

# Machine & People Protection Issues CAS Introduction to Accelerator Physics Chavannes de Bogis, 30<sup>th</sup> of September 2021 Peter Forck Gesellschaft für Schwerionenforschnung (GSI) p.forck@gsi.de

Lecture based on previous CAS & JUAS contributions by Daniela Kiselev, Xavier Queralt, Rüdiger Schmidt, Ivan Strasik, Markus Zerlauth...



#### **Reasons for machine protection:**

- Protection of the environment: Only necessary activation inside & outside of the facility should be produced
- Protection of the accelerator: Prevent for destruction of component, prevent for down-time, destruction & cost
- Enable save operation: Threshold values for reliable operation
- Protection of people: Important for workers and general public, following laws

#### **Outline of this talk:**

- 1. Introduction to risk & destruction potential
- 2. Important atomic and nuclear physics
- 3. Definition of loss categories, passive protection
- 4. Measurements by Beam Loss Monitors
- 5. Design of Machine Protection System
- 6. Overview of personal safety



#### Risk is a factor to prepare for decisions, it is <u>not</u> a physical quantity:



#### **Risk = probability** of an accident x **consequences**

measured in terms of e.g. money, manpower, accelerator downtime, radiation pollution ....

- Intolerable or acceptable depends on e.g. maintenance access, destruction level, operation
- > Different accelerator facilities allows different risks e.g. medical  $\leftrightarrow$  research facilities
- $\Rightarrow$  Risk must be weighted to foreseen usage, goals and possible achievements

#### Categories of destruction, consequences and risk:

- Heating: Lost beam heats the surrounding by its energy loss (by atomic physics)
- $\Rightarrow$  **Consequence:** Material is melted and deformed  $\Rightarrow$  proper functionality hindered
- $\Rightarrow$  Type of risk: Stop of operation
- Example: Destroyed insertions, leak in vacuum chamber, quench of superconducting magnet
- Activation: Nuclear reaction by beam particles (*nuclear physics*)
- $\Rightarrow$  **Consequence:** Permanent activation  $\Rightarrow$  pollution, human access hindered
- $\Rightarrow$  Type of risk: Maintenance impossible, expensive disposal
- Radiation damage: Displacement of lattice atoms, destruction of molecules (atomic physics)
- $\Rightarrow$  **Consequence:** Degradation of material properties, faulty electronics







Example: Destroyed insertions, leak in vacuum chamber, quench of superconducting magnet

**Heating:** Lost beam heat the surrounding by its energy loss (by *atomic physics*)

- Activation: Nuclear reaction by beam particles (*nuclear physics*)
- $\Rightarrow$  **Consequence:** Permanent activation  $\Rightarrow$  pollution, human access hindered
- $\Rightarrow$  Type of risk: Maintenance impossible, expensive disposal
- Radiation damage: Displacement of lattice atoms, destruction of molecules (atomic physics)
- $\Rightarrow$  **Consequence:** Degradation of material properties, faulty electronics
- $\Rightarrow$  Type of risk: Stop of operation, exchange of equipment
- Financial aspects: High cost of additional radiation shield
- $\Rightarrow$  **Consequence:** Reconstruction of buildings
- $\Rightarrow$  Type of risk: Insufficient budget, loss of operation permit
- User requirements: Less beam available for users
- $\Rightarrow$  **Consequence:** Angry or disappointed users
- $\Rightarrow$  Type of risk: Cancel financial support for accelerator facility

Categories of destruction, consequences and risk:











10

#### Stored beam energy within a synchrotron:



Beam momentum [GeV/c]

Cu

 $T_{melt} = 1080 \ {}^{0}C$ 

 $\rho = 8.9 \text{ g/cm}^3$ 

#### **Examples: Energy of 1MJ correspondence:**

Proton beam energy [GeV]

1 MJ is the kinetic energy of 2600 kg with an velocity of 100 km/h 

100

- 1 MJ can heat and melt 1.5 kg of copper [equals cube (5.5 cm)<sup>3</sup>]
- 1 MJ is liberated by the explosion of 0.25 kg TNT  $\geq$

LINAC: 1 MW delivered within 1 s equals to 1MJ

Courtesy M. Lindroos & R. Schmidt, JIAS 2014 on beam loss, CERN-2016-002

IPNS

0.01, L 0.1

#### Outline



### **Outline of this talk:**

- 1. Introduction to risk & destruction potential
- 2. Important atomic & nuclear physics
- 3. Definition of loss categories, passive protection
- 4. Measurements by Beam Loss Monitors
- 5. Design of Machine Protection System
- 6. Overview of personal safety

## **Overview: Interaction of Particles and Photons with Matter**



A = atomic reaction N = nuclear reaction

N: reac. if E ≳10MeV/u

A: e<sup>-</sup>,X-ray, Compton

neutron, pair-prod.

N: nuclear reaction,

A: e<sup>-</sup>, X-ray,  $\gamma$ 

N: reaction

**A**: e<sup>-</sup>

material

#### Interaction with matter

#### **General:**

- Charged particles interacts with electrons
  ⇒ shorter range
- Neutrons ionizes only indirectly
  ⇒ longer range
- Atomic processes have larger cross section than nuclear processes

#### 'Geometrical' cross section:

Cross section  $\sigma_{geo}$  comparable to size:



α, ion 🌆

**E** < 10MeV

 $\beta$ , e<sup>-</sup>

γ

### **Energy Loss of Ions in Copper**

Bethe-Bloch formula: 
$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot Z_p^2 \cdot \frac{1}{\beta^2} \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 \cdot W_{max}}{I^2} - \beta^2\right)$$
(simplest formulation)

Range: 
$$R = \int_{0}^{E_{\text{max}}} \left(\frac{dE}{dx}\right)^{-1} dE$$

with approx. scaling  $R \propto E_{max}^{1.75}$ 

Numerical calculation for **ions** with semi-empirical model e.g. SRIM Main modification  $Z_P \rightarrow Z_p^{eff}(E_{kin})$ 

#### This is an atomic physics process:

- 1. Projectile ions liberates fast electrons
- 2. Thermalization by collisions with further electrons
- 3. Transfer of energy to lattice (phonon)
- $\Rightarrow$  Heating of target



#### **Energy Loss and Heating: Calculations**



#### General method of calculation (simplified):

**1. Differential energy loss:** by Bethe-Bloch  $\frac{dE}{dx}(x)$  via codes like SRIM, LISE, FLUKA, MARS...

**2. Energy deposition:**  $\frac{dE}{dV} = -\frac{dE}{dx} \cdot \frac{N}{A} \quad \left[\frac{J}{cm^3}\right]$  with *N*: number of particles , *A*: cross section

**3. Temperature rise:**  $\Delta T = \frac{dE}{dV} \cdot \frac{1}{\rho c_p}$  [K] for short bunches;  $\rho$ : mat. density,  $c_{\rho}$  specific heat

- 4. Further material response: Melting, evaporation, pressure and stress .... via e.g. ANSYS
- **5. Secondary particles:** Nuclear reactions, fragmentation, spallation, shower....  $\rightarrow$  discussed later

#### **Energy Loss and Heating: Calculations**



**Remark:** Low energetic proton have large energy deposition at short range e.g.  $E_{kin} = 50 \text{ MeV}$ 

#### **Beam Dump for high Intensity Beams**





Peter Forck, CAS 2021, Chavannes de Bogis



#### Nuclear reactions via spallation for protons with $E_{kin} \ge 1$ GeV (simplified):

> Pre-equilibrium phases:  $\pi$ -exchange within  $\approx 10^{-22}$  s with  $E_{kin} > 20$  MeV  $\Rightarrow$  hadronic shower



#### **General properties:**

- Binding energy:
  - $\approx$  5 MeV out nucleons
    - $\approx$  50 MeV inner nucleons
- ➢ for  $E_{kin}$  >> 100 MeV comparable  $\sigma$  for n & p



#### Nuclear reactions via spallation for protons with $E_{kin} \ge 1$ GeV (simplified):

- > Pre-equilibrium phases:  $\pi$ -exchange within  $\approx 10^{-22}$  s with  $E_{kin} > 20$  MeV  $\Rightarrow$  hadronic shower
- > Inter-nuclear cascade: Evaporation of n, p, d,  $\alpha$  within  $\approx 10^{-18}$  s with  $E_{kin} \approx 1 10$  MeV
- Fission for heavy nuclei



Result on long term t > 1 ms: Radioactive nuclei = activation

D. Kiselev, CAS 2011

Peter Forck, CAS 2021, Chavannes de Bogis





Result on long term *t* > 1 ms: Radioactive nuclei = activation R.H. Thomas, in Handbook on Acc. Phy. & Eng.

Peter Forck, CAS 2021, Chavannes de Bogis

#### Fast and slow n, p, d, $\alpha$ ... $\beta \& \gamma$ decay of target nuclei

Beam fragmented nuclei, secondary nuclei

on long time scale

Hadronic shower

Vacuum pipe might by 'thick target' due to gracing incident

#### Example of cross section for protons on steel beam pipe:

- Reaction: Fe + p  $\rightarrow$  <sup>54</sup>Mn + something  $\geq$ [100 mb =  $\frac{1}{10} \sigma_{geo}$  for iron ]
- <sup>54</sup>Mn lifetime  $t_{1/2}$  = 312 days
- Electron capture E = 1.3 MeV to <sup>54</sup>Cr (excited) with X-ray emission of  $E_{\gamma} = 0.54 \text{ MeV}$
- <sup>54</sup>Cr decay via  $\gamma$  emission  $E_{\gamma} = 0.83$  MeV
- $\Rightarrow$  activation of beam pipe
- **Remark**: Comparable cross section for fast neutrons

#### **Coulomb barrier:**

Kinetic energy required to overcome the electric potential to reach a distance for nuclear force  $\simeq 5$  fm

D. Kiselev, CAS 2011



#### Fe(nat)(p,X)<sup>54</sup>Mn 10000 BERTINI-DRESNER-RAL (MCNPX CEM3 (MCNPX) FLUKA 1000 Experimental data Cross-section (mb) 100 $\approx$ constant 10 Coulomb barrier 0.1 nuclear resonances 0.01 10 1000 10000 100 Proton energy (MeV)



Courtesy I. Strasik

#### **Tolerable Beam Losses**

# Rule of thumb for proton beam with $E_{kin} > 100$ MeV:

'Beam loss below 1 W/m enables hands-on maintenance'

- > **Example**: 1 W/m ≈ 6 x 10<sup>9</sup> protons/(m·s) at 1 GeV
- Care: Most energy is lost by atomic process, while activation depends on nuclear physics





#### Simulation for 1 W/m losses for 1 GeV/u impact:

- 100 days irradiation of stainless steel No. 304
   [Fe(70%), Cr(18%), Ni(10%), Mn(2%)]
- Decrease of activation:
  ≈ 10% after ≈ 1 year
- Isotope mixture same for all ions
- ⇒ highly activated material needs significant 'cool down' time

Rule of thumb: Light targets (C, AI ...) have lower activation for impact of same # particles

Natural background

Max. for rad. workers

Medical X-ray CT





 $\approx 1 \text{ mSv/a}$ 

20 mSv/a

 $\approx 3 \text{ mSv}$ 

Simulation for 1 GeV proton irradiation: Stainless steel beam pipe after 1 W/m beam loss for 100 days & 4 h 'cool down'







#### Processes for interaction of electrons

For  $E_{kin} < 10$  MeV:

Mainly electronic stopping  $\Rightarrow$  X-rays, slow e<sup>-</sup>

#### For *E*<sub>*kin*</sub> > 10 MeV:

Bremsstrahlungs- $\gamma$ , forward peaked  $E_{\gamma} = 5.50 \text{ MeV}$  $\Rightarrow \gamma \rightarrow e^+ + e^- \text{ or } \mu^{\pm} .. \rightarrow \text{electro-mag. showers}$ 

 $\Rightarrow$  Excitation of giant resonances  $E_{res} \approx 10-30$  MeV

via ( $\gamma$ , n), ( $\gamma$ , p) or ( $\gamma$ , np) with  $\sigma_{giant} \approx \frac{1}{10} \sigma_{geo}$ 

→ Fast neutrons emitted

→ Neutrons: Long ranges in matter

no ele.-mag. interaction but nuclear reactions Photo-Pion reaction: d ( $\gamma$ , $\pi^{0}$ ) pn or d ( $\gamma$ , $\pi^{-}$ ) pp

#### $\Rightarrow$ activation at electron accelerators





eV∕nm]

01

[MeV/mm

dE/dx

loss



80

70

60

50

40

30

20

10

20

[qm]

Cross-section

#### R.H. Thomas, in Handbook on Acc. Phy. & Eng.

Photon Energy [MeV]

Giant resonance

40

 $^{55}Mn(v. n)^{54}Mn$ 



### At accelerators the $\gamma$ are originated from nuclear reactions or Bremsstrahlung for e<sup>-</sup>.

Example: Absorption in lead



Atomic physics (Z=target nucl. charge):

**Photo-effect:**  $\gamma$  + atom  $\rightarrow$  e<sup>-</sup> + atom<sup>+</sup> approx. material scaling  $\sigma_{photo} \propto Z^4$ 

**Compton-effect:**  $\gamma$  + atom  $\rightarrow \gamma'$  + e<sup>-</sup> + atom<sup>+</sup> approx. material scaling  $\sigma_{Comp} \propto Z$ 

**Pair prod.:**  $\gamma$  + nucleus  $\rightarrow$  e<sup>-</sup> + e<sup>+</sup> + nucleus approx. material scaling  $\sigma_{pair} \propto Z^2$ 

**Ele.-mag. shower:** for high  $E_{\gamma}$  $\gamma \rightarrow (e^-e^+) \rightarrow \gamma'_{brems} \rightarrow (e^-e^+)' \rightarrow \gamma''_{Brems} \rightarrow \dots$ 



Nuclear physics:

**Giant resonance:**  $\gamma$  + nucleus  $\rightarrow$  n + nucleus' small cross section but create free neutrons

#### **Interaction of Neutrons**

- Neutrons don't interaction with electrons Nuclear physics processes:
- Elastic scattering: X(n,n)X
  with X receiving recoil momentum
- > Radiative capture with  $\gamma$  emission: <sup>A</sup>X (n, $\gamma$ ) <sup>A+1</sup>X
- Example: Neutron on copper <sup>63</sup>Cu
- Elastic scattering: Large cross section for thermal n
- Absorption: Large cross section at resonances

 $\gamma\text{-}$  emission and activation

For *E* >> 100 MeV comparable cross section as proton



https://t2.lanl.gov/nis/data/endf/ and Zhukov, BIW 2010 Peter Forck, CAS 2021, Chavannes de Bogis





- Example: Neutrons on H
  - e.g. H<sub>2</sub>O, organic materials
- $\rightarrow$  effective moderator due to equal masses



Remark: Shielding of n by plastic ('paraffin') or concrete



Secondary particles and shower produces are emitted within a forward cone (in rest-frame isotopically but due to Lorentz-transformation forward in lab-frame .

Position of detector at quadruples due to maximal beam size. High energy particles leads to a shower in forward direction  $\rightarrow$  Monte-Carlo simulation.

*Example:* Simulation of lost protons at LHC at 450 GeV of lost protons:

 $\rightarrow$  at focusing quad. **D** &  $\beta_x$  maximum



# *Example:* Simulation of number of shower particles



B. Dehning, JAS 2014, CERN-2016-002

Outline

# 

#### **Outline of this talk:**

- 1. Introduction to risk & destruction potential
- 2. Important atomic and nuclear physics
- 3. Definition of loss categories, passive protection
- 4. Measurements by Beam Loss Monitors
- 5. Design of Machine Protection System
- 6. Overview of personal safety

#### **Types of losses:**

- **1.** Regular losses or slow losses  $\rightarrow$  <u>un</u>avoidable losses
- > Caused by lifetime inside synchrotron (residual gas scattering or charge exchange, Touschek ...)
- > Caused by halo-formation and cleaning, aperture limitation, imperfections, machine errors
- > Caused by multi-turn injection, slow extraction,....  $\rightarrow$  known loss mechanism
- $\Rightarrow$  Occurs in each cycle at characteristic times and/or beam parameters
- $\Rightarrow$  Usually a few % of the beam intensity
- $\Rightarrow$  Protection of **sensitive** components, beam abortion only required <u>if</u> above a certain level
- **2.** *Irregular losses* or fast losses by malfunction  $\rightarrow$  avoidable losses, see below



#### **Regular Losses from Halo**

#### Halo formation at synchrotrons:

- Definition of halo: low density of particle with large betatron amplitude
- Caused by collective effect (e.g. space charge), resonances or machine errors
- Diffusion process (e.g. 1 µm per turn)
- $\Rightarrow$  unstable particles are lost

Beam loss terminology: 'uncontrolled regular loss'

- $\Rightarrow$  Beam halo collimation system at a synchrotron
- Goal: Low impurity beam
- Warm synchrotron: Protection of sensitive insertions (e.g. septum) Concentration of loss at few locations
- Super-conduction synch: + quench protection of sc magnets
- Collider: + well defined condition for detector at IP

 $\Leftrightarrow$  min. exp. background

Cleaning of collisional halo particles

 $\Rightarrow$  Concentration of loss at dedicated locations i.e. 'controlled losses'

**LINAC:** Halo generation by long. and trans. mismatch **Goal:** Quench protection of sc civilities

Courtesy I. Strasik CAS 2016



diffusion process (d/turn)



#### Remark:

- Halo might have other distribution than core
- Halo formation and its mitigation is an actual topic



beam profile



#### **Two Stage Betatron Collimation System = active Collimation**

#### **General functionality of cleaning:**



#### Machine & People Protection Issues

#### **LHC Collimator Hardware**



**FST** 



# LHC Collimator System

Peter Forck, CAS 2021, Chavannes de Bogis

G S II

### **Collimation at LINACs**

#### Halo development at LINACs caused by:

- Higher order magnet fields (e.g. aberration)
- Transverse mis-match
- Off-momentum particles due to wrong acceleration
- Space charge forces

Goal: Halo cutting at low energy to prevent for activation



beam path s

i.e. phase space distribution is not completely cut

Example: SNS LINAC Scraping at 3 MeV profile measurement at 40 MeV M. Plum, CERN-2016-002

#### **Collimators:**

- Cut the beam tail in space
- $\mu=90^{o}$  or  $\mu=45^{o}$  betatron phase to cut angle
- $\Rightarrow$  at least two locations required



Outline

# 

#### **Outline of this talk:**

- 1. Introduction to risk & destruction potential
- 2. Important atomic and nuclear physics
- 3. Definition of loss categories, passive protection
- 4. Measurements by Beam Loss Monitors
- 5. Design of Machine Protection System
- 6. Overview of personal safety



#### **Basic idea for Beam Loss Monitors B LM:**

A loss beam particle must collide with the vacuum chamber or other insertions

 $\Rightarrow$  Interaction leads to some shower particle:

e<sup>-</sup>, γ, protons, neutrons, excited nuclei, fragmented nuclei

- $\rightarrow$  Detection of these secondaries by an appropriate detector outside of beam pipe
- $\rightarrow$  Relative cheap detector installed at many locations

Remark: Due to grazing angle a thin vacuum chamber might be a 'thick target'





#### **Plastics or liquids are used:**

**HV** base

- Detection of charged particles by electronic stopping
- Detection of neutrons by elastic collisions n on p in plastics and fast p electronic stopping.

#### Scintillator + photo-multiplier:

counting (large PMT amplification) or analog voltage ADC (low PMT amplification) Radiation hardness: plastics 1 Mrad =  $10^4$  Gy liquid 10 Mrad =  $10^5$  Gy



**Example:** Analog pulses of plastic scintillator:



32

**Photo-multiplier** 

inside



 $20~\mathrm{ns}/\mathrm{div}$  and  $100~\mathrm{mV}/\mathrm{div}$ 





#### **Cherenkov detectors:**

Passage of a charged particle v faster than propagation of light  $v > c_{medium} = c / n$ **Technical:** Quartz rod n=1.5 & photomultiplier Example: Korean XFEL behind undulator





#### **Cherenkov light emission:**

For  $v > c_{medium} = c / n$ light wave-front like a wake broadband light emission



#### Advantage:

- Detection of fast electrons only not sensitive to γ & synch. photons
- No saturation effects
- Prompt light emission
  Usage: Mainly at FELs for short and intense pulses

H. Yang, D.C. Shin, FEL Conf. 2017



#### Energy loss of charged particles in gases $\rightarrow$ electron-ion pairs $\rightarrow$ current meas.



W is average energy for creation for one  $e^{-}$  -ion pair:

| Gas            | Ionization<br>Pot. [eV] | W-Value<br>[eV] |
|----------------|-------------------------|-----------------|
| Ar             | 15.7                    | 26.4            |
| $N_2$          | 15.5                    | 34.8            |
| O <sub>2</sub> | 12.5                    | 30.8            |
| Air            |                         | 33.8            |

#### Sealed tube Filled with Ar or $N_2$ gas:

- Creation of Ar+-e<sup>-</sup> pairs, average energy W = 32 eV/pair
- measurement of this current
- Slow time response

due to  $\approx$  10  $\mu s$  drift time of Ar<sup>+</sup>.

#### Per definition: Direct measurement of dose !



Peter Forck, CAS 2021, Chavannes de Bogis





| VATRON, RHI          | C type          | CERN type                 |       |   |
|----------------------|-----------------|---------------------------|-------|---|
| cm, $arnothing$ 6 cm | size            | 50 cm, $\varnothing$ 9 cm |       |   |
| at 1.1 bar           | gas             | N <sub>2</sub> at 1.1 bar |       |   |
|                      | # of electrodes | 61                        |       |   |
| 00 V                 | voltage         | 1500 V                    |       | - |
| JS                   | reaction time   | 0.3 µs                    | 38 cr | n |
|                      | # at the synchr | . ≈ 4000 at LH0           | C     |   |
|                      | aver, distance  | 1 BLM each $\approx$      | 6 m   |   |







Peter Forck, CAS 2021, Chavannes de Bogis

# **BF**<sub>3</sub> Proportional Tubes as BLM and for personal Protection



#### Detection of neutrons **only** with a 'REM-counter': Polyethylen for neutron moderation neutron Polyethylen doped with Bor for angle in-sensitivity metallized glas tube filled with BF<sub>2</sub> gas moderation by elastic coll. with H Ø20cm grounded electrode signal out 20 cm 1 cm high voltage 10 amplifier <sup>3</sup>He(n,p)<sup>3</sup>H nuclear reaction $B(n,\alpha)Li$ $10^{3}$ $^{10}B(n,\alpha)^{7}Li$ typically 50 cm cross section $\sigma$ [barn] $10^{2}$ Physical processes of signal generation: 1. Slow down of fast neutrons by elastic collisions with p 10 p(n,n)p'2. Nuclear reaction inside $BF_3$ gas in tube: $^{10}B + n \rightarrow ^{7}Li + \alpha$ with Q = 2.3 MeV. $^{6}$ Li(n, $\alpha$ ) $^{3}$ H 3. Electronic stopping of <sup>7</sup>Li and $\alpha$ leads to signal. $10^{-1}$ $10^{-2}$ 10<sup>-6</sup> $10^{-3}$ **Remark:** 'REM-counters' are frequently used for neutron detection neutron energy $E_p$ [MeV]

outside of the concrete shield & in nuclear power plants

C. Grupen, Introduction to Radiation Protection

#### **Different detectors are sensitive to various physical processes** very different count rate, but basically proportional to each other

### Typical choice of the detector type:

Ionization Chamber:

#### Advantage:

- Measurement of absolute dose

#### **Disadvantage:**

- Low signal (low  $\gamma$ , eff, no neutron detection),
- Sometimes slow, ion drift time 10 ... 100 µs
- $\Rightarrow$  Often used at proton accelerators

#### Scintillator, Cherenkov detector: Advantage:

- Fast current reading or particle counting
- Can be fabricated in any shape, cheap **Disadvantage:**
- Need calibration in many cases
- Might suffer from radiation
- $\Rightarrow$  Often used at electron accelerators



inside

Scintillator

2x2x5 cm

**HV** base





Outline

# 

#### **Outline of this talk:**

- 1. Introduction to risk & destruction potential
- 2. Important atomic and nuclear physics
- 3. Definition of loss categories, passive protection
- 4. Measurements by Beam Loss Monitors
- 5. Design of Machine Protection System
- 6. Overview of personal safety

#### Types of losses:

- **1.** *Irregular losses* or fast losses by malfunction  $\rightarrow$  avoidable losses
- Occurs only seldom i.e. have low probability
- The whole beam or a significant fraction is lost
- Usually within a short period of the operational cycle (e.g. injection, acceleration, extraction, ...)
  ⇒ Requirement for detector system: large dynamic range
- Usually caused by
  - Hardware failures, inaccurate settings or control errors (magnets, cavities ...)
  - Beam instabilities (wake-fields, resonances, ...)
  - Manually initialized improper beam alignment
- $\Rightarrow$  Beam abortion required to prevent for destruction via **interlock generation**
- **2.** Regular losses or slow losses  $\rightarrow$  unavoidable losses, discussed above
- Caused by lifetime inside synchrotron (residual gas, Touschek ...),
- Caused by aperture limitation, beam manipulations .....
- Usually a few % of the beam intensity

#### **Remark:**

**Personal safety system:** Simple devices, reliable technology  $\rightarrow$  based on dose threshold [Gy/s] **Machine protection:** Appropriate BLMs, device specific loss threshold  $\rightarrow$  might be more complex



#### **Design criteria for a Machine Protection System:**

- 1. Beam based: Choice of BLM detector type
- Main type of radiation (protons, neutrons, electrons, muons.....)
- Expected radiation level at foreseen location
- > Required time response (fast particle counts or short beam delivery  $\leftrightarrow$  medium fast IC  $\leftrightarrow$  slow IC)
- Required dynamic range to detect irregular losses e.g. 6 orders of magnitude!
- Required reliability & fail safe
- Proton accelerators: Most often IC are used for interlock-generation
- & particle counters for relative measurements (after calibration suited for interlock generation)

Electron accelerators: Scintillators and Cherenkov counters (partly due to short pulse operation)

#### 2. Equipment based: Functionality of any relevant device must be guarantied

- Magnet power supplier
- rf-generators, cavity properties
- Super-conducting state of magnet or cavity
- Vacuum conditions
- Relevant diagnostics instruments
- Control system watchdog

≻ ...

**Remark:** In exceptional cases an interlock-source can be masked to allow for acc. operation

e.g. current-frequency converter

**BLM detector & analog front-end** 

**Design of a protection system:** 

#### Digitalization

high time resolution (e.g. LHC 1 turn = 89  $\mu$ s)

- Comparison to threshold values
  fast, real-time calculation (FPGA, DSP)
- Generation & broadcasting of interlock signal real-time operation required, equipment ok input
- Beam permit: if not ok:
  - $\rightarrow$  beam abortion kicker@synchr. or chopper@LINAC
  - $\rightarrow$  disable next beam production

#### > Data logging

- $\rightarrow$  detailed 'post mortem 'storage & archiving
- $\rightarrow$  error display

#### Generally

robust & fail-safe system required! challenge: large dynamic range



## General Layout of a Machine Protection System: Hardware



#### Beam dump statistics at LHC in year 2015 and 2012 (above injection):



B. Todd et al., CERNACC- 2014-0041

D. Wollmann et al., IPAC 2016, Busan, p. 4203 (2016)

Peter Forck, CAS 2021, Chavannes de Bogiconclusion

#### Outline



#### **Outline of this talk:**

- 1. Introduction to risk & destruction potential
- 2. Important atomic and nuclear physics
- 3. Definition of loss categories, passive protection
- 4. Measurements by Beam Loss Monitors
- 5. Design of Machine Protection System
- 6. Overview of personal safety



© by Claus Grupen

Cartoons from C. Grupen Introduction to Radiation Protection, Springer Verlag 2010



#### **Basic quantities & units for personal safety:**

> Absorbed dose: 
$$D_{R,T} = \frac{1}{m} \int_{V_T} \frac{dE_R}{dV} \cdot dV$$
  
(physical quantity)  $= \left[\frac{J}{kg}\right] = [Gy] = [100 \text{ rad}]$ 

for each radiation type **R** and each tissue **T** 

Equivalent Dose: 
$$H_T = \sum_R w_R D_{R,T} = [Sv] = [100 \text{ rem}]$$
  
with weight factor  $w_R$  for the radiation type  $R$ 

• Effective Dose: 
$$E = \sum_T w_T H_T = [Sv] = [100 \text{ rem}]$$

with weight factor  $\boldsymbol{w}_{T}$  for the absorption of each tissue  $\boldsymbol{T}$ 

whole body irradiation  $\Leftrightarrow \sum_T w_T = 1$ 

| Rad. type <i>R</i>                                                                                                                                          | w <sub>R</sub> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| γ all energies                                                                                                                                              | 1              |
| $e^{\scriptscriptstyle\scriptscriptstyle T}$ , $e^{\scriptscriptstyle\scriptscriptstyle T}$ , $\mu^{\scriptscriptstyle\scriptscriptstyle \pm}$ all energies | 1              |
| Protons E > 2 MeV                                                                                                                                           | 5              |
| $\alpha$ , heavier nuclei                                                                                                                                   | 20             |
| Neutrons: E < 10 keV                                                                                                                                        | 5              |
| 10 keV < E < 100 keV                                                                                                                                        | 10             |
| 100 keV < E < 2 MeV                                                                                                                                         | 20             |
| 2 MeV < E < 20 MeV                                                                                                                                          | 10             |
| E > 20 MeV                                                                                                                                                  | 5              |

Neutrons: Since 2007 smooth function

| Example: Organ or tissue                                       | Sensi.            | <b>W</b> <sub>T</sub> |
|----------------------------------------------------------------|-------------------|-----------------------|
| Gonads                                                         | High              | 0.20                  |
| Lung, stomach, colon, lens,<br>Hematopoietic &lymphatic system | Inter-<br>mediate | 0,12                  |
| Liver, esophagus, chest, skin,<br>muscle, hart, bone surface   | Low               | 0.05<br>- 0.01        |

### **Shielding of Accelerators**

#### Shielding of accelerator by rough rule of thumb:

Estimation of shielding by 10<sup>th</sup>-value  $\lambda_{10}$ with  $H(l) = H_0 10^{-l/\lambda_{10}}$ 

(disregarding any secondary particle transport)

| Material       | $\rho \left[\frac{g}{cm^3}\right]$ | λ <sub>10</sub> [cm] |
|----------------|------------------------------------|----------------------|
| Earth          | 1.8                                | 128                  |
| Concrete       | 2.4                                | 100                  |
| Heavy concrete | 3.2                                | 80                   |
| Iron           | 7.4                                | 41                   |
| Lead           | 11.3                               | 39                   |

#### Further rough rule of thumb:

- Protons, electrons & γ
  are att. by heavy materials
- Neutrons are scattered by hydrogen due to same mass
   Concrete contains ≈ 10%<sub>weight</sub> H<sub>2</sub>O
- Nuclear reactions produces further particles



### **Simplified Model Shielding of Accelerators**

G S X

Simplified FLUKA calculation: 4GeV protons, iron beam dump Ø 1m I=3.5m, concrete 1 or 3 m, 5.10<sup>5</sup> particles



### **Realistic Example for Shielding of Accelerators**



**Example shielding of accelerator:** Proton beam of 29 GeV for anti-proton production

Assumtion  $2.5 \cdot 10^{13}$  protons on 11cm long copper target

Shield: Iron (1.6 m downstream and 1 m transverse)

Concrete  $\approx$  8 m around beam pipe

Goal: Free access region outside i.e. equivalent dose rate  $H/t < 0.5 \mu$ Sv/h



#### **Shielding calculations:**

Required for safety procedure Numerical calculation required atomic, nuclear& particle physics models e.g. FLUKA, MARS, PHITS see lecture by Dan Faircloth

```
free access H/t < 0.5 \muSv/h
```

see lecture 'Secondary Beams and Targets' by K. Knie

K.. Knie et al., IPAC 2012



Maximal dose for an radiation exposed worker:

Maximum dose for one year: 20 mSv/a Maximum total life dose: 400 mSv (Lethal dose for short term exposure:  $\approx 4000 \text{ mSv}$ )

**Remark:** Actual limits are given by national laws.



### **Categories of Locations & maximal Doses**



#### **Natural Radiation Exposure**

#### **Example of radiation level:**

 $\succ$ 

In some parts the dose can be up to some 10 mSv/a



G S II

Natural dose in Germany:

## Avoidable, but wildly accepted Radiation Exposure



#### Cosmic ray based radiation effects depend on altitude and latitude



5 C. Grupen, Introduction to Radiation Protection

### **Passive Film Badge Dosimeter and TLD**

### For personal safety a dosimeter should be worn!

Thermo-luminescence dosimeter TLD:

Crystal e.g. LiF is excited by radiation and emit light when heated neutron sensitive via  ${}^{6}Li(n,\alpha)T$ 

Sensitivity for  $\beta$  &  $\gamma$ : 0.1 mSv to 10 Sv



Advantage: Can be archived Disadvantage: Limited sensitivity, **no** online display



"And these bagdes are supposed to protect us effectively from radiation?"

© by Claus Grupen

Film badge: X-ray sensitive films photons (typ. 5keV... 9MeV) &  $\beta^{\pm}$  (typ. > 0.3MeV) Sensitivity for  $\beta$  &  $\gamma$ : 0.1 mSv to 5 Sv

#### Active dosimeters for online display

Dose measurement with alarm function, has to be worn when entering a protected area

#### Ionization chambers or proportional chambers:

Alternative: PIN-diode solid state detector

Photons: typ. 10 keV... 10 MeV

 $\beta^{\pm}$  : 0.25 .... 1.5 MeV

#### Sensitivity for $\beta$ & $\gamma$ : 0.05 $\mu$ Sv/h to 1 Sv/h

(TLD sensitivity: 100  $\mu$ Sv to 5 Sv, flight above pole: 45...110  $\mu$ Sv)

#### **'Pocket meter' for** *γ***-rays:**

Scintillator Nal(Tl) + photo-multiplier for  $\gamma$  detection photons (typ. 60 keV... 1.5 MeV) Sensitivity for  $\gamma$ : 0.01 µSv/h to 100 mSv/h

Older versions: Proportional tube

Advantage: Alarm functionality, sensitive can be archived with some efforts Disadvantage: Expensive





#### **Summary**



- Many accelerator are build to produce radiation, some risk remains
- Accelerator components must be protected from <u>overheating</u> ('atomic physics')
  e.g. super-conducting magnet & cavities
  - Particles' energy loss must be limited and/or steered to dedicated locations
  - Passive protection by collimators for protection or localizing
  - Active Machine Protection System based on Beam Loss Monitors
- > Accelerator components must be protected from <u>activation</u> ('nuclear physics')
  - Losses must be limited to certain locations e.g. collimators & beam dump
  - '1 W/m criterion' to limit activation for hand-on maintenance
- Shield of the accelerator required
  - p, ion &  $\gamma$  best shield by high density material, but care for nuclear reactions
  - e<sup>-</sup> shield for light material (lower Bremsstrahlung)
  - n light material preferred

# ALARA principle: Unnecessary radiation exposure to people should be avoided Thank you for your attention!

In my own purpose: We are looking for a PhD student for the topic of slow extraction.

Peter Forck, CAS 2021, Chavannes de Bogis

- R. Schmidt (Ed.), Beam Loss and Accelerator Protection, Proc. Joint International Accelerator School CERN-2016-002
- US Particle Accelerator School Beam Loss & Machine Protection, January 2017 http://uspas.fnal.gov/materials/17UCDavis/davis-machineprotection.shtml
- D. Kiselev, Activation and radiation damage in the environment of hadron accelerators &
  D. Forkel-Wirth et al., Radiation protection at CERN in R. Bailey (Ed.) Proc. CAS CERN-2013-001
- > A. Zhukov, BLMs: Physics, Simulation and Application in Accelerator, Proc. BIW 2010, www.jacow.org
- C. Grupen, Introduction to Radiation Protection, Springer Verlag 2010
- Proceedings of several CERN Acc. Schools (introduction & advanced level, special topics).
- > Contributions to conferences, in particular to IPAC & IBIC.





# **Backup slides**





#### Ionizing radiation liberates secondary electrons from a surface.

#### Working principle:

- Three plates mounted in a vacuum vessel (passively NEG pumped)
- > Outer electrodes: biased by  $U \approx +1 \text{ kV}$
- Inner electrode: connected for current measurement (here current-frequency) converter)

#### $\rightarrow$ small and cheap detector, very insensitive.



B. Dehning et al., PAC 2007

Electrode for measured current









Fig. 6: Neutron energy distributions  $E\Phi(E)$  in the transverse direction generated by 250 MeV protons impinging on an iron target thicker than the proton range. The distributions are for source neutrons and behind concrete shields of thicknesses ranging from 20 cm to 1 m. The distributions have been normalized to unit area in order to show better the change in the shape of the spectrum with increasing shield thickness.

#### D. Forkel-Wirth et al., CAS 2011, CERN-2013-001

Peter Forck, CAS 2021, Chavannes de Bogis

#### **Radiation Damage Displacements of Atoms**



Fig. 12: Displacement cross-sections of protons (left) and neutrons (right) in copper obtained by two different approaches (see legend).

D. Kiselev, CAS 2011, CERN-2013-001

Peter Forck, CAS 2021, Chavannes de Bogis

#### Radiation damage in plastic by ionizing radiation:

- Brake of chemical bonds and displacement of atoms
- Microscopic defects in the chemical bonds
- Displacement of atoms in the structural material

*Example:* Kapton foil of 125 µm thickness

Direct irradiation by ion beam's

energy loss dE/dx increases for heavy ions



#### Rough estimation of maximal dose

| Material           | Dose [Gy]         |
|--------------------|-------------------|
| Teflon (PTEE)      | 10 <sup>3</sup>   |
| Mylar              | 5·10 <sup>4</sup> |
| Cable insulation   | 5·10 <sup>4</sup> |
| Magnet coil insul. | 10 <sup>6</sup>   |
| Kapton (Polyamide) | 10 <sup>7</sup>   |



#### **Microscopic Damage of structural Materials**





D. Kiselev, CAS 2011, CERN-2013-001

Peter Forck, CAS 2021, Chavannes de Bogis



#### Verification of material interaction by 440 GeV protons:

Destruction of material due to temperature rise

- melting, sublimation plasma formation
- mechanical stress
- $\Rightarrow$  verification of simulation
- $\Rightarrow$  finding proper





**Beam:** 440 GeV  $\approx 10^{13}$  protons,  $\sigma_x = \sigma_y \approx 2$  mm within  $t = 50 \ \mu s$  $\Rightarrow E_{tot} \approx 1 \ MJ$ 



A. Bertarelli, JAS CERN-2016-002.

# Experiment with 450 GeV protons:

V. Kain et al., PAC'05, 1607 (2005)





Peter Forck, CAS 2021, Chavannes de Bogis

#### Machine & People Protection Issues



#### Solid-state detector: Detection of charged particles.

#### **Working principle**

- > About  $10^4 e^-$ -hole pairs are created by a Minimum Ionizing Particle (MIP).
- > A coincidence of the two PIN reduces the background due to low energy photons.
- > A counting module is used with threshold value comparator for alarming.

#### $\rightarrow$ small and cheap detector.



#### **Collimation at LINACs**



#### Halo development caused by

- higher order magnet fields (e.g. aberration)
- transverse mis-match
- off-momentum particles due to wrong focusing
- space charge forces

Goal: Halo cutting at low energy to prevent for activation

#### **Collimators:**

- Cut the beam tail in space
- $\mu = 90^{\circ}$  or  $\mu = 45^{\circ}$  betatron phase to cut angle
- $\Rightarrow$  at least two locations required

Example: SNS LINAC

Scraping at 3 MeV

profile measurement at 40 MeV

