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The author consents to the photographic, audio and video
recording of this lecture at the CERN Accelerator School. The
term “lecture” includes any material incorporated therein
including but not limited to text, images and references.

The author hereby grants CERN a royalty-free license to use
his image and name as well as the recordings mentioned
above, in order to post them on the CAS website.

The author hereby confirms that to his best knowledge the
content of the lecture does not infringe the copyright,
intellectual property or privacy rights of any third party. The
author has cited and credited any third-party contribution in
accordance with applicable professional standards and
legislation in matters of attribution. Nevertheless the material
represent entirely standard teaching material known for more
than ten years. Naturally some figures will look alike those
produced by other teachers.
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CAS Website

These slides and the video will be
avallable the CAS school website

Proceedings

There will be the electronic version of
the proceedings for the school

Books

1.. J. David Jackson,"Classical
Electrodynamics’
2. Chabay, Sherwood "Matter &

Interactions’




Variables and Units

electric field [V/m]
magnetic field [T}

electric charge [C]
electric charge density [C/m
current density [A/m?]

’]

permittivity of vacuum, 8.854 - 1012 [F/m]
permeability of vacuum, 47 - 10~" [H/m or N/A?]
speed of light in vacuum, 2.99792458 - 10° [m/s]




Differentiation with vectors

We define operator "nabla” which we
treat as a special vector
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EM is our first example of a field theory

To work in the accelerator physics field you really should
understand field theory and understand that well

EM teaches us about special relativity

See Special Relativity lecture

Modern physics

Electromagnetism is the first example of using theories
unification
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Introduction to Fields

Charge and Current

INTRODUCTION

Conservation Law
| orentz Force

Maxwell Equations



INTRODUCTION TO

FIELDS d?x
F =ma=m
dt?

GRAVITATIONAL FORCE TS—

The force exerted by the earth on a particle.

GRAVITATIONAL FIELD

Instead of saying that the earth exerts a force on a
falling object, it is more useful to say that the earth sets
up a gravitational force field.

Any object near the earth is acted upon by the
-10- gravitational force field at that location.



INTRODUCTION TO
FIELDS

F is the force acting on a particle of mass m and g - the
acceleration due to gravity.

e F and g are fields; E— ..
e the mass of the particle m is not a field .

GRAVITATIONAL FORCE

1. We can split the system into a source which

produces the field and an object which reacts to
the field
2.We treat both pieces separately

_11_



INTRODUCTION TO
FIELDS

ELECTRIC FORCE

>

The force between charged particles. Charged

L
particles exert forces on each other F S q E

ELECTRIC FIELD

e The charge q of our particle replaces the mass m of our \

particle. g Is a single number associated with the object that F o
experiences the field. — mg
e The electric field E replaces the gravitational field g
We are splitting things up into a source that produces a field
_19- and an object that experiences the field



INTRODUCTION TO FIELDS [ ’

ELECTROMAGNETIC FORCE

To describe the force of electromagnetism, we need
to introduce two fields, each of which is a three-
dimensional vector. They are called

ELECTRIC FIELD | E E X t

AND

MAGNETIC FIELD , B X7 t

_13_
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INTRODUCTION

Introduction to Fields
Charge and Current
Conservation Law
Lorentz Force

Maxwell Equations
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CHARGE AND CURRENT

The Sl unit of charge Is the

. = 1.602176634 x 1071 C
€ 1.60 11’6654 X 10 C COUlomb, denoted by C

A much more natural unit . Then,
proton/electron: n = 1

g = ne

the charge of
guarks




CHARGE AND CURRENT

the charge density - charge
per unit volume

the total charge Q in a given
region V

the movement of charge from one place

to another Is captured by the current

density J.

| is called the current.

The current density is the current-per-
unit-area 16-




CHARGE AND CURRENT

Current flux
Move intuitive way:

A continuous charge distribution
INn which the velocity of a small
ae, at point X, Is given by
v(x, t)

Electrons moving along a wire

_17_



INTRODUCTION

Introduction to Fields
Charge and Current
Conservation Law
Lorentz Force

Maxwell Equations



Continuity equation:

charge density can change in time only if
there is a compensating current flowing into
or out of that region

the change in the total charge Q contained in some region V.
The minus sign is to ensure that if the net flow of current is
outwards, then the total charge decreases.
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If there is no current flowing out of the region, then



Introduction to Fields

e Charge and Current

e Conservation Law

e LORENTZ FORCE

e Maxwell Equations

_20_
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LORENTZ FORCE

Lorentz Force
an electric field accelerates a particle in the direction E, while
Lorentz Force Law a magnetic field causes a particle to move in circles in the

in terms of the charge distribution plane perpendicular to B.

Now we talk in terms of the force S > f — pE —|— J X B

density f(x, t), which is the force acting
on a small volume at point x

_21_



e |ntroduction to Fields
e Charge and Current

e Conservation Law

e | orentz Force

e« MAXWELL EQUATIONS

_22_



DIFFERENTIAL FORM

V.E— g Q. GAUSS'S LAW FORE

GAUSS'S LAW FOR B

FARADAY'S LAW
for time-varying
magnetic fields

AMPERE(-MAXWELL)
LAW

for time-varying
electric fields

MAXWELL
EQUATIONS
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MAXWELL
EQUATIONS

N
i

INTEGRAL FORM

E . dr /T}QL 1S /"}B-ff’S
g

] Jo Ot

/ "I.T W B “ilS ,”'l:'/ .I':‘JFS | JH“l“i}/
Js J S /5

JE
ot

/ B -dS
dt

S

GAUSS'S LAW FOR E

GAUSS'S LAW FOR B

FARADAY'S LAW

AMPERE (-MAXWELL)
LAW
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COULOMB FORCE
Electrostatic Potential
Principle of Superposition
Continuous distribution of

charges



COULOMB FORCE

e Like charges repel and unlike charges
attract;

e The force acts along the line joining the
two point charges

_27_



COULOMB FORCE

d1 ° 4>
Fr =K - —
ELECTROSTATIC FORCE r

e Proportional to electric charge of each of the two
interacting objects

e |nversely proportional to square of the distance

e Proportional to Coulomb constant K, which depends on
medium type (vacuum, air, water, etc)

pu \ material permittivity
1 C K 1 of dielectric

— . 109 ——
K MED—‘) 10 — 4?{8‘/

— — E_r - relative permittivity
< €réo (1 T X) €0 X - susceptibility of the material




COULOMB FORCE VS GAUSS LAW

e Take a particle of charge Q and radius R
and Gaussian surface S to be a sphere of

radius r
e \We want to know the electric field at some

radiusr >R

/E‘dS:Q o
S 0 /E-dS:E(r)/i‘--dS=E(r)4w2_
S S

E(x) = E(r)r




COULOMB FORCE VS GA

/SE-dS=E(r)/Si" iS5 = E 4W_QE

E(x) = E(r)r

2
electric field outside a sherically 4WEUT
symmetric distribution of charge Q
Q By the Lorentz force law: J' — qE
F _— q * force experienced by a test |
. charge
4WE[]TE movi?w ?n the region r>R
d1 " 42 S S

FE=K. rz




Coulomb Force
ELECTROSTATIC POTENTIAL
Principle of Superposition
Continuous distribution of

charges

_31_



y, Energy
fixed
q q If we let the charge g2 move upon
1 2
D r . x electrostatic force, then it starts

accelerating and gain kinetic energy.
U(r=00)=0 Consequently it will lose potential
energy.

Potential Energy

Work needed to bring 2
point-like charges together

211150412913
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(or to a distance r) . r r Tdr
W = Fdr=q1fE-dr=Kq1q2 T_Z=KQ1QZ—
1 q:- g2/
UE — . /
411E, r

This work W Is stored as potential energy U




sum of UE = . L,
41E, r

y Energy v M
! fixed —
O
q q, If we let the charge g2 move upon == (D
D - electr ® O
r _ X e=i=
accele q, - —
: U(r =00) =0 conse O ~ 0
Potential Energy energ 5 e
23 —
The potential energy O Q)
for a collection of q = L
point charges is. the O’ ® O
1 d1 " 42 - - 3
(o
<

contributions for
each pair of
particles.

7o - e I 1 qug3 | 1 qog3

4’?1'6[] 12 4’}’TED 13 4?1'6[} 923




Electric Potential

the electrical potential energy per
U — q C/D charge is the electric potential.
VOI\The scalar is called the electrostatic
potential or scalar potential (or,
sometimes, just the potential).

Maxwell Equations: Electrostatics.

1enjualod
211150412913

The two can be combined into the Poisson equation




The two can be combined into the Poisson equation

VQ(;E,{) — >—< Laplace equation

Solutions to the Laplace equation are VQ (;b _—
sald to be harmonic functions.

(HE N -2 N -2 ){i_]
T\ ax2  ay?  9z2
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J11€]1S0.1109173

Laplacian



ELECTR

OSTATICS

Coulomb Force

Electrostatic Potential
PRINCIPLE OF SUPERPOSITION
Continuous distribution of

charges



PRINCIPLE OF SUPERPOSITION

The net electric field at a location in space
Is equal to the vector sum of individual
electric fields contributed by all charged
particles located elsewhere.

Thus, the electric field contributed by a
charged particle is unaffected by the
presence of other charged particles.

[ — 1 qug2 . 1 qigz 1 qog3
4’?1'{:'[] 192 | 4’J’TED 13 | 4?1'6[} 23
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ELECTR

OSTATICS

Coulomb Force

Electrostatic Potential
Principle of Superposition
CONTINUOUS DISTRIBUTION

OF CHARGES



CONTINUOUS DISTRIBUTION OF CHARGE

The region in which charges are
0osely spaced Is said to have

O

CONTINUOUS DISTRIBUTION OF
CHARGE.

(1) Linear Charge Distribution
dg = A di

where, A = linear charge density

fele) [ A
gpe L 0D, g 1 g0dD
dne, |r|° dne, |r|*

s g [
Net force on charge g, F:--?Li—] Eﬂ!i“-
dne, 71| p|?

_39_



CONTINUOUS DISTRIBUTION OF CHARGE

The region in which c

narges are

O

l0sely spaced Is saic

to have

CONTINUOUS DISTRIBUTION OF
CHARGE.

(11) Surface Charge Distribution
dg =g dS

where, o = surface charge density

'

Net force on charge g, F= —— | ——

_40_
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CONTINUOUS DISTRIBUTION OF CHARGE

The region in which charges are

0osely spaced Is said to have

CONTINUOUS DISTRIBUTION OF
CHARGE.

O

(i21) Volume Charge Distribution

dg =pdV o TF
where, p = volume charge density
1 2y .4 I—T
N'E'.‘t fﬂfEE on Ehﬂl"gﬂ qﬂ, F = qﬂ J. pdv r dmre, ‘/1. d’r pr ) r— /|3

4’”5:]_ v \1‘\2

-41- |



MAGNETOSTATICS

e Charges give rise to electric fields.

e Current give rise to magnetic
flelds.

e Moving charge particles make a
magnetic field which is different
from the electric field

e The magnetic field is induced by
steady currents - continuous flow
of charge

V XE -

VXB_[LQ(J

0B
ot

E \
&
Yot ]

_42_



MAGNETOSTATICS

STEADY CURRENT
Ampere's Law
Vector Potentia
Biot-Savart Law

Motion of a charged particle

_43_



Continuity equation, which 5
captures the conservation of P

V- -J=0

electric charge: ot

charge density can change in time
only If there Is a compensating

current flowing into or out of that
region

Since the charge density Is
unchanging (and, indeed,
vanishing)...

%V-J—o
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MATHEMATICALLY:

IF A CURRENT FLOWS INTO SOME
REGION OF SPACE, AN EQUAL
CURRENT MUST FLOW OUT TO
AVOID THE BUILD UP OF CHARGE.

V-J=0

This is consistent V X B = ﬂOJ

with Maxwell Equations for

magnetostatics V _ B — O
V- (VxB)=0

e
-
D
N
-
-

O
>N

v
(o’
D

P’

)
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MAGNETOSTATICS

Steady Current
AMPERE LAW

Vector Potentia
Biot-Savart Law

Motion of a charged particle



AMPERE LAW

VXB:;L(}J

RELATIONSHIP BETWEEN A CURRENT
AND THE MAGNETIC FIELD IT
GENERATES

A Stokes' theorem
n

Ampere’s law states that the integral of the magnetic

n

fleld around the contour C equals \

/VXBdS_%BdF_ﬂ{]
S C



https://www.sciencefacts.net/magnetic-field.html

Conducting
wire

T =1 = >

#

Integral form: % B.dl = u,l

Differential form: VX B = uJ

| : Electric curent
B : Magnetic field

n : Permeability of free space

J : Current density

= i
pe- TR PR

Ampere’s Law

Right hand thumb rule

Thumb points in the
direction of the

electric current and For positive current direction of
fingers curl around magnetic field is determined

the current indicating
the direction of the
magnetic field

Stokes' theorem

When the thumb points in the direction of n ,
the fingers curl in the forward direction around C

with rule of right hand



AMPERE LAW

THE PRIMARY USAGE OF THE AMPERE
LAW IS

CALCULATING THE MAGNETIC FIELD i

GENERATED BY AN ELECTRIC CURRENT ;"'I

Ex: a long straight conducting wire, coaxial cable,
cylindrical conductor, solenoid, and toroid

mmmmm




AMPERE

_F_—I'—F —

. -
I"\-\"--. -
o S B

Magnetic field inside a
long solenoic.

Magnetic
field from
along
straight
wire,

A
http://hyperpﬁ«}sics.phy—astr.gsu.edu

Magnetic field inside '
a toroidal coil. iR —

— 4
| | 2 2TR"
MAgnetic hich at the surface
field approaches: i
inside a B =t
surface 2 R
cConauctor. n

QOutside the surface, I
B — #’U

27mr'
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MAGNETOSTATICS

e Steady Current

e Ampere Law

e VECTOR POTENTIAL
e Biot-Savart Law

e Motion of a charged particle

_51_



To guaranteed a solution to

we write the magnetic field as the curl of
some vector field

A - is called the vector potential

While magnetic fields that can be written
INn this form certainly satisfy the given

condition, the converse is also true

This Is the equation that we have

. to solve to determine A and,
Ampere law becomes through that, B
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It says that there are no magnetic charges.

A point-like magnetic charge g would source the
magnetic field, giving rise a fall-off

MAGNETIC

LLl
-
O
all
O
Z
O
>3

object with this behaviour - magnetic monopole

Maxwell's equations says that they don't exist



MAGNETOSTATICS

Steady Current
Ampere Law
Vector Potentia

BIOT-SAVART LAW

Motion of a charged particle

_54_



BIOT-SAVART LAW

THE ANALOGOUS OF COULOMB LAW

(B isthe

magnetic lﬁ
field '
contribution ’
at P from f
o the current ;
element
A segment of wire of length dl, aB |

into P |
pLE:;IE de \Pt - :
d
-~ |l|dB
)

ldL T(
&
' Edge
, view

carrying a current | sets up a
magnetic field

dB = )i
4 r?

- S 5 - http://hyperphysics.phy-astr.gsu.edu

Biot-Savart law for
currents




MAGNETOSTATICS

Steady Current

Ampere Law

Vector Potential
Biot-Savart Law
MOTION OF A CHARGED

PARTICLE



LORENTZ FORCE
F =q(E + v x B)

v

PARTICLE

F = g(E + v<B)

N case of an electric
fleld, the force Is always In

a
LLI
QO
ad
<
L
O
<
LL
O
Z
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-
O
>

the direction of the field,
also for particles in rest. 7 L E
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PARTICLE

LORENTZ FORCE
F =g(E+v x B)

In this case the force is
perpendicular to both,
v and B
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e FARADAY'S LAW OF
INDUCTION
e \XWave Function

e Propagation of electromagnetic

3 3 B ELECTROMAGNETISM:

NON-STATIC CASE

waves In a conductor
e Propagation of electromagnetic
waves in a highly conductive

materials

_60_
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“I was at first almost
frightened when | saw such
mathematical force made to
bear upon the subject, and
then wondered to see that
the subject stood it so well.”

Faraday to Maxwell, 1857

_61_



FARADAY'S LAW OF
INDUCTION

The process of creating a current

through changing magnetic fields is

0B called
Vxhl+—=-=0 INDUCTION.

Stokes theorem y

0B OB
ae — _ | 22 dr = — | 2= . 4] =
/H(V:KE) dS /581& dS—)/ﬂE dr /Hﬁt yr

£ —

LE-drNE _ _d‘I’(/¢>=/SB-dS

electromotive force dt

Faraday's Law magnetic flux



The electromotive force around a closed
path is equal to the negative of the time
rate of change of the magnetic flux
enclosed by the path.

Secondary effect: When a current flows in C, it will create
its own magnetic field. This induced magnetic field will

always be in the direction that opposes the change. This
IS called Lenz’s law.




e Faraday's Law of Induction
e WAVE FUNCTION

e Propagation of electromagnetic

LECTROMAGNETISM:
ON-STATIC CASE

waves In a conductor

e Propagation of electromagnetic

B

V-E=0 and V xB = pue Er waves in a highly conductive
B

VxE=—— materials

vV -B =1 _
(M

and



ELECTRIC FIELD

. 1 O°E
VFE — — — ()

2 Ot?

The wave equation

IC FIELD

SPEED OF LIGHT
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The velocity of transverse undulations in
our hypothetical medium, calculated from
the electro-magnetic experiments of MM,
Kohlrausch and Weber, agrees so exactly
with the velocity of light calculated from
the optical experiments of M. Fizeau, that
we can scarcely avoid the inference that
light consists in the transverse undulations
of the same medium which is the cause of
electric and magnetic phenomena

James Clerk Maxwell

-66-



WAVE FUNCTION

wave-number vector

wave length EF = EI_':I e (kx—wit) and B — E.;'] E_.z.l:_k-x—;.._.':l_‘._:l

frequency

angular frequency

k — the wave-number vector with |k| = k, which gives the
direction of propagation of the wave.

w is more properly called the angular frequency (f = frequency)

dispersion relatio W 1
w? = ke c= — =

k| /Rogo
EO0, BO - constant vectors, the amplitude of the wave

A = 2nt/k - the wavelength of the wave

Short wave length —=high frequency — high energy -67-



The electromagnetic spectrum

MNon-ionizing radiation lonizing radiation

R particle radiation

lwl

Visible light

Wavelength
1 EIE' 1ﬂ“ 104

T 10 10 10 10

Hadm wa:ureg | | ){'d . ;ugrﬁ%{ Evaa.
\/\/\/\f VI T

1“ ‘E " 102 10 1u mﬂ-
'68' Freguency , HE




WAVE FUNCTION. CONSTRAINS.




WAVE FUNCTION. CONSTRAINS.

~ OB

_*
1

Sf1
|
Jl

V >

e EO, BO, and k are
V X ,
mutually E
perpendicular;
e The fleld amplitudes ../
are related by

[
B

Eo __
By — €

I
Magnetic and electric fields are transverse to direction of propagation:

E1LBLk
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3 3 I ELECTROMAGNETISM:

NON-STATIC CASE

e Faraday's Law of Induction

e \X/ave Function

e PROPAGATION OF
ELECTROMAGNETIC WAVES IN
A CONDUCTOR

e Propagation of electromagnetic
waves in a highly conductive

materials

_71_



Propagation of electromagnetic

| Q0
waves In a conductor

J — 0 E o

) OHMIC CONDUCTOR V- J=0oV-E=2)
One significant difference is that €0

the electric field in the wave drives The constant o is the conductivity

a flow of electric current in the of the material

conductor: this leads to ohmic
energy losses

} THE CONTINUITY
EQUATION,

P H) — P EXP — —

!

relaxation time

_72_



Propagation of electromagnetic
waves in a conductor

} PERFECT
CONDUCTOR

Relaxation time Is vanishing

p GOOD, BUT NOT
PERFECT CONDUCTOR

charges move almost instantly to the
surface of the conductor

p ISOLATOR

the solution of the wave equation is
reduces to an ordinary plane wave

g — 00

p SKIN DEPTH

relaxation time

iInside a good conductor the field
Is attenuated in the direction of
the propagation and its
magnitude decreases
exponentially as it penetrates
iInto the conductor



The amplitude of the
wave falls by a factor
1/e In a distance
o=1/.

O is known as the skin
depth.

The skin depth is smaller for
larger conductivity. The
better the conductivity of a
material, the less well an
electromagnetic wave can
penetrate the material.

4:_




3 3 I ELECTROMAGNETISM:

NON-STATIC CASE

e Faraday's Law of Induction

e \X/ave Function

e Propagation of electromagnetic
waves in a conductor

e PROPAGATION OF
ELECTROMAGNETIC WAVES IN
A HIGHLY CONDUCTIVE

MATERIALS

_75_



1884 Sir Oliver Lodge detected electromagnetic waves from a
spark at the end of a cylinder, and found that the
amplitude did not fall off as 1/r°.

Lord Ravleigh showed that two classes of waves are
possible, “transverse electric’ (TE) and “transverse
magnetic” (TM). For each class, there is a minimum
frequency for propagation.

WAVEGUIDES

LL
O
>-
a4
O
-
-2,
L

Barrow-Southworth showed that for practical guides, the
attenuation in waveguides was much less than in wires or
coaxial cables.




RF CAVITIES

Field can persist and be stored

WAVEGUIDES

Plane waves can propagate along waveguides




Example: Fields in RF cavities

Rectangular RF cavity, an ideal conductor

E. = Eqo - cos(kzx) - sin(kyy) - sin(k.z) - e **
Ey — Ey[] . Slﬂ(k&::ﬂ) . Eﬂﬁ(kyy) : Sin(k:;,_.z) ) E—iwf
. = E.o - sin(kzx) - sin(k,y) - cos(k.z) - o iwt

By
H
|

E Dkz — Egﬂk - 81N kII - cos( k 1) - COS k_EE . E_th
Y Yy Y

Egﬂkl’ — E_'Eukz - COS kIfg . Siﬂ k y) - COS .-IL'EE ) E—imt
Y

EI""E'?"E'&

(E:L'Uke —_ Eu[}lk;r) ' ﬂﬂﬁ(k:ﬂﬂj , Gﬂﬁ(k y) . Siﬂ(kzz ) E—imt
v “ Y




Example: Fields in RF cavities

'Modes' in cavities - 1 transverse dimension

1 i i I
o 0.2 0.4 0.5 0.8 1
dimension a

No electric field at boundaries, wave must have "nodes”’ = zero
fields at the boundaries

Only modes which 'fit’ into the cavity are allowed

I“ the ExamPIE: % —_— %" — % " Mational Research
Tomsk
State

University

(then either "sin” or "cos” is 0)



Consequences: RF cavities

Field must be zero at conductor boundary, only possible if:
p.
2 2 2 W
kr +k, +k; = po)
and for k:, k,, k. we can write, (then they all fit):

Mg T Ty T
kw — | kt}' — ] kz

a ' b C

Tz
)

The integer numbers m.., m,, m. are called mode numbers, important for
design of cavity !

— half wave length /2 must always fit exactly the size of the cavity.

(For cylindrical cavities: use cylindrical coordinates )
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Consequences: wave guides

Similar considerations as for cavities, no field at boundary.
We must satisfy again the condition:

2 2 2 w*
kz +ky +k:=—
C

This leads to modes like (no boundaries in direction of propagation z):

T Trtq, T
ky = =20k, = -

a ' b
The numbers m..,m, are called mode numbers for planar waves in wave

guides !

In z direction: No Boundary - No Boundary Condition ...




Consequences: wave guides

Re-writing the condition as:

Propagation without losses requires k. to be real, i.e.:

{.L?'g MMty T Ty T

)"+ (=)

which defines a cut-off frequency w.. For lowest order mode:

2 2
> > kz +ky = ( -

-
We =
a
:r Above cut-off frequency: propagation without loss
f At cut-off frequency: standing wave

» Below cut-off frequency: attenuated wave (it does not "fit in”).

There is a very easy way to show that very high frequencies easily propagate
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OF MODES

Transverse Electric (TE)
there is no longitudinal component of the electric field

E.=0 -everywhere; B. #0

Transverse Magnetic (TM)

there is no longitudinal component of the magnetic field

B. =0 everywhere;: FE. # 0

Transverse ElectroMagnetic (TEM)

both electric and magnetic components are transverse to the

wave guide axis
E..B. =0 everywhere



Electric field
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N OF MODES

TE mode TM mode

Electric flux ines appear with beginning and end points

Note (here a TE mode) :
Electric field lines end at boundaries

Magnetic field lines appear as ”loops”




Thank you for your attention!
| would like to thank as well my colleagues who gave the EM
course previously (and | could profit from it while preparing the
lecture (A. Latina, A. Wolski, P. Skowronski, W. Herr)
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