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Beam Instrumentation: Functionality of devices & basic applications
Beam Diagnostics: Usage of devices for complex measurements
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Diagnostics is the 'sensory organs’ for the beam in the real environment.
(Referring to lecture by Volker Ziemann: ‘Detecting imperfections to enable corrections’)

Demands on Beam Diagnostics

Different demands lead to different installations:

» Quick, non-destructive measurements leading to a single number or simple plots
Used as a check for online information. Reliable technologies have to be used
Example: Current measurement by transformers

» Complex instruments for severe malfunctions, accelerator commissioning & development
The instrumentation might be destructive and complex
Example: Emittance determination, chromaticity measurement

General usage of beam instrumentation:
» Monitoring of beam parameters for operation, beam alighnment & accelerator development
» Instruments for automatic, active beam control

Example: Closed orbit feedback at synchrotrons using position measurement by BPMs

Non-invasive ( = 'non-intercepting’ or ‘non-destructive’) methods are preferred:
» The beam is not influenced = the same beam can be measured at several locations
» The instrument is not destroyed due to high beam power
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Typical Installation of a Beam Instrument

Quadrupole

acc. tunnel

signal |-
amp. | |

beam .=

P
L~

position
pick—up

long cable’ | -
typ. ~ 100 m | | concrete wall

— action of the beam to the detector
Accelerator tunnel:

— low noise pre-amplifier and first signal shaping
— analog treatment, partly combining other parameters

Local electronics room:
— digitalization, data bus systems (GPIB, VME, cPCI, uTCA..))
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Typical Installation of a Beam Instrument

acc. tunnel local electronics room control room
Modern trend: digit_al electronics
High performance ADC “& I VMEbus | PC/workstation
& digital signal processin o — |LAN, ethernet | =~ display of measurement
signal |- analog e
beam amp. | |- ectrogics | L CPU T
1] B ADC [
position L ) e Z =
ek D analog I/O |-+
parameter . ‘ -
] dieatio L o
long cable’ [ -4 ©& e ey ™ = -
T a eople at
typ. ~ 100 m | | concrete wall < PPY peop

Wi LHC sept. 10, 2008 |,

— low noise pre-amplifier &8 : ﬂ%ﬁ
—> analog treatment, p il 5 SN g j ‘

— action of the beam to th__

Accelerator tunnel:

Local electronics room:

— digitalization, data
— visualization and storage

Control room: _ L) OSSR
— parameter setting \\// P =l
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Outline of the Lectures

The ordering of the subjects is oriented by the beam quantities:

Part 1 of the lecture on electro-magnetic monitors:

» Current measurement

» Beam position monitors for bunched beams

Part 2 of the lecture on transverse and longitudinal diagnostics:
» Profile measurement

» Transverse emittance measure

» Measurement of longitudinal parameters

Lecture on Machine Protection System on Thursday:

» Beam loss detection as one subject

Instruments could be different for:
» Transfer lines with single pass <> synchrotrons with multi-pass
» Electrons are (nearly) always relativistic <> protons are at the beginning non-relativistic

Remark:
Most instrumentation is installed outside of rf-cavities to prevent for signal disturbance
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The beam current and its time structure the basic quantity of the beam:
» It this the first check of the accelerator functionality
» It has to be determined in an absolute manner

Measurement of Beam Current

» Important for transmission measurement and to prevent for beam losses.
Different devices are used:
» Transformers: Measurement of the beam’s magnetic field
Non-destructive
No dependence on beam type and energy
They have lower detection threshold.

» Faraday cups: Measurement of the beam’s electrical charges
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Magnetic field of the beam and the ideal Transformer

»Beam current of N ., charges with velocity

N
Ibeam =(Qe- e ge- IBC ) F;art magnetic field B
» cylindrical symmetry at radius r:
- only azimuthal component B~ 1
B =y ‘beam o= B <,
2nr ¢

Example: I =1pA, r =10cm = B, ;= 2pT, earth B,,,= 50uT

beam current |
Idea: Beam as primary winding and sense by sec. winding.

—> Loaded current transformer
Il/I2= NZ/NI = s = 1/N - lbeam

Inductance of a torus of g, Torus to guide the magnetic field
L= £t N2 Tout \.
21 I =)
lheam " Aam)

» Goal of torus: Large inductance L —pp— |-|IQ-| Vout >

and guiding of field lines.

Definition: U = L - dl/dt
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Fast Current Transformer FCT (or Passive Transformer)

Simplified electrical circuit of a passively loaded transformer:

R L simplified equivalent circuit
s L 5
beam - R
L, Cql R U
[-source @ —
reprexemx
W
N hum(t}
torus inductance L — — ground

A voltages is measured:U=R-I,.=R/N-1,,.,. =S| .0m
with S sensitivity [V/A],

equivalent to transfer function or transfer impedance Z

Equivalent circuit for analysis of sensitivity and bandwidth

(disregarding the loss resistivity R,)
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Response of the Passive Transformer: Rise and Droop Time

Time domain description:

Droop time: t,,,,= 1/( 2nf,,,, ) = L/R
Tie = 1/( 21tfy;,, ) = RC (ideal without cables)

Rise

time:

Rise time: 1, =1/(2n fy;,, ) = /LsCs (with cables)

R,: loss resistivity, R: for measuring.

A beam current

test
pulse

time

beam bunch

time

A output volt.

Tdroop = L/R
time

>

Trise —

L-Cg

W
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transfer imp. [Z,| Q]
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simplified equivalent circuit

Bandwidth

Lo G R u(t)
I-source @ —
represents
1
ﬁlhcum(t)
“— ground
Bunch train:

1.0~
0.8
0.6

0.4

beam current

beam current

0.2
gy e “signal
0.001 4 0.1 10 1000 100000 Fose
Tfrequency f [MHe] 2os
| So0.0
2n'flow znfhigh :2}21 i baseline, , , ]
0] 2 4 6 8 10
=R/L | | =1/RC; ime f
Baseline: Uy, o 1 - exp(-t/7,,,0,)
positive & negative areas are equal
9 Beam Instrumentation & Diagnostics |



Example for Fast Current Transformer From
Company Bergoz

For bunch beams e.g. during accel. in a synchrotron
typical bandwidth of 2 kHz < f< 1 GHz

< 10ns<t,,,... <1usiswellsuited
Example: GSI Fast Current Transformer FCT.

Inner / outer radius 70 /90 mm
Permeability W~ 10° for f < 100 kHz
M, oc 1/f above
Windings 10 ba B :
Sensitivity 4 V/AforR=50Q Z & 200 mm
Droop time z,,,=L/R 0.2 ms
Rise time z,=,/LgsCg 1ns Fast extraction from GSI synchrotron:
Bandwidth 2 kHz ... 500 MHz ' T ' ' T ' T
— 150 |
<EG Beam:
) ) et 3.1010 N?+
Numerous application e.g.: £ 100 L 300 MeV/u A 1 Ome
> Transmission optimization v TEVns
ha-
» Bunch shape measurement o
. 50
» Input for synchronization =
{ 4 ©
of ‘beam phase synchrotron a
0
| 1 | | 1 | 1
1] FCT —600 —400 —-200 O 200 400 600

injection time [ns]
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Example for Fast Current Transformer

For bunch beams e.g. during accel. in a synchrotron

RMS bunch length [1ts]

typical bandwidth of 2 kHz < f< 1 GHz
< 10ns<t,,,... <1usiswellsuitedv
Example GSI type:

Inner / outer radius 70 /90 mm

Permeability W~ 10° for f < 100 kHz
M, oc 1/f above

Windings 10

Sensitivity 4 V/IAforR =50 Q

Droop time z,,,=L/R 0.2 ms
Rise time 7,,,,=\/LsCs 1ns

Bandwidth 2 kHz ... 500 MHz
010 More examples see lecture
"1 ‘Longitudinal Beam Dynamics’

by Frank Tecker and Heiko Damerau FCT

0,08
0,06
0,04 - . 1 ' . '

0 30 60 90

Revolutions in SIS18 [103] injection
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From
Company Bergoz

& 200 mm

Example: U3+ from 11 MeV/u (= 15 %) to 350 MeV/u
within 300 ms (displayed every 0.15 ms)

)

)

[em—
—
[
=
1 L

72

Revolutions in SIS18 [10
=

time [ps] 5
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Shielding of a Transformer

Task of the shield:
» The image current of the walls have to be bypassed by a gap and a metal housing.
» This housing uses p-metal and acts as a shield of external B-field

(remember: I,,,,=1uA, r=10 cm = B, ., = 2pT, earth field B,,,,, = 50 uT)

metal shield | “ signal
Wlthbhigh image magnetic shield & transformer
permeability torus current current bypass torus
mage
current |
—————— .
pipe
beam -

ceramic
gap

ceramic
gap

- @CF200

courtesy Company Bergoz
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The dc Transformer &
do'e)

How to measure the DC current? The current transformer discussed sees only B-flux changes.
The DC Current Transformer (DCCT) - look at the magnetic saturation of two torii.

Depictive statement:
A single transformer needs varying beam. The trick is to ‘switch two transformers’!

modulation [’\’ 1 kHz modulation ]
» Modulation of the primary windings
e . . Inmd Imod
forces both torii into saturation — -
. torus I
twice per cycle / beam
» Sense windings measure the modulation  beam NN | N —rr
signal and cancel each other.
. . . —_— — comp
» But with the /,,,,,,, the saturation is Toonse Toonse
shifted and I, is not zero
sensin g demodulator
» Compensation current adjustable until driving dc-voltage /
. . d
/ IS zero once again measued current

sense ' ]
compensation 4[ compensation current J
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The dc Transformer By

g /ANSYAVEYSN
=

A t Aty torus 1 beam add to modulating field

sat + f
W o W W a s
time beam substract from
B+ modulating field
t Foa

AL down sum of both fields

> Modulation without beam:

modulation [AU 1 kHz modulation J

typically about 9 kHz to saturation - no net flux

> Modulation with beam:

saturation is reached at different times, - net flux

beam )
» Net flux: double frequency than modulation
. T Lom
» Feedback: Current fed to compensation winding i
for larger sensitivity sensing demodulator C)
. . . { driving dc—voltage ) /
» Two magnetic cores: Must be very similar. measured current
Remark: Same principle used for power suppliers compensation compensation current |
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The dc Transformer Realization

Example: The DCCT at GSI synchrotron

Torus radii

=135 mm r,=145 mm

Torus thickness

d=10 mm

Torus permeability W, =10°

Saturation Bt =0.6T

inductance

Number of windings | 16 for modulation & sensing
12 for feedback

Resolution 1M eam = 2 MA

Bandwidth Af =dc.... 20 kHz

Rise time constant Tise = 10 US

Temperature drift 1.5 pA/eC

5= 1L

00

ac transformers
' (two types)

dc transformer
2 cores mounted

4
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magnetic shield @200 mm flange

In-flange.NPCT with 96-mm aperture
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Measurement with a dc Transformer

Application for dc transformer:

00

= Observation of beam behavior with typ. 20 us time resolution - the basic operation tool

Example: The DCCT at GSI synchrotron
U73* accelerated from

11.4 MeV/u (f=15.5%) to 750 I\/IeV/u (B=284 %)

. upper flat Lop
E15 ~ -
4
=
210
5 acceleration extraction .
]
= 5}
e L
o rinjection
-E; | | |
— 0 | ' | ' T | ' |
=15 i
ol
u
]
= 1.0 -
[
o
o,
— 05 1
Q2
|
o
e
3] 0.0 | I | | | I | I
0 12z 3 4 5 6
time since injection [s]
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Important parameter:

» Detection threshold: = 1 pA
(= resolution)

» Bandwidth: Af = dcto 20 kHz

> Rise-time: t;., = 20 ps

» Temperature drift: 1.5 pA/°C

—> compensation required.

DCCT

synchrotron

injection  extraction
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Measurement of Beam Current

»Transformers: Measurement of the beam’s magnetic field

Non-destructive
No dependence on beam type and energy

They have lower detection threshold.
» Faraday cups: Measurement of the beam’s electrical charges

They are destructive
For low energies only

Low currents can be determined.
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Energy Loss of Protons & lons

Bethe-Bloch formula: - 42 _ AT N ar2mec?

dx

(simplest formulation)

Semi-classical approach:

» Projectiles of mass M collide beam, charge zp

with free electrons of mass m >
> If M >> m then the relative energy transferislow  mass M e Material
= many collisions required many elections participate Zes A Py

: . Z
proportional to target electron density n, = A—tpt
t

= low straggling for the heavy projectile i.e. ‘straight trajectory’
> If projectile velocity f ~1 low relative energy change of projectile (y is Lorentz factor)
» |is mean ionization potential including kinematic corrections I #Z, - 10 eV for most metals

» Strong dependence an projectile charge Z,as %oczg

Constants: N, Advogadro number, r, classical e” radius, m, electron mass, ¢ velocity of light
277?,602[32’72
1+ 2yme /M + (me/M)?

Maximum energy transfer from projectile M to electron m,: Wiz =
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Energy Loss of Protons & lons in Copper

dE 7 1 (1. 2mec?B2%- W,
Bethe-Bloch formula: = A7 N ar2mec? - fﬂt .72 2 (2111 MeC 5; maz 5?)
(simplest formulation) t
10000
-1
Range: E ex dE 1606
F|
R = — | dE £ 100 |
dx 5
0 5 10
with approx. scaling R & E%lzli g
Numerical calculation for ions 0.1
1000 |
with semi-empirical model e.g. SRIM g 100
Main modification Zp — Z;ff(Ekin) w10 ]
i
1
= Cups only for & o1
£ ]
E, <100 MeV/uduetoR<10 mm ¢ o001 |
& 0.001 | )
0.0001 Do ind i v vl v vl v |
0.01 0.1 1 10 100 1000 10000

energy per nucleon [MeV/u]

Approximation e.g. Z;ff ~ Zy [1 — exp (—Z;Z/BCﬁ / VBonr )]
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Secondary Electron Emission caused by Ion Impact (A’)
Energy loss of ions in metals close to a surface:
Closed collision with large energy transfer: — fast e” with E,;, > 100 eV
Distant collision with low energy transfer — slow e- with E,;, < 10 eV
— ‘diffusion’ & scattering with other e™: scattering length L.~ 1 - 10 nm

— at surface = 90 % probability for escape
Secondary electron yield and energy distribution comparable for all metals!

— Y =const. * dE/dx (Sternglass formula)
Different targets:

S
x Mg 12 Aorset
4? ® Al 13 Aorsel
aAl 13 Hil
- 0Fe 26 Aarset
e ™~ c 3 s Ni 28 Aorset
b 6 ray = oCu 29 Hill
— - oMo 42 Hill
eam ) E ol 4 Ay 79 Aarset
o —— vPb 82 Aarset
ial n vPb 82 Hill
- c
e — Materia S
Z, A, P =]
L op-
L el
8-
L.~10 nm 2|
S+
5 1 [ N W I |
4 2 3 4 5 678910 20 30
E.J. Sternglass, Phys. Rev. 108, 1 (1957) E=Profon Energy in Mev

20
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The cup is moved in the beam pass
- destructive device

Faraday Cups for Beam Charge Measurement

The beam particles are collected inside a metal cup
— The beam’s charge are recorded as a function of time.

negative HV north yoke perm. magnet
aperture J. south permanent magnet
I .- I/'U—converter
~ 30mm: '
! i~ //
beam E B \Q_—Uﬂiecrory V)
! _y [
! VA
| /| i U
- f ‘.EILllllllll.l ".
/

| /
T E e —emission cong |\ —— ..o

Currents down to 10 pA with bandwidth of 100 Hz!
To prevent for secondary electrons leaving the cup
Magnetic field:

The central fieldisB= 10 mT = 1, = mTB-vl ~1 mm . HVelectrode

or Electric field: Potential barrier at the cup entrance U =~ 1 kV.
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Realization of a Faraday Cup at GSI LINAC

The Cup is moved into the beam pass.

source

Faraday Cup
@60 mm

— vacuum chamber —

Joe

vacuum flange
here @150 mm

bellow
compression
for movement

pneumatic
drive

Cup: beam stopped

RFQ

—E— LINAC |—

Peter Forck, CAS 2021, Chavannes de Bogis

beam . )

1

=

o e
|

flange |

movement

electrical
feed—through

bellow
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Summary for Current Measurement

Transformer: - measurement of the beam’s magnetic field

» Magnetic field is guided by a high p toroid

» Types: FCT — large bandwidth, /..~ 30 pA, BW = 10 kHz ... 500 MHz
[ACT: I,;,= 0.3 pA, BW =10 Hz .... 1 MHz, used at proton LINACs ]

DCCT: two toroids + modulation, I_. ~ 1 pA, BW =dc ... 20 kHz

min
» non-destructive, used for all beams

Faraday cup: - measurement of beam’s charge,

> low threshold by I/U-converter: I ,,,, > 10 pA Resolution limit
» totally destructive, used for low energy beams only
Fast Transformer FCT  Active transformer ACT DC transformer DCCT

Company Bergoz
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Pick-Ups for bunched Beams
P Jo'e

Outline:

» Signal generation — transfer impedance

» Capacitive button BPM for high frequencies
» Capacitive linear-cut BPM for low frequencies
» Electronics for position evaluation

» BPMs for measurement

» Summary

A Beam Position Monitor is an non-destructive device for bunched beams
It delivers information about the transverse center of the beam:

» Trajectory: Position of an individual bunch within a transfer line or synchrotron
» Closed orbit: Central orbit averaged over a period much longer than a betatron oscillation
» Single bunch position: Determination of parameters like tune, chromaticity, ffunction

Remarks: - BPMs have a low cut-off frequency < dc-beam behavior can’t be monitored
- The abbreviation BPM and pick-up PU are synonyms
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Time Domain & Frequency Domain = .5"
duency ¢ A

Time domain: Recording of a voltage as a
T T Instrument: Ita

g=100ns
/\ Oscilloscope /\ -
S — A

—I__(t) \ frequency ‘

. Frequency domain
time measurements

Ibeam

00 02 C4 06 08 1.0
time [us]

Frequency domam Displaying of a voltage as a function of frequency:

| | courtesy company Keysight

Time domain
measurements

ot 0,=100 ns | Instrument:

| > 0,=16 MHz | Soectrum Anal

= . (f)- pectrum Analyzer Fourier Transformation:

oL ]

= | beam | o §D§g = » Contains amplitude & phase
o | . " & » Thesameinformation

~ is displayed differently

0 2 4 6 8 0
frequency f [MHz]

@ UuUuue
8 JUuuue

eBuuuue

Law of Convolution: For a convolution in time: f(t) = f fi(o) - fL(t—1)dt

= f(w) = fi(w) - f, (w) < convolution be expressed as multiplication of FTs

See lecture ‘Time and Frequency Domain Signals’ by Hermann Schmickler
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Pick-Ups for bunched Beams
P 00

The image current at the beam pipe is monitored on a high frequency basis
i.e. the ac-part given by the bunched beam.

I image(t)

Ibeam (t)

Beam Position Monitor BPM is the
most frequently used instrument!

image charges

QO L O O O

beam(t) For relativistic velocities,

I
@6 QOO @% the electric field is transversal:

beam pipe

EL,Iab (t)y=y- EL,rest(t')
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Principle of Signal Generation of a BPMs, centered Beam

The image current at the wall is )| i
monitored on a high frequency basis w
i.e. ac-part given by the bunched beam. V

Animation by Rhodri Jones (CERN)
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Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

™S

Equivalent circuit
L (O s ki S
R H] IUim(t) | " ! |
beam pipe I I __I__ground : C h | i A :
B |
| | I |1C R |
Lbeam( ) : Ibeam C,\Diubeam: :T Ulm :
| 1 |
" | il v |
| | | : capacitive coupling | : == ground :
|

, | Acareaofplate — image current |_€lectronics elements

e = e S J

At a resistor R the voltage U,,, from the image current is measured.

Goal: Connection from beam current to signal strength by transfer impedance Z, (@ )
in frequency domain: U, (w)=R-I. (w)=2Z(w) - I, (W)

A 1 1 IwRC
Result: Z;(w) = — +———— € C i.e. complex function

2ra fc 1+iwRC
P

geometry stray Capacitance frequency response
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Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

- (w)= t(w) lpeam (w)

EIUU I | T | |

s 75 -

17, = A ‘ 1 .1‘ ol a,, _82 ]
272 ,BC C \/1+a)2/a)zcut Tgmq L ___ ]

@ = arctan (a,, / ) = 10|
Parameter linear-cut BPM at proton synchr.: g 10"k ]
C = 100pF, I=10cm, B=50% 5107 | o
fout = /2 = (2nRC)? 107 v e 508
forR=50 Q= f.,;= 32 MHz T Eé....... ittt ]
forR=1MQ=>f.,,= 1.6 kHz 10°10° 10 10 10" 10° 10" 10

frequency f [MHz]

Large signal strength for long bunches — high impedance

Smooth signal transmission important for short bunches — 50 Q2

Remark: For @ - 0itis Z,— 0 i.e. no signal is transferred from dc-beams e.g.
» de-bunched beam inside a synchrotron
» for slow extraction through a transfer line

Peter Forck, CAS 2021, Chavannes de Bogis 29
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Calculation of Signal Shape (here single Bunch)

Jo e

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function I, ,,,,(t) having a width of o;

derivative

intermediale

proportional

[ [ [ [ [ [ [ I
;. ¢=100ns ;">\ oc=10ns /\lns
\ / \
F X = /f \ /\\ %
ourier - AN z hN # N
trans. — ——Ibeam(t) %10
_Ulm(t)
| | [ | [ \ | [ |

00 02 04 06 08
time [us]

1.0 20 40 60 _ 80 100

time [ns]

2 4 6 8 10
time [ns]

inverse
Fourier
trans.

2. FFT of Iy qm(t) l€ads to the frequency domain Gaussian lpegm(f) With 5 = 2no,) !

T I | I | I
UtleO ns
RN o,=1.6 MHz

\
AY

~

FFT ampl.

L T

’ A - Ibeam(f)

-

A o,=16 MHz

crtzl[) ns 4

T 1T T [T
crtzlns

= 01:160 MHZ_

0 2 4 6 8
frequency f [MHz]|

3. Multiplication with Z,(f) with f, ;=32 MHz leads to U;,(f) =Zy{f) - lpeaml(f)

4. Inverse FFT leads to U;,.(t)

0 20 40 60 80 O
frequency f [MHz]

200 400 600 800
frequency f [MHz]

Remark: Time domain processing via convolution or filters (FIR and IIR) are possible

Peter Forck, CAS 2021, Chavannes de Bogis
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Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Jo e

Synchrotron filled with 8 bunches accelerated with f, =1 MHz
BPM terminated with R=1 MQ =f, .>> f.+:
7 T T 40 T T T T
14 .
E 6T 1% 30 - - 12 | — — — single bunch 4
- 5 | _ -E' E !\\ bunch train
E g Elo U _
,_;“4 i | = 20 k- 4 < :1 \
- [ (0] - —
5 S 10 f 1 56 \ .
g Rr 1 g B 4 H \ -
= ®m 0 : \
Fg T | ’ U U 2-11- \X\ )
0 | | 1 —10 ] 1 | 0 j e
0 4 6 0 2 4 6 8 0 2 4 ¢] 8 10
time [us] time [us] frequency [MHz]

Parameter: R=1MQ = f_,.=2kHz, Z,=5Q, all buckets filled

C=100pF, I=10cm, $=50%, 0,=100 ns = 0;=15m

» Fourier spectrum is composed of lines separated by acceleration frf

» Envelope given by single bunch Fourier transformation

» Baseline shift due to ac-coupling
Remark: 1 MHz< frf<1OMHz — Bandwidth *100MHz=10 *frffor broadband observation
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See lecture ‘Time and Frequency Domain Signals’ by Hermann Schmickler
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Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Jo e

Synchrotron filled with 8 bunches accelerated with f,..=1 MHz
BPM terminated with R=50 Q2 =>f, << f. s

acc”

7 I I I 2 I I 1~0 T I I
E: 61 ] > 08 L — — — single bunch -
— 5 L | .E. 1rF . g bunch train
g E 5
F-
— 4l 1 — - 06 - _ _
-+ [ 7]
5 g 0 2 T
£ 3 1 = ( N ! \
= g g 04 \ h
o g / \
g2t 13l I \
= &) 0.2 / \ -
Bap 1 @ f \
LU ’ [~
0 ! ! ! -2 l L ' 0.0 -
0 4 6 B 0 2 4 6 8 0 2 4 §] 8 10
time [us] time [us] frequency [MHz]

Parameter: R=50 Q) = f_, =32 MHz, all buckets filled

C=100pF, I=10cm, $=50%, 0,=100 ns = 0;=15m

» Fourier spectrum is concentrated at acceleration harmonics

with single bunch spectrum as an envelope.

» Bandwidth up to typically 10*f

acc
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Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, R=50 Q:

|ma |

TeaT

bunch current I

Parameter: R=50 Q) = f_,.=32 MHz, 2 empty buckets

» Fourier spectrum is more complex, harmonics are broader due to sidebands

Peter Forck, CAS 2021, Chavannes de Bogis
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— — — gingle bunch
bunch train

4 8
frequeney [MHz]
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Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass:
7 T T T 2

I I I lﬂ I I I I
T6r 1 = .
E DE! 08 F — — — gingle bunch 4
—'5_ | o . B bunch train
i A :
= <= 06 - .
4 F . o
» o pfalal _ alalall 3
S .| | BTy Ty ®
5 =) 04 ' n
o k [ i
a2 1 2,0 | g |
lfE:' B o2+ | s
'E 1+ — " I 'k\
f
a Jlll JLIJIL 1 Jlll.nlk JIIl _3 ] ] ] 0.0 oy L_::l.‘“w.__l 1
a 2 4 5] 8 0 g 2 4 10

time [pa]

8
titne [rez] frequency [MHz]

Parameter: R=50 Q, 4th order Butterworth filter at feur2 MHz

C=100pF, I=10cm, 6=50%, 6=100 ns

» Ringing due to sharp cutoff
» Other filter types more appropriate

nt" order Butterworth filter, math. simple, but not well suited:

(0] w,,)"
\/1+(a) [, )™

|H and |Hhigh|:

low

|:
\/l+ (! )"

H = Hhigh'H

filter low

Generally:  Z, ,(w) =H_p.(w) - Hf,-,ter(w) Hampl®) + ... -Z(w)

Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

Peter Forck, CAS 2021, Chavannes de Bogis
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Principle of Signal Generation of a BPMs: off-center Beam

The image current at the wall is r”'gﬂ!} 5

monitored on a high frequency basis u
i.e. ac-part given by the bunched beam.

Animation by Rhodri Jones (CERN) -
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Principle of Position Determination by a

i w0

The difference voltage between plates gives the beam’s center-of-mass

—most frequent application

1 U —-U beam pipe I

I U up

up down
= +9, i
Y= (@) U, +Uq,. () pickup__ y from AU = U, - U,
1 AU beam ‘LL\ 7
“s, zu,
_ 1 . Unght Uleft +5 (Cf)) 1
S, (w) U right T U et I I Udown

S(w,x) is called position sensitivity, sometimes the inve
S is a geometry dependent, non-linear function,
Units: $=[%/mm], sometimes $=[dB/mm] or k=[mm].
Typical desired position resolution:
Ax~0.1...0.3 - g, of beam width

Amplitude u / V

It is at least: AU <« 1—10ZU

Peter Forck, CAS 2021, Chavannes de Bogis 36

rse is used k{w,x)=1/S(w,x)

Example: One turn = 4 bunches @ 35 MeV/u

Uright — Ureft
0.5
0.25
0
-0.25
0 04 08 12 16 20 24 28
Time t / ps
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The Artist View of a BPM

Peter Forck, CAS 2021, Chavannes de Bogis
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Pick-Ups for bunched Beams
P o0

Outline:
» Signal generation —> transfer
» Capacitive button BPM for high frequencies
used at most proton LINACs and electron accelerators
» Capacitive linear-cut BPM for low frequencies
» Electronics for position evaluation
» BPMs for measurement of closed orbit, tune and further lattice functions

» Summary
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2-dim Model for a Button BPM

‘Proximity effect’: larger signal for closer plate
Ideal 2-dim model: Cylindrical pipe — image current density
via ‘image charge method’ for ‘pencil’ beam: button (

- Ibeam a.2 - r2
Jim(¢) — ) 5 5
2ma \ a®+r°—2ar-cos(¢—0)

1.0 . T

al2
Image current: Integration of finite BPM size: |im =a j jim(¢)d¢
—al?2

. . 15
aperture a=25 mm, @ = 0° a=25mm,6=0%a=30"
- 08 - r=2mm Al i 1.0 + — AU '
5 | ----- r=5mm N AU/EU P
: o R log(U_ . ./U ) " -
] \ . [ d
S08 [ ----- r=15mm |, \ 7 _ right 19’2’4-‘
g ! i © ‘f"
£ { g 00 .
o 04 ; \ 1A ~
g I \ =Y
: — o AU =U gt ~Ugetr
] ot ALY P — . —
502 = . i o right left
bomrmem™7 ‘z’ \\\ '''''' - _10 ]
0.0 ; ‘ ! ! ' ' _15 | | |
¢ [degree] real beam position [mm]
Peter Forck, CAS 2021, Chavannes de Bogis 39

Beam Instrumentation & Diagnostics |



2-dim Model for a Button BPM

Ideal 2-dim model: Non-linear behavior and hor-vert coupling:

1 AU
Sensitivity S is converts signal to position X = 53U
: button
with S [%/mm] or [dB/mm]
AU i
i.e. S is the derivative of the curve S, = aZxU , here S, =S, (x, y)i.e. non-linear. i
1
For this example: central part S=7.4%/mm < k=1/5=14mm :
1
Horizontal plane Position Map '
' - ' button=—=—"——" ‘ .
1.0 [ a=25mm, a=30° 0L T B N A S
— §=0° looo:%:ooooooou?coo
- IR MRS SRS Hee
05 I §=20 10—--?» ------------ 3---G>-G--0--i:o#-'.'g:‘-g-g-g-‘;;tﬁo;g--e--e--a ---------------------
= | looodniddsodigdooo |
R - - - 9=80° / _ | ioog_‘i.aoozseo.g‘_gooi
~ o . E EPSID SO SDADE oD N
-} % or iood'é:‘osoéo@o—é'booi
< §ooc§-‘,ég‘00®¢®oo‘<‘5.‘~:}oo§
- | 000 Eg e blago oo
[V SRR D GO R D G0 s W B Dt e e
| COSTERETEEEI 0T O 'realposition
=R R e B B B e I e B B« B o B o B B« B < B« B H
. 2oL cocdooocooodooo @ megsured position
. . . 20
-20 -10 0 10 20 i | | — i i
real beam position [mm] -30 -20 -10 0 10 20 30
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Button BPM Realization ®

Joe

LINACs, e-synchrotrons: 100 MHz <frf < 3 GHz — bunch length = BPM length

— 50 Q) signal path to prevent reflections
Example: LHC-type inside cryostat:

324 mm, half aperture a =25 mm, C=8 pF
= f.= 400 MHz, Z, = 1.3 Q2 above f, ;

Courtesy C. Boccard (CERN)
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Simulations for Button BPM at Synchrotron Light Sources

Example: Simulation for ALBA light source for 72 x 28 mm? chamber

Optlmlzatlon horlzontal dlstance and size of buttons from A.A. Nosych et al., IBIC'14
2 button 2 button 1 I ol — v~ 20 mm
S S —— y=10 mm
I N~ T~ - | sl =7 omm
= 3
£ 0 E Of .
- 1 mm steps £ S,(center) = 7.8 %/mm
10l P X 5t for |x|<5mm & y=Omm |
) Al — 0 S,(center) = 7.2 %/mm
20} | ~ button3  button 4 | . for Jyl< 5mlm & x=0mrrl1
-30  -20 -10 0 — o -20 -10 0 10 20
p05|t|on X [mm] real beam position x [mm]
20+ ' ' 1
button 2 button 1 18 mm
— button 2 <—> button1
| &
—_ y A
E 0 « D7 mm
- t——)
-10¢+
S
20} button 3 button 4 button 3

30 20 10 0 10 20 30 button 4
position x [mm]

Result: non-linearity and xy-coupling occur in dependence of button size and position
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Pick-Ups for bunched Beams
P o0

Outline:
» Signal generation —> transfer impedance
» Capacitive button BPM for high frequencies
used at most proton LINACs and electron accelerators
» Capacitive linear-cut BPM for low frequencies
used at most proton synchrotrons due to linear position reading
> Electronics for position evaluation

» BPMs for measurement of closed orbit, tune and further lattice functions

» Summary
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Linear-cut BPM for Proton Synchrotrons

00

Frequency range: 1 MHz <ff< 100 MHz = bunch-length >> BPM length.

Signal is proportional to actual plate length:

ligne =(@+X)-tane, |y =(a—x)-tana

- beam

Size: 200x70 mm?

= X=a- I I U et |
right T et

In ideal case: linear reading

Light = Lt left

%

vertica
Uright

Hp

X = a.Uright_UIeft _ 3 AU
+U,eft ZU

U

rlght

& Hor (y=-20)
'lHor( 0)
A Hor (y=+20)

(
& |8 Ver.(y=0)
L™ (

AUISU

L] 1 L) L] T 1 T 1
80 60 40 20 O 20 40 60 80
beam position [mm]

Peter Forck, CAS 2021, Chavannes de Bogis
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beam

horizontal

guard rings on
ground potential

W Ver (y=-20) Linear-cut BPM:

oer=20)|  Advantage: Linear, i.e. constant position sensitivity S

<> no beam size dependence

high capacitance

Disadvantage: Large size, complex mechanics
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Technical realization at HIT synchrotron of 46 m length for 7 MeV/u— 440 MeV/u
BPM clearance: 180x70 mm?, standard beam pipe diameter: 200 mm.

Technical Realization of a linear-cut BPM
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Technical Realization of a linear-cut BPM @

Joe

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u— 440 MeV/u
BPM clearance: 180x70 mm?, standard beam pipe diameter: 200 mm.

- e A
* ® - - .
ooy L&
& ""." 7 4 ,j T2

N

>0 o
o 2 DD
~
o

channel

Peter Forck, CAS 2021, Chavannes de Bogis
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Comparison linear-cut and Button BPM Q0
Linear-cut BPM Button BPM
Precaution Bunches longer than BPM Bunch length comparable to BPM
BPM length (typical) 10 to 20 cm length per plane (J1 to 5 cm per button
Shape Rectangular or cut cylinder Orthogonal or planar orientation
Bandwidth (typical) 0.1 to 100 MHz 100 MHz to 5 GHz
Coupling 1 MQ or =~1kQ (transformer) | 50 Q

Cutoff frequency (typical) 0.01... 10 MHz (C=30...100pF) 0.3... 1 GHz (C=2...10pF)

Linearity Very good, no x-y coupling Non-linear, x-y coupling

Sensitivity Good, care: plate cross talk Good, care: signal matching

Usage At proton synchrotrons, All electron acc., proton Linacs, frf
frp<10 MHZ g N\ > 100 MHz

" | guard rings on
ground potential

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna,
BPMs with external resonator, cavity BPM, slotted wave-guides for stochastic cooling etc.

—stripline BPM
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Pick-Ups for bunched Beams
P o0

Outline:
» Signal generation — transfer impedance
» Capacitive button BPM for high frequencies
used at most proton LINACs and electron accelerators
» Capacitive linear-cut BPM for low frequencies
used at most proton synchrotrons due to linear position reading
> Electronics for position evaluation
analog signal conditioning to achieve small signal processing
» BPMs for measurement of closed orbit, tune and further lattice functions

» Summary
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Broadband Signal Processing =y
Joe

amp./att. lowpass ADC

Broadband processing ~x, | diff or left

1%
VLY
N

2 |0 /\0| A

o \go)| hybrid

"X, | sum or right

/\\_/
p &

amp./att. trigger

» Hybrid or transformer close to beam pipe for analog AU & ZU generation or Uleft & Uright
» Attenuator/amplifier
» Filter to get the wanted harmonics and to suppress stray signals

> ADC: digitalization = followed by calculation of of AU /5U

Advantage: Bunch-by-bunch observation possible, versatile post-processing possible
Disadvantage: Resolution down to = 100 um for shoe box type, i.e. =0.1% of aperture,
resolution is worse than narrowband processing, see below

Challenge: Precise analog electronics with very low drift of amplification etc.
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General: Noise Consideration

Jo e

1. Signal voltage given by: U, (f)=2Z.(f)-1,..(f)
2. Position information from voltage difference: X =1/S-AU />2U

3. Thermal noise voltage given by: |J (R Af) = \/4kB T .-R-Af

Signal-to-noise AU;,,,/U is influenced by:

noise 50
» Input signal amplitude 2 lg§
» Thermal noise from amplifiers etc. 5 20
» Bandwidth Af
— Restriction of frequency width 12
=
as the power is 8
— 0.8
concentrated at harm. nf,f % 06
%04
£
® 08
00
Peter Forck, CAS 2021, Chavannes de Bogis 51

Example: GSI-LINAC with frf=36 MHz

40 80 a0 180 120 140
time [ns]

FFT of bunch signal -

100 200 300 400 a0
irequency [MHz]
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Narrowband Processing for improved Signal-to-Noise

acc. frequency + offset

Narrowband processing synchronous
| band pass detector ADC
\amp.s att. RE LO 9 left
7 _#
v F |0

mixer

e B >—=u

beam amp./att.

“ﬁ right

s

IF

trigger

acc. frequency + offset
Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

» Attenuator/amplifier

Digital
correspondence:
|/Q demodulation

» Mixing with accelerating frequency f,,= signal with difference frequency }
» Bandpass filter of the mixed signal (e.g at 10.7 MHz)

» Rectifier: synchronous detector

» ADC: digitalization = followed calculation of AU/ZU

Advantage: Spatial resolution about 100 time better than broadband processing
Disadvantage: No turn-by-turn diagnosis, due to mixing =’long averaging time’
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Comparison: Filtered Signal < Single Turn Jole
Example: GSI Synchr.: U”3*, E; .= 11.5 MeV/u—> E,,, = 250 MeV/u within 0.5 s, 107 ions

5 1.0

Zogl » Position resolution < 30 um
'E 06| ] (BPM diameter d=180 mm)
‘E 04| 1000 turn average for closed orbit ] » average over 1000 turns

; 0.2} Variation < 10 um (sufficient for application) - corresponding to ~1 ms

% 0.0 . | . . or ~1 kHz bandwidth
a0 1 < 3 4

turn *10°

E 1.0

— 0.B » Turn-by-turn data have

E 08l much larger variation

T 0.4 Single turn e.g. for tune

g U]

g 0.2 Variation ~ 150 um

3 0.0

m 0 1 2 3 4

turn *10°

However: Not only noise contributes but additionally beam movement by betatron oscillation
—> broadband processing i.e. turn-by-turn readout for tune determination.
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Analog versus Digital Signal Processing

Modern instrumentation uses digital techniques with extended functionality.

Traditional analog processing

Jo e

BPM analog

—_—>
signal

Analog frequency
translator

Analog demodulator

and filter

digital
—

output

Analog

Digital

Modern digital processing

BPM analog

—
signal

Analog frequency
translator

Digital
filter

Digital
Signal Proc.

Digital receiver as modern successor of super heterodyne receiver

» Basic functionality is preserved but implementation is very different

» Digital transition just after the amplifier & filter or mixing unit

» Signal conditioning (filter, decimation, averaging) on FPGA

digital
—
output

Advantage of DSP: Versatile operation, flexible adoption without hardware modification
Disadvantage of DSP: non, good engineering skill requires for development, expensive

Peter Forck, CAS 2021, Chavannes de Bogis
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Comparison of BPM Readout Electronics (simplified)

Joe

Type Usage | Precaution | Advantage Disadvantage

Broadband p-sychr. | Long bunches Bunch structure signal Resolution limited by noise
Post-processing possible
Required for transfer lines
with few bunches

Narrowband all Stable beams High resolution No turn-by-turn

synchr. >100 rf-periods Complex electronics
Digital Signal all ADC sample Very flexible & versatile Basically non!
Processing typ. 250 MS/s High resolution Limited time resolution by

Trendsetting technology
for future demands

ADC — under-sampling
Man-power intensive

Peter Forck, CAS 2021, Chavannes de Bogis
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Pick-Ups for bunched Beams
P o0

Outline:
» Signal generation — transfer impedance
» Capacitive button BPM for high frequencies
used at most proton LINACs and electron accelerators
» Capacitive linear-cut BPM for low frequencies
used at most proton synchrotrons due to linear position reading
» Electronics for position evaluation
analog signal conditioning to achieve small signal processing
» BPMs for measurement of closed orbit, tune and further lattice functions
frequent application of BPMs

» Summary
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Trajectory Measurement with BPMs
Trajectory:

The position delivered by an individual bunch within a transfer line or a synchrotron.
Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 i.e. first day of operation !

=] YASP DV LHCRING / INJ-TEST-NB / beam 2 = 4]
RBviews | R (m e @] (@ more | k45

Fi—OP450.12 GeV/c - Fill # 830 INJPROT - 10/09/08 15-01-58 £ gg

T horizontal ' |

'g' 1 ‘

=0 /

< ‘ ‘ .
-10- = B2 [cms] DUMP-52)

T T
0 100 200 300 400
Monitor H

Monitor number (530 BPMs on 27 km)
Tune values at LHC: Q, = 64.3, Q,=59.3

Courtesy R. Jones (CERN)
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Closed Orbit Feedback: Typical Noise Sources

Experimental hall activities

Beam movement: Ground vibrations
Insertion Devices
Short term (min to 10 ms): Cycling Booster
operation mains +harmonics
» Traffic Thermal effects Frequency (Hz
) T | T T T T
»Machine (crane) movements 102 101 1 10 102 10

Ti iod
|me£erlo {s]l | l | | ;

»Water & vacuum pumps 102 103

e ey

= open-loop data
closed-loop data
¢ | = interp. of open-loop dal

» 50 Hz main power net

Medium term (day to min):

» Movement of chambers
due to heating by radiation

» Day-night variation
» tide, moon cycle

5
S

Long term ( > days):

» Ground settlement

Power spectral density [mm?2/Hz]

»Seasons, temperature variation

.| Model fitted to measurement

16 Piiiiiin ioiiiiig
0:01 0.1 1 10 100 1000
frequency [Hz]

Courtesy M. Boge, PSI, N. Hubert, Soleil
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Close Orbit Feedback: BPMs and magnetic Corrector Hardware : :- )

Orbit feedback: Synchrotron light source — spatial stability of light beam
Example: SLS-Synchrotron at Villigen, Switzerland

fllllll

;"

pﬁ I
paEen 88 {1} 68 Ay 85 {87

E-_}%B o \ 8 585

s AT Dipole
Procedure of a feedback: Y quadrupole
1. Position from all BPMs

From M. Boge, PSI

2. Calculation of corrector setting via Horizontal / Vertical Correctors
Orbit Response Matrix feedback
P _ Acc. optics Position from all BPMs  j€——
3. Change of magnet setting v
1."New positon measurement >| Calculation of corrector strength
= regulation time down to 10 ms \”
= Role od thumb: ~ 4 BPMs per betatron wavelength Setting of correctors

Uncorrected orbit: typ. <x >, .~ 1 mm

Corrected orbit: typ. <x >,..~ 1 um up to = 100 Hz bandwidth!
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Close Orbit Feedback: Results

Orbit feedback:
Example: 12 beam positions at GSI-SIS during ramping from 8.6 to 500 MeV/u for Ar18*

207 &
— o G501 DX

, position [mm

feedback off

position x(t) at 12 BPMs

100

Procedure:
1. Position from all 12 BPMs

2. Calculation of corrector setting on fast (FPGA-based) electronics

200 300 400
time [ms]

3. Submission to corrector magnets
4. New position measurement

= regulation time down to 10 ms
Role of thumb:
Movement related to tune i.e. ‘natural oscillations by periodic focusing’

To determine the ‘sine-like’ oscillation 4 BPMs per oscillation are required

= 4 BPMs per tune value (but detailed investigation required to determine the # of BPMs)

Peter Forck, CAS 2021, Chavannes de Bogis
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Jo e

feedback on

— conclusion

200 300 400
time [ms]
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Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM
Beam particle’s in-coherent motion = center-of-mass stays constant

Excitation of all particles by rf = coherent motion
—> center-of-mass variation turn-by-turn i.e. center acts as one macro-particle

Signal generator| | Acquistion

Graphics by R. Singh, GSI
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Tune Measurement: The Kick-Method in Time Domain

The beam is excited to
coherent betatron oscillation
- Beam position measured
each revolution ("turn-by-turn’)

- Fourier Trans. gives the non-integer tune gq.

Short kick compared to revolution.

kicker
un—destored .~~~ T
orbit

.. BPM

beam excited to
. coherent oscillations

------

The de-coherence time limits the resolution:

N non-zero samples

— General limit of discrete FFT: AQ > _2N

Here: N = 200 turn = Ag > 0.003
(tune spreads can be Ag ~ 0.001!)

Peter Forck, CAS 2021, Chavannes de Bogis

displacement [arb.u.]

FT amplitude [arb.u.]

|
o
[+
T

|
=
=]

e =2 9 9 -
w = ® Db ©
T T T

Q
o

displacement

Jo e

b
]
&

1
100
turns

150

.0 1

2 3 Lt

m

noen—integer part of Lu'.n-:: q

Decay is caused by
de-phasing,

center—of-mass

not by decreasing
single particle
amplitude.

[
fav]

4 6 8 10

turns or time
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Tune Measurement: Gentle Excitation with Wideband Noise @

Instead of a sine wave, noise with adequate bandwidth can be applied
— beam picks out its resonance frequency:

» Broadband excitation with white noise .
duration = 15 ms

of ~ 10 kHz bandwidth _
. at GSI synchrotron 11 - 300 MeV/u in 0.7 s
> Turn'by'turn position measurement vertical tune versus time

> Fourier transformation of the recorded data

= Continues monitoring with low disturbance
vertical tune at fixed time =~ 15ms

Example: Vertical tune within 4096 turn

03-

I 5Qy ~ 0.02

excitation
noise band

IIIIIIII

0.25- §

0.2 0.25 0.3 0.35
vertical fractional tune g,

amplitude [a.u.]
vert. fractional tune g,

0.2-
Advantage: -
Fast scan with good time resolution - et e
0O 200 400 600 750
U. Rauch et al., DIPAC 2009 time [ms]
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Chromaticity Measurement from Closed Orbit Data

A
Chromaticity é: Change of tune for off-momentum particle —Q =¢- ap
Two step measurement procedure:
1. Change of momentum p by detuned rf-frequency A?p = 77_1 . %
acc

2. Excitation of coherent betatron oscillations Example: Measurement at LEP:

and tune measurement momentum shift Ap/p |%]
(kick-method, BTF, noise excitation): o2 01 0O -01 -02
o 286
Plot of AQ/Q as a function of Ap/p Y o4
. : 2
= slope is dispersion §. T 282
fan]
S 280
S 278
2
276 |

|
—150 —-100 -50 0 50 100 150

From M Minty, F. Zimmermann, frequency shift Af [Hz]

Measurement and Control of charged Particle Beam,
Springer Verlag 2003
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p-Function Measurement from Bunch-by-Bunch BPM Data

Excitation of coherent betatron oscillations:
— Time-dependent position reading results the phase advance between BPMs

The phase advance is:

- ° ® [ e ®
Ap= pi — g oh
_ E L g ® A e [ ® o
B-function from 0 <M, | | |
e . l j AT '
Sj < monitor at s
Ap = £ @ y
SO ,B(S) o
o 2 4 & 8 10

turn number k

Remark: Determination of ffunction with 3 BPMs:

cot[ Umeas(122)] — cot[(Umeas(123) ]
Bmeas(BPM1) = Fmoae(BPM1) - o it o2 = cotlimoner (13 ]

See e.g.: R. Tomas et al., Phys. Rev. Acc. Beams 20, 054801 (2017)
A. Wegscheider et al., Phys. Rev. Acc. Beams 20, 111002 (2017)
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Example: ‘Beta-beating’ at BPM A = Bieas — Pmoder With measured S ... & calculated . 4.
for each BPM at BNL for RHIC (proton-proton or ions circular collider with 3.8 km length)

‘Beta-beating’ from Bunch-by-Bunch BPM Data

050 F :'n@ ' ' T " Baseline rms=15.6%

Result concerning ‘beta-beating’: 0.40 - , \TT 7 Blue ring Corrected, ms=5.6% +—o— |
> Model doesn’t fit reality completel 0.0 '*'E"u"" I > ]
y p y = 0.20 [T [ |
| [ i T‘?tﬂ I| 7
. . 010_5# : - ﬁ“?? wega_
eq cues bymlgrmens 5 5 J1IR ettt St
> Corrections executed -0.10§ M“ ";;.':;M h.&,ﬁ,,:g:a%%m ) L %ﬁ;
. . -0.20 || 7
» Increase of the luminosity 030 UL : | | | | | o
IP6 IP8 IP10 IP12 P2 IP4
Remark: 0.20 - ' ' ' ' ' CBasetlindé‘rrns:g,g%ll o |
. I o9e orrected, rMs=3.9% ez~
Measurement accuracy depends on o TT'%?&% to pat Pl o1 il | ]
> BPM accuracy < 005 ?lﬁﬁ 't 1 "T; [l ﬁfﬂ Il ”¢
_ . S 0.00 .'?"1 fit] it fw;'ﬁn W&W- nat
» Numerical evaluation method -0.05 ghisd [ 44 7 [T e LI
I i éfmg T

0 500 1000 1500 2000 2500 30(}0 3500
Longitudinal location [M]

From X. Shen et al.,
Phys. Rev. Acc. Beams 16, 111001 (2013)

See lecture ‘Imperfections and Corrections’ by Volker Ziemann
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Intra-Bunch Observation = .0';][
0

High band-width measurements delivers:
> Bunch shape given by the sum ZU(t) = Upign:(t) + Ujese(t) of two plates
» Intra-bunch movement of the center by X epnier(t) X AU(t) = Urigne(t) — Ul ()

Example: Single bunch observation on turn-by-turn basis with beam excitation at SPS
Turn 129/130

0.04

Goal: Monitoring instabilities

[arb. units]

Delta signal

See lecture
‘Collective Effects’

by Kevin Li

o
»

©
N

xU ,/’_il?/ \

= Time 4.25 ns
< -
120.16 120.18 120.20 120.22 120.24 120.26 120.28 120.30 120.32
Time [device units]

Sum signal
[arb. units]

o
o

(a) Headtail mode 1 for chromaticity & = 0.2

Courtesy Kevin Li, CAS Proceedings 2021
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Summary Pick-Ups for bunched Beams

The electric field is monitored for bunched beams using rf-technologies
("frequency domain’). Beside transformers they are the most often used instruments!
Differentiated or proportional signal: rf-bandwidth <> beam parameters
Proton synchrotron: 1 to 100 MHz, mostly 1 MCQ2 — proportional shape
LINAC, e™-synchrotron: 0.1 to 3 GHz, 50 Q2 — differentiated shape
Important quantity: Transfer impedance Z;(w, ).
Types of capacitive pick-ups:
Linear-cut (p-synch.), button (p-LINAC, e™-LINAC and synch.)

Position reading: Difference signal of two or four pick-up plates (BPM):

» Non-intercepting reading of center-of-mass = online measurement and control

Synchrotron: Fast reading, ‘bunch-by-bunch’— trajectory, slow reading — closed orbit
» Synchrotron: Excitation of coherent betatron oscillations = tune g, &, f(s), D(s)...
Remark: BPMs have high pass characteristic = no signal for dc-beams

Thank you for your attention!
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Backup slides
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Stripline BPM: General Idea
00

For short bunches, the capacitive button deforms the signal
— Relativistic beam B ~1 = field of bunches nearly TEM wave
— Bunch’s electro-magnetic field induces a traveling pulse at the strips

— Assumption: Bunch shorter than BPM, Z,;, = R; = R,=50 Q2 and Vo = Copyip
S~ amp LHC stripline BPM, I =12 cm
L/
port 1 R, Port 2
| | 1 |
O /2 |4
! beam € D =
~~
beam pipel | |
RI
Namp
L/

From C. Boccard, CERN
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Stripline BPM: General Idea ®
00

For relativistic beam with # = 1 and short bunches:

— Bunch’s electro-magnetic field induces a traveling pulse at the strip
— Assumption: Iy, ,, <<, Zy,;,=R;=R;=50 Q and Vj,o 0 =Cotpip

Signal treatment at upstream port 1:

t=0: Beam induced charges at port 1:

1 !
— half to R4, half toward port 2 no net Slglla].l\amp t=2%l/c
=|/c: Beam induced charges at port 2: L
— half to R,, but due to different sign port 1 port 2
27 )
it cancels with the signal from port 1 I+ +| RI ] BE R2
— half signal reflected =l=n
=2-l/c: reflected signal reaches port 1 beam

l « )
:>U1(t) — A 'Zstrip(lbeam(t)_ Ibeam(t_2| /C))
2 21

If beam repetition time equals 2-1/c: reflected preceding port 2 signal cancels the new one:
— no net signal at port 1

Signal at downstream port 2: Beam induced charges cancel with traveling charge from port 1

—> Signal depends on direction <= can distinguish between counter-propagation beams
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Stripline BPM: Transfer Impedance

The signal from port 1 and the reflection from port 2 can cancel = minima in Z,

a . i _
For short bunches I,.,(t) = Ne - dt): Z (@) = Zrip o sin( el /C) - ol (7/2-allc)
T T
Stripline length /=30 cm, a=10°
' T ' . | : | : : o 90
- — ¢,=0.0lns | N 0
i | %—90HmH::::::V::HHMHH
n _ — =2.0 short bunch &{t) .
c
0] — ]
fgﬂ II N 15 L i
© a I
"t N § 1.0 r -
i i E 0.5
IR ] oo L—¥. . V.. 0 YL
0 1 2 3 4 5 0.0 05 10 15 20 256 3.0
time [ns] frequency f |[GHz]

» Z, show maximum at /=c/4f=A/4 i.e. ‘quarter wave coupler’ for bunch train
= I has to be matched to v,

» No signal for I=c/2f=A/2 i.e. destructive interference with subsequent bunch

» Around maximum of [Z,]: phase shift ¢=0i.e. direct image of bunch

> feenter=1/4 - ¢/l - (2n-1). For first lope: f1,,=1/2"f copter fhigh=3/2 “feenter 1-€- bandwidth =1/2-f ...
» Precise matching at feed-through required t o preserve 50 Q2 matching.
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Stripline BPM: Transfer Impedance

The signal from port 1 and the reflection from port 2 can cancel = minima in Z,

2 2 -
a _ ] _
For bunches of length o — Zt(a)) = Zstrip._ - /2 .5|n( ol /C) : e'(”/2 al/c)
T T
Stripline length /=30 cm, a=10°
: . : : : 5 90
I | —— 0, =00ins _ S
— ¢,=0.1ns o O §
: T
ot=1ns 8,—90 e e
i _ — 2.0 r short bunch &{t) .
w | R long bunch ¢ ,=0.1ns .
=) —
s Z]"‘(ﬁ? S s T long bunch o,=1ns |
= ] .
= e i (Y
L _ g 1ol ¥ \\ . |
g 05 |‘ ! “‘ "," ‘\\\ ,’I— . )
‘ | . | ‘ | . _ . | 00 ...\“ IIIII .H‘HH\’HH\”J‘H.‘
0 1 R 3 4 5 0.6 05 10 15 20 25 30
time [ns] frequency f [GHz]|

» Zi(w) decreases for higher frequencies
> If total bunch is too long £30, > | destructive interference leads to signal damping

Cure: length of stripline has to be matched to bunch length
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Comparison: Stripline and Button BPM (simplified)
Stripline Button
Idea traveling wave electro-static

Requirement

Careful Z =500

strip
matching

Signal quality

Less deformation of

Deformation by

bunch signal finite size and
capacitance
Bandwidth Broadband, Highpass,
but minima but .+ < 1 GHz
Signal strength | Large Small

Large longitudinal and
transverse coverage
possible

Size <J3cm,

to prevent signal
deformation

Mechanics Complex Simple
Installation Inside quadrupole Compact insertion
possible
—>improving accuracy
Directivity YES No

Peter Forck, CAS 2021,

Chavannes de Bogis

Joe

FIASH BPM inside quadrupole
. \\

From . S. Vilkins, D. Nolle (DESY)
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Estimation of finite Beam Size Effect for Button BPM @

Joe

Ideal 2-dim model:

Due to the non-linearity, the beam size enters in the position reading.

Finite beam size:

button _’ s R

. | ' ' > Calculation of signal response
20k i, BEAM. envelope_

at different location
» ‘Averaging’ of image position
— Cannot be corrected !

y [mm]

beam center

6 8 10 16

12
x [mm]

Remark: For most LINACs: Linearity is less important, because beam has to be centered
Position correction as feed-forward for next macro-pulse.

14 18
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