

Beam Instrumentation & Diagnostics Part 2 CAS Introduction to Accelerator Physics Chavannes de Bogis, 29thof September 2021 Peter Forck Gesellschaft für Schwerionenforschnung (GSI) p.forck@gsi.de

2nd part of this lecture covers:

- > Transverse profile techniques
- Emittance determination at transfer lines
- Diagnostics for bunch shape determination

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing. \rightarrow Profiles have to be controlled at many locations. *Synchrotrons:* Lattice functions $\beta(s)$ and D(s) are fixed \Rightarrow width σ and emittance ε are:

$$\sigma_x^2(s) = \varepsilon_x \beta_x(s) + \left(D(s)\frac{\Delta p}{p}\right)^2 \text{ and } \sigma_y^2(s) = \varepsilon_y \beta_y(s) \text{ (no vertical bend)}$$

Transfer lines: Lattice functions are 'smoothly' defined due to variable input emittance. *Typical beam sizes:*

e⁻-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

A great variety of devices are used:

Optical techniques: Scintillating screens (all beams),

synchrotron light monitors (e–), optical transition radiation (e–, high energetic p), ionization profile monitors (protons)

Electronics techniques: Secondary electron emission SEM grids, wire scanners (all)

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

- Optical Transition Radiation
- > SEM-Grid
- Wire scanner
- Ionization Profile Monitor
- Synchrotron Light Monitors
- Summary

Scintillation: Particle's energy loss in matter causes emission of light

 \rightarrow the most direct way of profile observation as used from the early days on!

Advantage of screens:

- Direct 2-dim measurement
- ➤ High spatial resolution
- ➤Cheap realization
- \Rightarrow widely used at transfer lines

Disadvantage of screens:

- Intercepting device
- Some material might brittle
- Low dynamic range
- ➢ Might be destroyed
 - by the beam
 - Observation with

LINAC

a CCD, CMOS or video camera

Scintillation Screen (beam stopped)

LINAC

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen

Light output from various Scintillating Screens

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u

- > Very different light yield i.e. photons per ion's energy loss
- Different wavelength of emitted light

Some materials and their basic properties:

Standard drive with P43 screen

Name	Туре	Material	Activ.	Max. λ	Decay
Chromox	Cera-	Al ₂ O ₃	Cr	700 nm	≈ 10 ms
Alumina	mics	Al ₂ O ₃	Non	380 nm	≈ 10 ns
YAG:Ce	Crystal	Y ₃ Al ₅ O ₁₂	Ce	550 nm	200 ns
P43	Powder	Gd ₂ O ₃ S	Tb	545 nm	1 ms
P46		Y ₃ Al ₅ O ₁₂	Ce	530 nm	300 ns
P47		Y ₃ Si ₅ O ₁₂	Ce&Tb	400 nm	100 ns

Properties of a good scintillator:

- Large light output at optical wavelength
 - \rightarrow standard CCD camera can be used
- \blacktriangleright Large dynamic range \rightarrow usable for different currents
- \blacktriangleright Short decay time \rightarrow observation of variations
- \succ Radiation hardness \rightarrow long lifetime
- > Good mechanical properties \rightarrow typ. size up to Ø 10 cm
- (Phosphor Pxx grains of Ø \approx 10 μm on glass or metal).

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

- > SEM-Grid
- ➤Wire scanner
- Ionization Profile Monitor
- > Synchrotron Light Monitors
- > Summary

Optical Transition Radiation OTR for a single charge *e*:

Assuming a charge *e* approaches an ideal conducting boundary e.g. metal foil

- image charge is created by electric field
- dipole type field pattern
- Field distribution depends on velocity β and Lorentz factor γ due to relativistic trans. field increase
- > penetration of charge through surface within *t* < 10 fs: sudden change of source distribution
- emission of radiation with dipole characteristic

sudden change charge distribution rearrangement of sources ⇔ radiation

Other physical interpretation: Impedance mismatch at boundary leads to radiation

9

Optical Transition Radiation OTR can be described in classical physics:

approximated formula for normal incidence & in-plane polarization:

Angular distribution of radiation in optical spectrum:

- \succ lope emission pattern depends on velocity or Lorentz factor γ
- ➢ peak at angle θ≈1/γ
- \succ emitted energy i.e. amount of photons scales with $W \propto \beta^2$
- \succ broad wave length spectrum (i.e. no dependence on ω)
- \rightarrow suited for high energy electrons

 $\frac{d^2 W}{d\theta \, d\omega} \approx \frac{2e^2\beta^2}{\pi \, c} \cdot \frac{\sin^2\theta \cdot \cos^2\theta}{\left(1 - \beta^2 \cos^2\theta\right)^2}$

W: radiated energy*ω*: frequency of wave

sudden change charge distribution

rearrangement of sources ⇔ radiation

Technical Realization of Optical Transition Radiation OTR

OTR is emitted by charged particle passage through a material boundary. Photon distribution: $\frac{dN_{photon}}{d\Omega} = N_{beam} \cdot \frac{2e^2\beta^2}{\pi c} \cdot \log\left(\frac{\lambda_{begin}}{\lambda_{end}}\right) \cdot \frac{\theta^2}{\left(\nu^{-2} + \theta^2\right)^2}$ within a solid angle $d\Omega$ and Wavelength interval λ_{begin} to λ_{end} \blacktriangleright Detection: Optical 400 nm < λ < 800 nm mirror using image intensified CCD lens + filter sensitive \blacktriangleright Larger signal for relativistic beam $\gamma >> 1$ θ window CCD camera \blacktriangleright Low divergence for $\gamma >> 1 \Longrightarrow$ large signal \Rightarrow well suited for e⁻ beams beam pipe \Rightarrow p-beam only for E_{kin} > 10 GeV $\Leftrightarrow \gamma$ > 10 radiation cone beam OTR screen

Insertion of thin Al-foil under 45°

Observation of low light by CCD.

Example of realization at TERATRON:

Insertion of foil

e.g. 5 μ m Kapton coated with 0.1 μ m Al Advantage: thin foil \Rightarrow low heating & straggling 2-dim image visible

Results at FNAL-TEVATRON synchrotron

with 150 GeV proton

Using fast camera: Turn-by-turn measurement

Courtesy V.E. Scarpine (FNAL) et al., BIW'06

Optical Transition Radiation compared to Scintillation Screen

OTR: electrodynamic process \rightarrow beam intensity linear to # photons, high radiation hardness

Scint. Screen: complex atomic process \rightarrow saturation possible, for some low radiation hardness

OTR: thin foil Al or Al on Mylar, down to 0.25 μ m thickness

 \rightarrow minimization of beam scattering (Al is low Z-material e.g. plastics like Mylar)

Scint. Screen: thickness \approx 1 mm inorganic, fragile material, not always radiation hard

OTR: low number of photons \rightarrow expensive image intensified CCD

Scint. Screen: large number of photons \rightarrow simple CCD sufficient

OTR: complex angular photon distribution \rightarrow resolution limited

Scint. Screen: isotropic photon distribution \rightarrow simple interpretation

OTR: large γ needed \rightarrow e⁻-beam with E_{kin} > 100 MeV, proton-beam with E_{kin} > 100 GeV **Scint. Screen:** for all beams

Remark: OTR **not** suited for LINAC-FEL due to **coherent** light emission (not covered here) but scintillation screens can be used.

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

SEM-Grid:

emission of electrons, workhorse, limited resolution

- Wire scanner
- Ionization Profile Monitor
- Synchrotron Light Monitors
- Summary

Secondary Electron Emission by Ion Impact

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: \rightarrow fast e⁻ with $E_{kin} >> 100 \text{ eV}$

Distant collision with low energy transfer : \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$

- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1 10$ nm
- \rightarrow at surface \approx 90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!

 \Rightarrow **Y** = const. * dE/dx (Sternglass formula)

Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

SEM-Grid feed-through on CF200:

Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

Each wire is equipped with one I/U converter different ranges settings by **R**_i

 \rightarrow very large dynamic range up to 10⁶.

Example of Profile Measurement with SEM-Grids

Even for low energies, several SEM-Grid can be used due to the ≈ 80 % transmission \Rightarrow frequently used instrument beam optimization: setting of quadrupoles, energy....

Example: C⁶⁺ beam of 11.4 MeV/u at different locations at GSI-LINAC

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

> Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

> SEM-Grid:

emission of electrons, workhorse, limited resolution

Wire scanner:

emission of electrons, workhorse, scanning method

- Ionization Profile Monitor
- Synchrotron Light Monitors
- > Summary

Slow, linear Wire Scanner

Peter Forck, CAS 2021, Chavannes de Bogis

Be

The Artist view of a Beam Scraper or Scanner

In a synchrotron <u>one</u> wire is scanned though the beam as fast as possible.

Fast pendulum scanner for synchrotrons; sometimes it is called 'flying wire':

From <u>https://twiki.cern.ch/twiki/</u> bin/viewauth/BWSUpgrade/

1.5

Material: carbon or SiC \rightarrow low Z-material for low energy loss and high temperature. *Thickness*: down to 10 µm \rightarrow high resolution.

Detection: High energy secondary particles with a detector like a beam loss monitor

Secondary particles:

Proton beam \rightarrow hadrons shower (π , n, p...) **Electron beam** \rightarrow Bremsstrahlung photons.

Kinematics of flying wire:

Velocity during passage typically 10 m/s = 36 km/h and typical beam size \varnothing 10 mm \Rightarrow time for traversing the beam $t \approx 1$ ms **Challenges:** Wire stability for fast movement with high acceleration

Proton impact on scanner at CERN-PS Booster:

U. Raich et al., DIPAC 2005

The Artist View of a Wire Scanner

Purpose The Fanday Cap Award, donated by Bergoy Instrumentation of Saint Genis, France, is intended to recognize and encourage innovative achievements in the field of accelerator beam instrumentation.

Award "The award consists of a \$5000 prize and a certificate to be presented at the next LS Beam Instrumentation Workshop which will be held at Fermi National Laboratory on May 1-4, 2006. Winners participating in the BIW will share a \$1,000 travel allowance. The selection of recipients is the responsibility of the BIW Organizing Committee.

riteria. The Faraday Cup Award shall be presented for outstanding contribution to the development of an innovative beam diagnostics instrument of proven workability. The prize is only awarded for demonstrated device performance and published contribution.

Beam Diagnostic Instrument: A device to measure the properties of charged elementary particle, atomic or simple notecular beams during or after acceleration, or the properties of neutral particle beams produced in an intermediate state of charged particle acceleration. The device may

openne by detecting secondary beams of charged, neutral, massive or mass less particles. But its purpose should be to diagnose the printary charged particle beam. The mass of primary beam particles shall be no greater than the order of

10.0 atomic mass units.

performance of the device. should have been evaluated using a charged particle beam, ather than in a "bench top" demonstration Publication: A description of the device, its operating principle, and its performance should have been published in a journal or in the proceedings of a conference or workshop that is in the public domain. Laboratory design notes, internal technical notes, etc. do not qualify but may be submitted to support other publications. Full and open disclosure is necessary to the extent that a potential user could design a similar device. More than one article may be submitted (together) to setisfy this requirement; for example, an article describing the principle plus another article. describing the performance.

Delivered performance: The

Nominations are open to candidates. of any nationality for work clone at any geographical location. There are no restrictions for candidates; however, in the event of deciding between works of similar quality, preference will be given to candidates in an early stage of their beam instrumentation career. The award may be shared between persons contributing to the same accomplishment. Once, accepted by the Award Committee a nomination shall remain eligible for three successive competitions unless withdrawn by a candidate.

The Award Committee may release the names of entrants and a list of publications related to an entry if requested by a third party. Unpublished supporting material will not be disclosed nor will the names of persons supporting a nomination. Discussion regarding individual entries, scoring, etc. is regarded as confidential and will not be disclosed.

The nomination package shall include the name of the candidate, relevant publications, a statement outlining his her personal contribution and that of others, letters from two professional accelerator physicists, engineers or laboratory administrative personnel who are familiar with the device and its development. Two master copies of this package, suitable for copying, must be submitted not later than Oct. 14, 2005 to

Farachy Cup Proposals - BIW06 Attr: Lisa Lopez Fermilab MS 308, P. O. Box 500 Batavia, IL 60510, U.S.A.

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored

 \rightarrow for pulsed LINACs precise synchronization is needed

Grid: Not adequate at synchrotrons for stored beam parameters

Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive

Grid: Resolution of a grid is fixed by the wire distance (typically 0.5 ...2 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to $10 \ \mu m$)

 \rightarrow used for e--beams having small sizes (down to 10 μ m)

Grid: Needs one electronics channel per wire

ightarrow expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through \rightarrow expensive mechanics.

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

> Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

> SEM-Grid:

emission of electrons, workhorse, limited resolution

> Wire scanner:

emission of electrons, workhorse, scanning method

Ionization Profile Monitor:

secondary particle detection from interaction beam-residual gas

- Synchrotron Light Monitors
- > Summary

Ionization Profile Monitor at GSI Synchrotron

Non-destructive device for proton synchrotron:

- beam ionizes the residual gas by electronic stopping
- > gas ions or e⁻ accelerated by E -field ≈1 kV/cm
- > spatial resolved single particle detection

Typical vacuum pressure: Transfer line: N₂ 10^{-8} ... 10^{-6} mbar $\cong 3.10^{8}$... 3.10^{10} cm⁻³ Synchrotron: H₂ 10^{-11} ... 10^{-9} mbar $\cong 3.10^{5}$... 3.10^{7} cm⁻³ Realization at GSI synchrotron: One monitor per plane

Ionization Profile Monitor Realization

The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:

Transfer line: N₂ 10⁻⁸...10⁻⁶ mbar \cong 3.10⁸...3.10¹⁰ cm⁻³ Synchrotron: H₂ 10⁻¹¹...10⁻⁹ mbar \cong 3.10⁵...3.10⁷ cm⁻³

300 mm flange

Ionization Profile Monitor Realization

'Adiabatic' Damping during Acceleration

After acceleration the longitudinal velocity is increased \Rightarrow angle φ is smaller The angle is expressed in momenta: $x' = p_{\perp} / p_{\parallel}$ the emittance is $\langle xx' \rangle = 0$: $\varepsilon = x \cdot x' = x \cdot p_{\perp} / p_{\parallel}$ \Rightarrow under ideal conditions the emittance can be normalized to the momentum $p_{\parallel} = \gamma \cdot m \cdot \beta c$ \Rightarrow normalized emittance $\varepsilon_{norm} = \beta \gamma \cdot \varepsilon$ is preserved with the Lorentz factor γ and velocity $\beta = v/c$ **Example:** Acceleration in GSI-synchrotron for C⁶⁺ from ШШ injection 1.2 $6.7 \rightarrow 600 \text{ MeV/u} \ (\beta = 12 \rightarrow 79 \%) \text{ observed by IPM}$ 1.0 distribution theoretical width: $\langle x \rangle_f = \sqrt{\frac{\beta_i \cdot \gamma_i}{\beta_f \cdot \gamma_f}} \cdot \langle x \rangle_i$ t=0.23 s vidth at extraction 2 0.8 0.1.2.3.4.5.6 $= 0.33 \cdot \langle x \rangle_i$ 0.6 time [s] **IPM** norm. measured width: $\langle x \rangle_f \approx 0.37 \cdot \langle x \rangle_i$ 0.4 synchrotron with IPM is well suited acceleration 0.2 for long time observations 0.0 without beam disturbance -200 20 40 -40injection coordinate [mm] extraction \rightarrow mainly used at proton synchrotrons

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

> Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

> SEM-Grid:

emission of electrons, workhorse, limited resolution

> Wire scanner:

emission of electrons, workhorse, scanning method

Ionization Profile Monitor:

secondary particle detection from interaction beam-residual gas

Synchrotron Light Monitors:

photon detection of emitted synchrotron light in optical and X-ray range

> Summary

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light see lecture 'Electron Beam Dynamics' by Lenny Rivkin

Realization of a Synchrotron Radiation Monitor

Extracting out of the beam's plane by a (cooled) mirror

- ightarrow Focus to a slit + wavelength filter for optical wavelength
- ightarrow Image intensified CCD camera

Example: ESRF monitor from dipole with bending radius 22 m (blue or near UV)

Result from a Synchrotron Light Monitor

Advantage: Direct measurement of 2-dim distribution, good optics for visible light **Realization:** Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

'Adiabatic Damping' for an Electron Beam

Example: Booster at the light source ALBA acceleration from $0.1 \rightarrow 3$ GeV within 130 ms Profile measure by synchrotron radiation monitor:

The beam emittance in influenced by:

- Adiabatic damping
- Longitudinal momentum contribution \geq via dispersion $\Delta x_D(s) = D(s) \cdot \frac{\Delta p}{r}$

total width $\Delta x_{tot}(s) = \sqrt{\varepsilon \beta(s) + D(s) \cdot \frac{\Delta p}{p}}$

Quantum fluctuation due to light emission \triangleright

Peter Forck, CAS 2021, Chavannes de Bogis

The Artist View of a Synchrotron Light Monitor

Limitations:

Different techniques are suited for different beam parameters:

- e⁻-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm
- Intercepting ↔ non-intercepting methods

Direct observation of electrodynamics processes:

- > Optical synchrotron radiation monitor: non-destructive, for e⁻-beams, complex, limited res.
- ➤ X-ray synchrotron radiation monitor: non-destructive, for e⁻-beams, very complex
- > OTR screen: nearly non-destructive, large relativistic γ needed, e⁻-beams mainly

Detection of secondary photons, electrons or ions:

- Scintillation screen: destructive, large signal, simple setup, all beams
- Ionization profile monitor: non-destructive, expensive, limited resolution, for protons

Wire based electronic methods:

- SEM-grid: partly destructive, large signal and dynamic range, limited resolution
- Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.

The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation. It is defined within the phase space as: $\varepsilon_x = \frac{1}{\pi} \int_A dx dx'$

The measurement is based on determination of:

Either profile width σ_x and angular width σ_x' at one location **Or** profile width σ_x at different locations and linear transformations.

Different devices are used at transfer lines:

- > Lower energies E_{kin} < 100 MeV/u: slit-grid device, pepper-pot (suited in case of non-linear forces).
- All beams: Quadrupole variation method using linear transformations (not well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability criterion

 $\Rightarrow \text{ beam width delivers emittance: } \varepsilon_x = \frac{1}{\beta_x(s)} \left[\sigma_x^2 - \left(D(s) \frac{\Delta p}{p} \right) \right] \text{ and } \varepsilon_y = \frac{\sigma_y^2}{\beta_y(s)}$

41

Trajectory and Characterization of many Particles

Definition of Coordinates and basic Equations

The basic vector is 6 dimensiona

al:
$$\begin{pmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{pmatrix}$$
 =

 $= \begin{pmatrix} \text{Invit. spatial deviation} \\ \text{horizontal divergence} \\ \text{vert. spatial deviation} \\ \text{vertical divergence} \\ \text{long. deviation} \\ \text{momentum deviation} \end{pmatrix} = \begin{pmatrix} [mm] \\ [mrad] \\ [mm] \\ [mm] \\ [10^{-3}] \end{pmatrix}$

Beam width for

The transformation of a single particle from a location s_0 to s_1 is given by the Transfer Matrix R: $\vec{x}(s_1) = \mathbf{R}(s) \cdot \vec{x}(s_0)$ The transformation of a the envelope from a location s_0 to s_1 is given by the $\boldsymbol{\sigma}(\boldsymbol{s_1}) = \mathbf{R}(\boldsymbol{s}) \cdot \boldsymbol{\sigma}(\boldsymbol{s_0}) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{s})$ Beam Matrix σ :

6-dim Beam Matrix with <u>decoupled</u> hor., vert. and long. plane:

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & 0 & 0 & 0 & 0 \\ \sigma_{12} & \sigma_{22} & 0 & 0 & 0 & 0 \\ \sigma_{33} & \sigma_{34} & \sigma_{44} & 0 & 0 \\ 0 & 0 & \sigma_{34} & \sigma_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{55} & \sigma_{56} \\ 0 & 0 & 0 & 0 & \sigma_{56} & \sigma_{66} \end{pmatrix}$$
horizontal the three Horizontal the three Horizontal the three Horizontal the three th

The beam distribution can be non-Gaussian, e.g. at:

- beams behind ion source
- ➢ space charged dominated beams at LINAC & synchrotron
- cooled beams in storage rings

General description of emittance using terms of 2-dim distribution:

It describes the value for 1 standard derivation

For <u>Gaussian</u> beams only: $\varepsilon_{rms} \leftrightarrow$ interpreted as area containing a fraction **f** of ions:

Slit-Grid: Direct determination of position and angle distribution.

Used for protons with $E_{kin} < 100 \text{ MeV/u} \Rightarrow \text{range } R < 1 \text{ cm}$.

Hardware

Analysis

Slit: position *P(x)* with typical width: 0.1 to 0.5 mm

Distance: typ. 0.5 to 5 m (depending on beam energy 0. 1 ... 100 MeV)

SEM-Grid: angle distribution **P(x')**

Display of Measurement Results

The distribution is depicted as a function of position [mm] & angle [mrad] The distribution can be visualized by

- Mountain plot
- Contour plot

Calc. of 2nd moments <*x*²> , <*x*²> & <*xx*²>

Emittance value $\boldsymbol{\varepsilon}_{rms}$ from

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

 \Rightarrow Problems:

- Finite binning results in limited resolution
- > Background \rightarrow large influence on <x²>, <x'²> and <xx'>
- Or fit of distribution with an ellipse
- \Rightarrow Effective emittance only

Remark: Behind a ion source the beam might very non-Gaussian due to plasma density and aberration at quadrupoles

Beam: Ar⁴⁺, 60 keV, 15 μA at Spiral2 Phoenix ECR source.

P. Ausset, DIPAC 2009

Outline:

- Definition and some properties of transverse emittance
- Slit-Grid device: scanning method

scanning slit \rightarrow beam position & grid \rightarrow angular distribution

Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

Measurement of beam width

$$x^2_{max} = \sigma_{11}(s_1, k)$$

- matrix **R**(*k*) describes the focusing.
- With the drift matrix the transfer is $\mathbf{R}(k_i) = \mathbf{R}_{\text{drift}} \cdot \mathbf{R}_{\text{focus}}(k_i)$
- Transformation of the beam matrix

 $\sigma(s_1,k_i) = \mathbf{R}(k_i) \cdot \sigma(s_0) \cdot \mathbf{R}^{\mathsf{T}}(k_i)$

Task: Calculation of $\sigma(0)$

at entrance *s*₀ i.e. all three elements

measurement:

Using the 'thin lens approximation' i.e. the quadrupole has a focal length of *f*:

$$\mathbf{R}_{focus}(K) = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ -\mathbf{1}/f & \mathbf{1} \end{pmatrix} \equiv \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ K & \mathbf{1} \end{pmatrix} \implies \mathbf{R}(L, K) = \mathbf{R}_{drift}(L) \cdot \mathbf{R}_{focus}(K) = \begin{pmatrix} \mathbf{1} + LK & L \\ K & \mathbf{1} \end{pmatrix}$$

Measurement of the matrix-element $\sigma_{11}(s_1, K)$ by $\sigma(s_1, K) = \mathbf{R}(K) \cdot \sigma(s_1, K) \mathbf{R}^T(K)$ *Example:* Square of the beam width at

For completeness: The relevant formulas

$$\sigma_{11}(1,K) = L^{2}\sigma_{11}(0) \cdot K^{2}$$

+ 2 \cdot ($L\sigma_{11}(0) + L^{2}\sigma_{12}(0)$) \cdot K
+ $L^{2}\sigma_{22}(0) + \sigma_{11}(0)$
 $\equiv a \cdot K^{2} - 2ab \cdot K + ab^{2} + c$
The three matrix elements at the quadrupole:
 $\sigma_{11}(0) = \frac{a}{L^{2}}$
 $\sigma_{12}(0) = \cdot \frac{a}{L^{2}} \left(\frac{1}{L} + b\right)$
 $\sigma_{22}(0) = \frac{1}{L^{2}} \left(ab^{2} + c + \frac{2ab}{L} + \frac{a}{L^{2}}\right)$
 $\varepsilon_{rms} \equiv \sqrt{\det \sigma(0)} = \sqrt{\sigma_{11}(0) \cdot \sigma_{22}(0) - \sigma_{12}^{2}(0)} = \sqrt{ac} / L^{2}$

Emittance is the important quantity for comparison to theory.

It includes size (value of $\boldsymbol{\varepsilon}$) and orientation in phase space (σ_{ii} or $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$)

three independent values $\varepsilon_{rms} = \sqrt{\sigma_{11} \cdot \sigma_{22} - \sigma_{12}} = \sqrt{\langle x^2 \rangle} \langle x'^2 \rangle - \langle xx' \rangle^2$

assuming no coupling between horizontal, vertical and longitudinal planes

Transfer line, low energy beams → direct measurement of x- and x'-distribution:

> *Slit-grid:* movable slit $\rightarrow x$ -profile, grid $\rightarrow x'$ -profile

Transfer line, all beams → profile measurement + linear transformation:

Quadrupole variation: one location, different setting of a quadrupole

Assumptions: ≻ well aligned beam, no steering

no emittance blow-up due to space charge

Remark: non-linear transformation possible via tomographic reconstruction **Important remark:** For a synchrotron with a *stable beam storage*,

width measurement is sufficient using $x_{rms} = \sqrt{\varepsilon_{rms} \cdot \beta}$

Measurement of longitudinal parameter:

Bunch length measurement at

- Synchrotron light sources
- Linear light sources
- Summary

Longitudinal \leftrightarrow transverse correspondences:

position relative to rf

- \leftrightarrow transverse center-of-mass
- bunch structure in time
- \succ momentum or energy spread \leftrightarrow transverse divergence
- \succ longitudinal emittance \leftrightarrow transverse emittance.

The Bunch Position measured by a Pick-Up

e.g. $\boldsymbol{\varphi_{ref}}$ =-30° inside a rf cavity

must be well aligned for optimal acceleration Transverse correspondence: Beam position

Example: Pick-up signal for f_{rf} = 36 MHz rf at GSI-LINAC:

Electron bunches are too short (σ_t < 100 ps) to be covered by the bandwidth of

pick-ups ($f < 3 \text{ GHz} \Leftrightarrow t_{rise} > 100 \text{ ps}$) for structure determination.

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution \approx 1 ps. Scheme of a streak camera

Technical Realization of a Streak Camera

Hardware of a streak camera

Time resolution down to 0.5 ps:

Technical Realization of a Streak Camera

Hardware of a streak camera

Time resolution down to 0.5 ps:

Results of Bunch Length Measurement by a Streak Camera

Courtesy of M. Lubut et al., DIFRE 07

Peter Forck, CAS 2021, Chavannes de Bogis

FARADAY CUP 1998

Purpose. To recognize and encourage innovative achievements in the field of accelerator beam instrumentation.

Award. The Faraday Cup Award consists of a US\$ 5000 prize and a corrificate to be presented at the next Beam Instrumentation Workshop. Winners participating in the BIW will be given a \$1000 travel allowance.

Eligibility. Nominations are open to contributors of all nations regardless of the geographical location at which the work was done.

The Award goes normally to one person, but may be shared by recipients having contributed to the same accomplishment. It will normally be awarded to scientists in the early stage of their career. Nominations of candidates shall remain active for 2 competitions.

Establishment and support. The Award was established in 1991 with the support of the Beam Instrumentation Workshop Organizing Committee.

Rules. The Faraday Cup shall be awarded for an outstanding coentribution to the development of an innovative beam diagnostics instrument of proven workability. The Faraday Cup is only awarded for published contribution and delivered performance - as opposed to theoretical performance. Rules are available on request. Award Committee. The Beam Instrumentation Workshop Organizing Committee.

Nominations. The nomination package shall include the name of the candidate, relevant publications, a statement outlining his/her personal contribution and that of others, two letters from coworkers familiar with the candidate and his contribution. Two master copies satiable for photocopying of this package must be submisted not later than the 15th of November 1997 to Steven Smith c/o BIW/98 Secretarias, SLAC, Stanford University, Stanford CA 94305-4085, U.S.A.

Peter Forck, CAS 2021, Chavannes de

Bunch Length Measurement by electro-optical Method

For Free Electron Lasers \rightarrow bunch length below 1 ps is achieved

- Below the resolution of streak camera
- > Short laser pulses with $t \approx 10$ fs and electro-optical modulator

Electro optical modulator: birefringent, rotation angle depends on external electric field

Relativistic electron bunches: transverse field $E_{\perp, lab} = \gamma E_{\perp, rest}$ carries the time information Scanning of delay between bunch and laser \rightarrow time profile after several pulses.

Courtesy S.P.Jamison et al., EPAC 2006

Bunch Length Measurement by electro-optical Method

For Free Electron Lasers \rightarrow bunch length below 1 ps is achieved

Short laser pulse \Leftrightarrow broad frequency spectrum (property of Fourier transformation)

Optical stretcher: Separation of colors by different path length \Rightarrow single-shot observation

Courtesy S.P.Jamison et al., EPAC 2006

Peter Forck, CAS 2021, Chavannes de Bogis

Hardware of a compact EOS Scanning Setup

Example: Bunch length at FLASH 100 fs bunch duration = 30 μm length

B. Steffen et al, DIPAC 2009

B. Steffen et al., Phys. Rev. AB 12, 032802 (2009)

60

Devices for bunch length at light sources:

Streak cameras:

- Time resolved monitoring of synchrotron radiation
 - \rightarrow for relativistic e⁻-beams, 10 ps < t_{bunch} < 1 ns

Time resolution limit of streak camera \approx 1 ps

Laser-based electro-optical modulation:

Electro-optical modulation of short laser pulse

 \rightarrow very high time resolution down to some fs time resolution

Technical complex installation

Diagnostics is the 'sensory organ' for the beam.

It required for operation and development of accelerators

Several categories of demands leads to different installations:

- Quick, non-destructive measurements leading to a single number or simple plots
- Complex instrumentation used for hard malfunction and accelerator development
- > Automated measurement and control of beam parameters i.e. feedback

The goal and a clear interpretation of the results is a important design criterion.

General comments:

- > Quite different technologies are used, based on various physics processes
- > Accelerator development goes parallel to diagnostics development

Thank you for your attention!

- D. Brandt (Ed.), *Beam Diagnostics for Accelerators*, Proc. CERN Accelerator School, Dourdan, CERN-2009-005, 2009;
- Proceedings of several CERN Acc. Schools (introduction & advanced level, special topics).
- V. Smaluk, Particle Beam Diagnostics for Accelerators: Instruments and Methods,
 VDM Verlag Dr. Müller, Saarbrücken 2009.
- > P. Strehl, *Beam Instrumentation and Diagnostics*, Springer-Verlag, Berlin 2006.
- M.G. Minty and F. Zimmermann, Measurement and Control of Charged Particle Beams, Springer-Verlag, Berlin 2003.
- S-I. Kurokawa, S.Y. Lee, E. Perevedentev, S. Turner (Eds.), Proceeding of the School on Beam Measurement, Proceedings Montreux, World Scientific Singapore (1999).
- > P. Forck, *Lecture Notes on Beam Instrumentation and Diagnostics*, JUAS School, JUAS Indico web-site.
- > Contributions to conferences, in particular to International **B**eam Instrumentation **C**onference IBIC.

Backup slides

Vertical profile **at** injection:

Horizontal profile at injection:

Emittance conservation requires precise injection matching

Wrong angle of injected beam:

injection into outer 1.4 distribution 1.2 1.2 phase space \rightarrow large β -amplitude i.e. large beam 1.0 1.0 0.8 0.8 0.6 0.6 might result in norm 0.4 norm 0.4 12 vertical 0.2 'hollow' beam 0.2 10 0.0 [www] before -30 -20 -10 0 10 20 hor. coordinate x [mm] 0.0 30 \succ filling of acceptance -30 -20 -10 0 10 20 30 vert. coordinate y [mm] 8 Vertical profile **after** acc.: Ф 66 Horizontal profile after acc.: i.e. loss of particles width 4 1.4 \Rightarrow Hadron beams: larger distribution 2 distribution 1.2 1.2 0.39 after acc emittance after acceleration 1.0 1.0 -0.5 രര 0.5 0.8 0.8 steering value [arb.u.] injection: 0.6 0.6 norm. norm 0.4 0.4 angle **IPM** S.0 0.2 mismatch 0.0 0.0 -10 0 10 -100 20 -2020 -10 0 10 20 hor. coordinate x [mm] -2010 synchrotron vert. coordinate y [mm] larger emittance misplace injection filamentation x'vertical Schematic simulation: steerer **Courtesy M. Syphers** injection extraction

Example: Variation of vertical injection angle by magnetic steerer

with multi-turn injection, IPM integration 0.5 ms i.e. \approx 100 turns

Beam: C^{6+} at 6.7 MeV/u acc. to 600 MeV/u, up to 6.10⁹ ions per fill

Peter Forck, CAS 2021, Chavannes de Bogis

Observation of coherent OTR for compressed bunches at LINAC based light sources

Reason: Coherent emission **if** bunch length \approx wavelength (t_{bunch} =2 fs \Leftrightarrow I_{bunch} =600 nm)

or bunch fluctuations ≈ wavelength Parameter reach for most LINAC-based FELs!

Beam parameter: FLASH, 700 MeV, 0.5 nC, with bunch compression OTR screen scint. screen

(a) OTR screen

66

(b) OTR screen, +100ns delay

Peter Forck, CAS 2021, Chavannes de Bogis

prompt emission for OTR and scint. screen \rightarrow coherent and in-coherent OTR

100 ns delayed emission → no OTR as expected (classical process) → emission by scint. screen due to lifetime ⇔ correct profile image!

Contrary of M. Yan et al., DIPAC'11 & S. Wesch, DIPAC'11

X-ray Pin-Hole Camera

GSI

The diffraction limit is $\Rightarrow \sigma \cong 0.6 \cdot (\lambda^2 / \rho)^{1/3} \Rightarrow$ shorter wavelength by X-rays.

Beam Instrumentation & Diagnostics, Part 2

Double Slit Interference for Radiation Monitors

 \Rightarrow spatial coherence parameter γ delivers *rms* beam size

i.e. 'de-convolution' of blurred image!

→ highest resolution, but complex method **Typical resolution for three methods:**

- > Direct optical observation: $\sigma \approx 100 \ \mu m$
- > Direct x-ray observation : $\sigma \approx 10 \, \mu m$
- > Interference optical obser: $\sigma \approx 1 \, \mu m$

2a 🥣

Courtesy of V. Schlott PSI

R₀

SR source

of finite width

Peter Forck, CAS 2021, Chavannes de Bogis

R

spectral filter

 $\lambda_0 \pm \Delta \lambda$

Electron bunches are too short (σ_t < 100 ps) to be covered by the bandwidth of

pick-ups ($f < 3 \text{ GHz} \Leftrightarrow t_{rise} > 100 \text{ ps}$) for structure determination.

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution \approx 1 ps. Scheme of a streak camera

