$

□ The integrated dipole strength is

$$Bl = \frac{2\pi}{N} \frac{\beta E}{q}$$

Energy and bending field

- Consider accelerator ring for particles with energy E with N dipoles of length L or effective length l, i.e. measured on beam path
 - lacksquare Bending angle $heta=rac{2\pi}{N}$
 - $oldsymbol{\square}$ Bending radius $ho = rac{t}{ heta}$
 - $lacksymbol{\square}$ The magnetic rigidity is $B
 ho=rac{eta E}{q}$
 - □ The integrated dipole strength is

$$Bl = \frac{2\pi}{N} \frac{\beta E}{q}$$

- By imposing a **dipole field**, the **dipole length** is **fixed** and vice versa
- The **higher** the **field**, the **shorter** or **less dipoles** can be used

Circumference

■ The **filling factor**, is defined as the ratio of the total length of the bending path, with respect to the circumference

$$k_f = \frac{Nt}{C}$$

Circumference

■ The **filling factor**, is defined as the ratio of the total length of the bending path, with respect to the circumference

$$k_f = \frac{Nl}{C}$$

The ring circumference becomes

$$C = \frac{2\pi}{k_f B} \frac{\beta E}{q}$$

The ring **circumference** (**cost**) is driven by the bending field choice (technology), the energy reach (physics case, applications) and the design of the lattice cells (optics)

The maximum possible circumference between the CERN I (Meyrin) and CERN II (Prevessin) site was $C_{\rm SPS} = 11 C_{\rm PS} = 2\pi \times 1100 \text{ m} \approx 6912 \text{ m}$

Combined function magnets with 1.2 T field (PS-like) would give an energy of no more then ~260 GeV for a highly packed lattice

The maximum possible circumference between the CERN I (Meyrin) and CERN II (Prevessin) site was $C_{\rm SPS} = 11C_{\rm PS} = 2\pi \times 1100 \text{ m} \approx 6912 \text{ m}$

400 GeV

The maximum possible circumference between the CERN I (Meyrin) and CERN II (Prevessin) site was $C_{\rm SPS} = 11C_{\rm PS} = 2\pi \times 1100 \text{ m} \approx 6912 \text{ m}$

14

The maximum possible circumference between the CERN I (Meyrin) and CERN II (Prevessin) site was

$$C_{\rm SPS} = 11C_{\rm PS} = 2\pi \times 1100 \text{ m} \approx 6912 \text{ m}$$

Super-conducting option could raise the energy to 1 TeV⁵

Optics design

Basic cell

- **FODO cell** of around **65 m** long with phase advances of $\pi/2$
- Beta function maxima slightly above 100 m

The 300 GeV Program, CERN/1050, 14/01/1972

Magnet aperture

Magnet apertures follow beta function and dispersion evolution

Dipole B2

Quadrupole D

The CERN Accelerator School

Dispersion suppression

- **Dispersion** has to be **eliminated** in **special areas** like injection, extraction or interaction points (orbit independent to momentum spread)
- Use dispersion suppressors
- Methods for suppressing dispersion
 - □ **Eliminate two dipoles** in a FODO cell (missing dipole)
 - Set last dipoles withdifferent bending angles

$$\theta_1 = \theta (1 - \frac{1}{4\sin^2 \mu_{\text{HFODO}}})$$

$$\theta_2 = \frac{\theta}{4\sin^2 \mu_{\text{HFODO}}}$$

For equal bending angle dipoles, the FODO phase advance should be equal to π/2

Dispersion suppression in the SPS

- In the SPS, all dipoles are powered in series, i.e. dispersion suppressor cells looks like a missing dipole, but they are not!
- Dispersion suppression is achieved by tuning the **phase** advance of the arc, to a multiple of 2 π
- **Dispersion oscillates** through the arc and vanishes at the edges

a Synchrotron, CERN Accelerator School

Ring optics

Ring is composed by 6 identical sectors ("sextants") with 16 arc cells and 2 cells in the straight sections

■ The cell phase advance of $\pi/2$ brings the tunes

to 26-27 (**Q26**)

$Sp\overline{p}S$ collider insertion optics

- Replace two straight section quadrupoles with 2 doublets (4 quadrupoles)
- Equip adjacent left/right quadrupoles with individual bipolar power convertors
- Achieved **low β*** of 1.3/0.65 m

P. Faugeras et al., CERN-SPS-80/11, CERN-SPS-83/29

Magnet system

SPS dipole magnets

■ **744 dipoles** (MBAs and MBBs) with 6.26 m length and different gaps

Number of magnets	744
Year of 1 st operation	1976
Maximum field on beam axis [T]	2.02
Physical vertical aperture [mm] MBA/MBB	38.5/51.5
Yoke assembly [Solid,Laminated,Welded,Glued]	L,W
Coil technology [Copper,Aluminium,Glass-epoxy,Mica,Other]	C,G
Maximum voltage to ground [V] (worst case 2 spare converters)	4150
Operation	Cycled
Maximum cooling water velocity [m/s]	9
Operational temperature [C°]	40

D. Tommasini CERN/TE-Note-2010-003

- Maximum field of2.02 T, for reaching450 GeV
- High mechanical stress on coils

SPS quadrupoles

- 216 quadrupoles (102 QF, 100 QD, 6 QFA and 8 QDA)
- Maximum **gradient** of **22 T/m**, corresponding to a pole-tip field of around 1 T
- Normal operation necessitates almost the **full** gradient @ 450 GeV

Tommasini CERN/TE-Note-2010-003

b. 10111111ashii CEITT / 1E-110tt-2010-003			
Number of magnets	216		
Year of 1 st operation	1976		
Maximum gradient [T/m]	22		
Physical vertical aperture [mm]	88		
Yoke assembly [Solid,Laminated,Welded,Glued]	L,W		
Coil technology [Copper,Aluminium,Glass-epoxy,Mica,Other]	C,G		
Maximum voltage to ground [V]	3450		
Operation	Cycled		
Maximum cooling water velocity [m/s]	3.6		
Operational temperature [C°]	40		

SPS sextupoles

M. Giesch, CERN/SPS/80-3/AMS, 1980

MAIN PARAMETERS OF SEXTUP(LSDN
Basic	: Nominal rms current Peak Current	[A] [A]	350 500	350 450
	* Strength at peak current			
	1) Sextup. $\int a_3 d\ell (a_3 = B/_{r^2} = B''/2)$	[T/m]	85.8	176.6
		n ²]		
	* Magnetic length	[m]	0.435	0.426 44.0
	Aperture, radius of inscr.circle	[mm]	60.7	44.0
Core	: Length	[m]	0.4	0.4

- 54 "focusing" and 54 "defocusing" 0.4 m long sextupoles in two (three for F) families (24 and 30), with different apertures
- Maximum pole-tip field of around 0.8 T
- Around 80% and 60% in operational conditions

The SPS arc cell

Transition energy and slippage factor

Transition energy

Transition "energy" (or momentum compaction factor) is defined as

$$\frac{1}{\gamma_t^2} = \alpha_p = \frac{1}{C} \oint \frac{D(s)}{\rho(s)} ds$$

The **higher** the **dispersion oscillation** in the bends, the lower the transition energy

Transition energy

30

Transition "energy" (or momentum compaction factor) is defined as

$$\frac{1}{\gamma_t^2} = \alpha_p = \frac{1}{C} \oint \frac{D(s)}{\rho(s)} ds$$

The **higher** the **dispersion oscillation** in the bends, the lower the transition energy

Quadrupoles

- Note also that, for FODO cells (SPS lattice), $\gamma_t pprox Q_x$, meaning that lowering the transition energy implies lowering the horizontal tune
- High intensity beams can be injected in the SPS above transition avoiding losses and operational complexity of transition jump scheme

Transition energy vs SPS working point

- Resonant oscillation of dispersion function close to the "Resonant integer tunes" (multiples of **super-periodicity 6**) \rightarrow asymptotic behavior of $\gamma_{t,}$ (difficult for routine operation)
- lacksquare γ_t is a linear function of horizontal tune Q_x elsewhere

Transition energy vs SPS working point

- Resonant oscillation of dispersion function close to the "Resonant integer tunes" (multiples of **super-periodicity 6**) \rightarrow asymptotic behavior of $\gamma_{t,}$ (difficult for routine operation)
- lacksquare γ_t is a linear function of horizontal tune Q_x elsewhere
- Nominal SPS working point for LHC proton beams (γ_t ~23)
- D. Boussard et al., SPS improvement note No 147, 1978; Injection above transition as TT10 was not ready for 26 GeV/c (γ_t~14)
- G. Arduini et al., CERN/SL-Note 98-001, 1998; "Resonant tune" (γ_t~20)
- Low γ_t , 2010 "Resonant arc" with small dispersion in long straight sections (γ_t ~18)

Avoiding transition energy with Q15

- Injection beam line **TT10** has not been upgraded to 26 GeV in 1978 and limited to **16 GeV**
- Injection above transition is possible if SPS integer part of the tune is lowered to 15 (γ_t ~14)

Manipulating optics for curing instabilities

Instability thresholds and slippage factor

YP et al, IPAC 2013

Transverse instabilities

- ☐ **TMCI** at injection single bunch instability in vertical plane
 - Threshold at 1.6x10¹¹p/b (ϵ_l =0.35eVs, τ =3.8ns) with low vertical chromaticity $N_{\rm th} \propto \frac{\varepsilon_l}{\beta_{\rm re}} \eta$

 \square Threshold higher than $1.2 \times 10^{11} \text{p/b}$

$$N_{
m th} \propto Q_s \propto \sqrt{\eta}$$

Longitudinal instabilities

- Single bunch and coupled bunch
 - Threshold at $2x10^{10}$ p/b for single harmonic RF (800 MHz cavity use is mandatory)

$$N_{th} \propto \epsilon_l^{5/2} \eta$$

Resonant tune

- By setting the SPS integer tune to a multiple of 6, large dispersion wave can be introduced (dispersion becomes even negative) by overall reducing transition energy
- Successfully establishing cycle in the SPS and measuring dispersion very close to the one of MAD
- 3-fold increase of the slippage factor can be achieved (model)
- "Difficult" beam conditions (especially for injection)
- Need optics were dispersion is suppressed in straight section

G. Arduini et al., CERN/SL-Note 98-001 (MD), 1998

Q_h	Q_v	γ_{tr}	$\eta \ (10^{-3})$
24.18	24.22	18.54	1.61
24.29	24.32	19.59	1.30
26.62	26.58	23.23	0.551

Q20 optics

Moving FODO phase advance from $4/16*2\pi$ ($\pi/2$) to $3/16*2\pi$ ($3\pi/8$)

Slippage factor increased by a factor of **2.8** at **injection** and **1.6** at **flat top**

Slip factor relative to nominal SPS optics 3/

- Measurement of the optics functions of the new lattice
 - **Beta beating** around 20% in horizontal and 10% in vertical plane
 - Normalized **dispersion** in striking agreement with the model

Designing a Synchrotron, CERN Accelerat

Synchrotron frequency

- ☐ Measured synchrotron frequency from "quadrupole" oscillations at injection
 - Same RF-voltage for both optics
- □ Ratio of Synchrotron frequencies ~ **1.63** corresponds to an **increase** in slippage factor η by **factor 2.65** (MADX prediction: 2.86)

Q26: Fs=458/2=229Hz, Qs=0.0106/2=0.0053

Q20: Fs=746/2=373Hz, Qs=0.0172/2=0.0086

TMCI threshold

0.00 10.00 I growth rate (1/turns)

N (p/b)

- ☐ In **nominal optics**, measured/simulated threshold at 1.6x10¹¹p/b for low chromaticity
 - High-chromaticity helps increasing threshold, but also losses along the cycle become excessive
- \square Measured/simulated threshold in $Q_{20} > 4x10^{11}p/b!!!$

N(p/b)

$$N_{
m th} \propto rac{arepsilon_l}{eta_y} \eta$$

Q26 0.0 10.00 I growth rate (1/turns) x 10¹¹ N(p/b)x 10¹¹ N(p/b)

x 10¹¹

H. Bartosik et al, **IPAC 2014**

E-cloud instability

- Simulations with HEADTAIL code
 - Injection energy, uniform cloud distribution, located in dipole regions
- Linear scaling with Synchrotron tune demonstrated
 - Clearly higher thresholds predicted for **Q20**

More margin with Q20 if e-cloud becomes issue for high intensity

H. Bartosik et al, IPAC2011

Longitudinal impedance threshold

$$N_{th} \propto \epsilon_l^{5/2} \eta$$

E. Shaposhnikova

- Impedance threshold has minimum at flat top
 - ☐ Controlled longitudinal emittance blow-up during ramp for **Q26**
 - ☐ Less (or no) longitudinal emittance blow-up needed in Q20
- ☐ Instability limit at flat bottom
 - Critical with Q26 when pushing intensity
 - Big margin with Q20 (factor of 3)

a Synchrotron, CERN Accelerator School, September 2021

Designing

Congitudinal beam stability

LHC brightness with SPS Q20

- Operational deployment of Q20 optics for LHC beams since 2012 allowing around 20% brighter beams on LHC flat bottom
- Opened way for ultra-high brightness beams of HL-LHC era

Non-linear dynamics

Loss map for low brightness beam

- proton working point
- ion working point

resonances:

red: systematic

blue: non-systematic

- upright
- - skew

H. Bartosik et al. HB2018

- Dynamic tune scan for identification of resonances
 - □ Losses around 3rd order (normal) resonances and the diagonal clearly observed
 - Faint traces of 4th order resonances
 - Operational working point for protons 20.13/20.18 (moved up for high brightness beams)

COP

Non-linear model through chromaticity

Estimate "effective" magnet multi-poles that reproduce non-linear chromaticity measurement for three different optics

Space-charge

The CERN Accelerator School

Designing a Synchrotron, CERN Accelerator School, September 2027

Space-charge tune spread

emittance at end of flat bottom

- **Vertical tune scan** with high brightness beam for 10 s storage time
 - \square N = 1.95x10¹¹ p/b (at injection)
 - $\supseteq \varepsilon \sim 1.1 \ \mu m \ (at injection)$

- $\Delta Q_x/\Delta Q_y \sim 0.10/0.20$
- □ Transmission to flat top around 94% (very small losses on flat bottom)
- Budget of 10% losses and 10% blow-up allows for tune spread of ΔQy =0.21

Designing a Synchrotron, CERN Accelerator School, September 2027

Space-charge tune spread

emittance at end of flat bottom

- Vertical tune scan with high brightness beam for 10 s storage time
 - \square N = 1.95x10¹¹ p/b (at injection)
 - $\epsilon \sim 1.1 \, \mu \text{m} \text{ (at injection)}$

- $\Delta Q_x/\Delta Q_y \sim 0.10/0.20$
- □ Transmission to flat top around 94% (very small losses on flat bottom)
- \blacksquare Budget of 10% losses and 10% blow-up allows for tune spread of $\Delta Qy{=}0.21$

Exploration of tune diagram with SC

- Tune scan with high brightness single bunch beam for 3 s storage time
 - □ Blow-up at integer resonances as expected (tune spread ΔQx , $\Delta Qy \sim 0.10,0.19$)
 - Margin for higher brightness for working points in white box (enhanced losses only close to Qx + 2Qy = 61 normal 3rd order resonance and around 4Qx = 81 normal 4th order resonance)

Electron-positron dynamics

SPS as LEP Injector

P. Collier – Academic Training 2005

- LEP filling interleaved with proton operation
- 4 cycles with 4 bunches (2e⁺, 2e⁻) evolved to 2 cycles with 8 bunches (~2.5x10¹⁰ p/b)
- Energy to LEP: $18 \rightarrow 20 \rightarrow 22$ GeV
- Lots of RF for leptons (200MHz SWC, 100MHz SWC, 352MHz SC),
- 2 Extractions in Point 6 towards LEP

Energy loss/turn

- Energy loss/turn necessitate large RF voltage (30 MV) at high energy
- Impact of a 2-m **3.5T** damping wiggler is mild at high energies

Con Damping time

- Damping time at injection (3.5 GeV) very large (9 s)
- A 2-m **3.5T damping wiggler** could enhance damping for low energies to below 1 s (good for instabilities)

The CERN Accelerator School

SPS low emittance optics

Move horizontal phase advance to 135 deg. i.e. $3\pi/4$ (Q40 optics) which is optimal for low emittance in a FODO cell

- Emittance with nominal optics @ 3.5 GeV of 3.4 nm drops to 1.3nm
- Further reduction can be achieved with damping wiggler

Summary The CERN Accelerator School

- Using the 40+ years experience since the design and operation of the Super Proton Synchrotron (SPS), reviewed several beam dynamics concepts
 - Choice of basic parameters
 - ■Energy, bending field and circumference
 - Optics design
 - ■Cell optics, insertions, transition energy
 - Collective effects
 - ■Instabilities, Space-charge
 - □ Electron/Positron beam dynamics
 - Equilibrium beam properties, energy loss/turn, damping time