

Beam Instrumentation & Diagnostics Part 1 CAS Introduction to Accelerator Physics Chavannes de Bogis, 29thof September 2021 Peter Forck Gesellschaft für Schwerionenforschnung (GSI) p.forck@gsi.de

Beam Instrumentation: Functionality of devices & basic applications Beam Diagnostics: Usage of devices for complex measurements

Diagnostics is the 'sensory organs' for the beam in the real environment.

(Referring to lecture by Volker Ziemann: 'Detecting imperfections to enable corrections')

Different demands lead to different installations:

- Quick, non-destructive measurements leading to a single number or simple plots Used as a check for online information. Reliable technologies have to be used *Example:* Current measurement by transformers
- Complex instruments for severe malfunctions, accelerator commissioning & development The instrumentation might be destructive and complex *Example:* Emittance determination, chromaticity measurement

General usage of beam instrumentation:

- > Monitoring of beam parameters for operation, beam alignment & accelerator development
- Instruments for automatic, active beam control

Example: Closed orbit feedback at synchrotrons using position measurement by BPMs

Non-invasive (= 'non-intercepting' or 'non-destructive') methods are preferred:

- \succ The beam is not influenced \Rightarrow the **same** beam can be measured at several locations
- > The instrument is not destroyed due to high beam power

Typical Installation of a Beam Instrument

Typical Installation of a Beam Instrument

Outline of the Lectures

The ordering of the subjects is oriented by the beam quantities:

Part 1 of the lecture on electro-magnetic monitors:

- Current measurement
- Beam position monitors for bunched beams

Part 2 of the lecture on transverse and longitudinal diagnostics:

- Profile measurement
- Transverse emittance measure
- Measurement of longitudinal parameters

Lecture on Machine Protection System on Thursday:

Beam loss detection as one subject

Instruments could be different for:

- \blacktriangleright Transfer lines with single pass \leftrightarrow synchrotrons with multi-pass
- ➤ Electrons are (nearly) always relativistic ↔ protons are at the beginning non-relativistic

Remark:

Most instrumentation is installed outside of rf-cavities to prevent for signal disturbance

The beam current and its time structure the basic quantity of the beam:

- It this the first check of the accelerator functionality
- It has to be determined in an absolute manner
- Important for transmission measurement and to prevent for beam losses.

Different devices are used:

Transformers: Measurement of the beam's magnetic field

Non-destructive

No dependence on beam type and energy

They have lower detection threshold.

Faraday cups: Measurement of the beam's **electrical charges**

Magnetic field of the beam and the ideal Transformer

Definition: $U = L \cdot dI/dt$

Peter Forck, CAS 2021, Chavannes de Bogis

Beam Instrumentation & Diagnostics I

Simplified electrical circuit of a passively loaded transformer:

A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$ with *S* sensitivity [V/A],

equivalent to transfer function or transfer impedance Z

Equivalent circuit for analysis of sensitivity and bandwidth (disregarding the loss resistivity R_L)

Time domain description:

beam current

Droop time:
$$\tau_{droop} = 1/(2\pi f_{low}) = L/R$$

Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = RC_s$ (ideal without cables)
Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = \sqrt{L_S C_S}$ (with cables)
 R_i : loss resistivity, R : for measuring.

beam bunch

Example for Fast Current Transformer

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz \Leftrightarrow 10 ns < t_{hunch} < 1 µs is well suited Example: GSI Fast Current Transformer FCT:

Inner / outer radius	70 / 90 mm
Permeability	$\mu_r \approx 10^5$ for f < 100 kHz $\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A for R = 50 Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz

<image>

Fast extraction from GSI synchrotron:

Peter Forck, CAS 2021, Chavannes de Bogis

Beam Instrumentation & Diagnostics I

Example for Fast Current Transformer

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz \Leftrightarrow 10 ns < t_{hunch} < 1 µs is well suitedv Example GSI type:

Inner / outer radius	70 / 90 mm
Permeability	$\mu_r \approx 10^5$ for f < 100 kHz $\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A for R = 50 Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz

Example: U⁷³⁺ from 11 MeV/u (β = 15 %) to 350 MeV/u within 300 ms (displayed every 0.15 ms)

Peter Forck, CAS 2021, Chavannes de Bogis

Beam Instrumentation & Diagnostics I

- > The image current of the walls have to be bypassed by a gap and a metal housing.
- > This housing uses μ -metal and acts as a shield of external B-field

The dc Transformer

How to measure the DC current? The current transformer discussed sees only B-flux *changes*. The DC Current Transformer (DCCT) \rightarrow look at the magnetic saturation of two torii.

Depictive statement:

A single transformer needs varying beam. The trick is to 'switch two transformers'!

saturation is reached at different times, \rightarrow net flux

- Net flux: double frequency than modulation
- Feedback: Current fed to compensation winding

for larger sensitivity

Two magnetic cores: Must be very similar.

Remark: Same principle used for power suppliers

Example: The DCCT at GSI synchrotron

Torus radii	r _i = 135 mm r _o =145 mm
Torus thickness	d = 10 mm
Torus permeability	$\mu_{r} = 10^{5}$
Saturation inductance	B _{sat} = 0.6 T
Number of windings	16 for modulation & sensing 12 for feedback
Resolution	I ^{min} _{beam} = 2 μA
Bandwidth	$\Delta f = dc \dots 20 \text{ kHz}$
Rise time constant	τ _{rise} = 10 μs
Temperature drift	1.5 µA/⁰C

Beam more than the structure and the structure a

Application for dc transformer:

 \Rightarrow Observation of beam behavior with typ. 20 μs time resolution \rightarrow the basic operation tool

Example: The DCCT at GSI synchrotron

U⁷³⁺ accelerated from

11. 4 MeV/u (β = 15.5%) to 750 MeV/u (β = 84 %)

Important parameter:

> Detection threshold: $\approx 1 \ \mu A$

(= resolution)

- > Bandwidth: Δf = dc to 20 kHz
- Rise-time: t_{rise} = 20 μs
- ➤ Temperature drift: 1.5 µA/⁰C
 - \Rightarrow compensation required.

Transformers: Measurement of the beam's magnetic field

- Non-destructive
- No dependence on beam type and energy
- They have lower detection threshold.

Faraday cups: Measurement of the beam's **electrical charges**

- They are destructive
- For low energies only
- Low currents can be determined.

Energy Loss of Protons & Ions

Bethe-Bloch formula: $-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \left(\cdot \frac{Z_t}{A_t} \rho_t \right) \left(\frac{Z_p}{Z_p} \cdot \frac{1}{\beta^2} \right) \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 \cdot W_{max}}{I^2} \right)$ (simplest formulation)

Semi-classical approach:

- Projectiles of mass M collide with free electrons of mass *m*
- If M >> m then the relative energy transfer is low
- \Rightarrow many collisions required many elections participate proportional to target electron density $n_e = \frac{Z_t}{A_t} \rho_t$

beam, charge Z_p ,δ-ray'

- \Rightarrow low straggling for the heavy projectile i.e. 'straight trajectory'
- \succ If projectile velocity $\beta \approx 1$ low relative energy change of projectile (γ is Lorentz factor)
- *I* is mean ionization potential including kinematic corrections $I \approx Z_t \cdot 10 \text{ eV}$ for most metals

mass M

Strong dependence an projectile charge Z_p as $\frac{dE}{dx} \propto Z_p^2$

Constants: N_A Advogadro number, r_e classical e⁻ radius, m_e electron mass, c velocity of light

Maximum energy transfer from projectile **M** to electron m_e : $W_{max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e / M + (m_e / M)^2}$

Beam Instrumentation & Diagnostics I

Energy Loss of Protons & Ions in Copper

Bethe-Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot Z_p^2 \cdot \frac{1}{\beta^2} \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 \cdot W_{max}}{I^2} - \beta^2\right)$$
 (simplest formulation)

Range:

$$R = \int_{0}^{E_{\text{max}}} \left(\frac{dE}{dx}\right)^{-1} dE$$

with approx. scaling $R \propto E_{max}^{1.75}$ Numerical calculation for ions with semi-empirical model e.g. SRIM Main modification $Z_P \rightarrow Z_p^{eff}(E_{kin})$ \Rightarrow Cups only for

ange in copper [mm]. *E*_{*kin*} < 100 MeV/u due to *R* < 10 mm

Approximation e.g. $Z_p^{eff} \approx Z_p \left[1 - \exp\left(-Z_p^{-2/3}c\beta / V_{Bohr}\right) \right]$

Secondary Electron Emission caused by Ion Impact

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: \rightarrow fast e⁻ with E_{kin} > 100 eV

Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$

- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface \approx 90 % probability for escape

Secondary electron yield and energy distribution comparable for all metals!

 \Rightarrow **Y** = const. * dE/dx (Sternglass formula)

Peter Forck, CAS 2021, Chavannes de Bogis

Beam Instrumentation & Diagnostics I

The beam particles are collected inside a metal cup \Rightarrow The beam's charge are recorded as a function of time.

Currents down to 10 pA with bandwidth of 100 Hz!

To prevent for secondary electrons leaving the cup Magnetic field:

The central field is ${\it B} pprox$ 10 mT \Rightarrow $r_c = \frac{mB}{e} \cdot v_\perp pprox$ 1 mm .

or Electric field: Potential barrier at the cup entrance $\boldsymbol{U} \approx 1$ kV.

The cup is moved in the beam pass \rightarrow destructive device

Realization of a Faraday Cup at GSI LINAC

The Cup is moved into the beam pass.

Peter Forck, CAS 2021, Chavannes de Bogis

source

Transformer: → measurement of the beam's magnetic field

> Magnetic field is guided by a high μ toroid

≻ Types: FCT → large bandwidth, I_{min} ≈ 30 µA, BW = 10 kHz ... 500 MHz

[ACT : $I_{min} \approx 0.3 \ \mu$ A, BW = 10 Hz 1 MHz, used at proton LINACs]

DCCT: two toroids + modulation, $I_{min} \approx 1 \mu A$, BW = dc ... 20 kHz

non-destructive, used for all beams

Faraday cup: → measurement of beam's charge,

Iow threshold by I/U-converter: I_{beam} > 10 pA

totally destructive, used for low energy beams only

Fast Transformer FCT Active transformer ACT

23

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies
- Capacitive *linear-cut* BPM for low frequencies
- Electronics for position evaluation
- > BPMs for measurement
- Summary
- A Beam Position Monitor is an non-destructive device for bunched beams
- It delivers information about the transverse center of the beam:
- > Trajectory: Position of an individual bunch within a transfer line or synchrotron
- > Closed orbit: Central orbit averaged over a period much longer than a betatron oscillation
- > Single bunch position: Determination of parameters like tune, chromaticity, β -function

Remarks: - BPMs have a low cut-off frequency ⇔ dc-beam behavior can't be monitored - The abbreviation **BPM** and pick-up **PU** are synonyms

Time Domain ↔ Frequency Domain

 $\Rightarrow \hat{f}(\omega) = \hat{f}_1(\omega) \cdot \hat{f}_2(\omega) \Leftrightarrow \text{convolution be expressed as multiplication of FTs}$

See lecture 'Time and Frequency Domain Signals' by Hermann Schmickler

Peter Forck, CAS 2021, Chavannes de Bogis

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

Beam Position Monitor **BPM** is the most frequently used instrument!

For relativistic velocities, the electric field is transversal:

$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

Principle of Signal Generation of a BPMs, centered Beam

Model for Signal Treatment of capacitive BPMs

At a resistor \boldsymbol{R} the voltage \boldsymbol{U}_{im} from the image current is measured.

Goal: Connection from beam current to signal strength by transfer impedance $Z_t(\omega)$

in frequency domain: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

Large signal strength for long bunches \rightarrow high impedance Smooth signal transmission important for short bunches \rightarrow 50 Ω Remark: For $\omega \rightarrow 0$ it is $Z_t \rightarrow 0$ i.e. no signal is transferred from dc-beams e.g.

- de-bunched beam inside a synchrotron
- ➢ for slow extraction through a transfer line

Calculation of Signal Shape (here single Bunch)

The transfer impedance is used in frequency domain! The following is performed:

Remark: Time domain processing via convolution or filters (FIR and IIR) are possible

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=1 M\Omega \Rightarrow f_{acc} >> f_{cut}$:

Parameter: $R = 1 \text{ M}\Omega \Rightarrow f_{cut} = 2 \text{ kHz}, Z_t = 5 \Omega$, all buckets filled

C=100pF, I=10cm, β =50%, σ_t =100 ns $\Rightarrow \sigma_I$ =15m

 \blacktriangleright Fourier spectrum is composed of lines separated by acceleration f_{rf}

- > Envelope given by single bunch Fourier transformation
- Baseline shift due to ac-coupling

Remark: 1 MHz< f_{rf} <10MHz \Rightarrow Bandwidth \approx 100MHz=10 * f_{rf} for broadband observation

See lecture 'Time and Frequency Domain Signals' by Hermann Schmickler

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} = 1 MHz

BPM terminated with **R**=50 $\Omega \Rightarrow f_{acc} << f_{cut}$:

C=100pF, /=10cm, β =50%, σ_t =100 ns $\Rightarrow \sigma_l$ =15m

- Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
- > Bandwidth up to typically $10^* f_{acc}$

Synchrotron during filling: Empty buckets, R=50 Ω :

Fourier spectrum is more complex, harmonics are broader due to sidebands

Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

Peter Forck, CAS 2021, Chavannes de Bogis

Principle of Signal Generation of a BPMs: off-center Beam

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam. V Animation by Rhodri Jones (CERN) 35 Peter Forck, CAS 2021, Chavannes de Bogis

Beam Instrumentation & Diagnostics I

The difference voltage between plates gives the beam's center-of-mass \rightarrow most frequent application

 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$ **s** is a geometry dependent, non-linear function,

Units: S = [%/mm], sometimes S = [dB/mm] or k = [mm].

Example: One turn = 4 bunches @ 35 MeV/u

Typical desired position resolution:

 $\Delta \mathbf{x} \approx 0.1 \dots 0.3 \cdot \boldsymbol{\sigma}_{\mathbf{x}}$ of beam width

It is at least: $\Delta m{U} \, \ll \, rac{1}{10} \, m{\Sigma} m{U}$

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies

used at most proton LINACs and electron accelerators

- Capacitive *linear-cut* BPM for low frequencies
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- Summary

2-dim Model for a Button BPM

Button BPM Realization

LINACs, e⁻-synchrotrons: 100 MHz < f_{rf} < 3 GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

Simulations for Button BPM at Synchrotron Light Sources

Example: Simulation for ALBA light source for 72 x 28 mm² chamber **Optimization:** horizontal distance and size of buttons from A.A. Nosych et al., IBIC'14 20 y = 20 mmbutton 1 button 2 10 = 10 mm 10 20 mm ⊽≚ 0 mm 5 x_{bpm} [mm] = 10 mm y [mm] 0 mn 0 S_(center) = 7.8 %/mm 1 mm steps for |x|<5mm & y=0mm -5 -10 "v **S**_v(center) = 7.2 %/mm -10 for |y| < 5mm & x=0mm button 3 button 4 -20 -10 20 -20 0 10 -30 -20 -10 0 position x [mm] real beam position x [mm] 20 18 mm button 2 button 1 button 1 button 2 10 y [mm] 1 mm \emptyset 7 mm 0 steps -10 28 mm button 3 button 4 -20 button 3 72 button 4 -30 -20 -10 10 20 30 0 position x [mm]

Result: non-linearity and *xy*-coupling occur in dependence of button size and position

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive *linear-cut* BPM for low frequencies
 - used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Frequency range: 1 MHz < f_{rf} < 100 MHz \Rightarrow bunch-length >> BPM length.

Technical Realization of a linear-cut BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Technical Realization of a linear-cut BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Comparison linear-cut and Button BPM

	Linear-cut BPM	Button BPM	
Precaution	Bunches longer than BPM	Bunch length comparable to BPM	
BPM length (typical)	10 to 20 cm length per plane	\varnothing 1 to 5 cm per button	
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation	
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz	
Coupling	1 M Ω or \approx 1 k Ω (transformer)	50 Ω	
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)	
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling	
Sensitivity	Good, care: plate cross talk	Good, care: signal matching	
Usage	At proton synchrotrons, $f_{rf} < 10 \text{ MHz}$ vertical	All electron acc., proton Linacs, f_{rf} > 100 MHz	

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, BPMs with external resonator, cavity BPM, slotted wave-guides for stochastic cooling etc.

ard rings on

Peter Forck, CAS 2021, Chavannes

48

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive *linear-cut* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation
 - analog signal conditioning to achieve small signal processing
- BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Broadband Signal Processing

Hybrid or transformer close to beam pipe for analog ΔU & ΣU generation or U_{left} & U_{right}

- Attenuator/amplifier
- Filter to get the wanted harmonics and to suppress stray signals
- ightarrow ADC: digitalization ightarrow followed by calculation of of ΔU / ΣU

Advantage: Bunch-by-bunch observation possible, versatile post-processing possible

Disadvantage: Resolution down to \approx 100 μ m for shoe box type , i.e. \approx 0.1% of aperture,

resolution is worse than narrowband processing, see below

Challenge: Precise analog electronics with very low drift of amplification etc.

General: Noise Consideration

- $(f) = \mathbf{7} (f) \mathbf{I} (f)$
- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{noise}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$

Signal-to-noise $\Delta U_{im}/U_{noise}$ is influenced by:

- Input signal amplitude
- Thermal noise from amplifiers etc.
- ➤ Bandwidth Δf
- ⇒ Restriction of frequency width as the power is concentrated at harm. *nf_{rf}*

Narrowband Processing for improved Signal-to-Noise

Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- > Attenuator/amplifier
- > Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with difference frequency
- Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- Rectifier: synchronous detector
- > ADC: digitalization \rightarrow followed calculation of $\Delta U/\Sigma U$

Advantage: Spatial resolution about 100 time better than broadband processing **Disadvantage:** No turn-by-turn diagnosis, due to mixing = 'long averaging time'

Peter Forck, CAS 2021, Chavannes de Bogis

Digital

correspondence:

I/Q demodulation

Comparison: Filtered Signal ↔ Single Turn

- Position resolution < 30 μm
 (BPM diameter d=180 mm)
- > average over 1000 turns corresponding to ≈1 ms or ≈1 kHz bandwidth

Turn-by-turn data have much larger variation

However: Not only noise contributes but additionally **beam movement** by betatron oscillation \Rightarrow broadband processing i.e. turn-by-turn readout for tune determination.

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of super heterodyne receiver

- > Basic functionality is preserved but implementation is very different
- > Digital transition just after the amplifier & filter or mixing unit
- Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification Disadvantage of DSP: non, good engineering skill requires for development, expensive

Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for transfer lines with few bunches	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	ADC sample typ. 250 MS/s	Very flexible & versatile High resolution Trendsetting technology for future demands	Basically non! Limited time resolution by ADC → under-sampling Man-power intensive

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive *linear-cut* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation

analog signal conditioning to achieve small signal processing

- BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- Summary

Trajectory:

The position delivered by an **individual bunch** within a transfer line or a synchrotron.

Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 i.e. first day of operation !

Closed Orbit Feedback: Typical Noise Sources

Courtesy M. Böge, PSI, N. Hubert, Soleil

frequency [Hz]

Close Orbit Feedback: BPMs and magnetic Corrector Hardware

Corrected orbit: typ. $\langle x \rangle_{rms} \approx 1 \ \mu m$ up to $\approx 100 \ Hz$ bandwidth!

Orbit feedback:

Example: 12 beam positions at GSI-SIS during ramping from 8.6 to 500 MeV/u for Ar¹⁸⁺

- 1. Position from all 12 BPMs
- 2. Calculation of corrector setting on fast (FPGA-based) electronics
- 3. Submission to corrector magnets
- 4. New position measurement
- \Rightarrow regulation time down to 10 ms
- **Role of thumb:**

Movement related to tune i.e. 'natural oscillations by periodic focusing'

To determine the 'sine-like' oscillation 4 BPMs per oscillation are required

 \Rightarrow 4 BPMs per tune value (but detailed investigation required to determine the # of BPMs)

Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM Beam particle's *in-coherent* motion \Rightarrow center-of-mass stays constant Excitation of **all** particles by rf \Rightarrow *coherent* motion

 \Rightarrow center-of-mass variation turn-by-turn i.e. center acts as **one** macro-particle

Peter Forck, CAS 2021, Chavannes de Bogis

Tune Measurement: The Kick-Method in Time Domain

Decay is caused by de-phasing, **not** by decreasing single particle amplitude.

200

.5

10

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied

 \rightarrow beam picks out its resonance frequency:

- Broadband excitation with white noise of ~ 10 kHz bandwidth
- Turn-by-turn position measurement
- Fourier transformation of the recorded data
- \Rightarrow Continues monitoring with low disturbance vertical tune at fixed time \approx 15ms

Advantage:

Fast scan with good time resolution

U. Rauch et al., DIPAC 2009

Example: Vertical tune within 4096 turn duration $\simeq 15$ ms at GSI synchrotron $11 \rightarrow 300$ MeV/u in 0.7 s vertical tune versus time

Peter Forck, CAS 2021, Chavannes de Bogis

Beam Instrumentation & Diagnostics I

Chromaticity Measurement from Closed Orbit Data

Chromaticity ξ **:** Change of tune for off-momentum particle $\frac{\Delta Q}{Q} = \xi \cdot \frac{\Delta p}{p}$ Two step measurement procedure:

- 1. Change of momentum **p** by detuned rf-frequency
- Excitation of coherent betatron oscillations and tune measurement (kick-method, BTF, noise excitation):

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$ \Rightarrow slope is dispersion ξ .

From M Minty, F. Zimmermann, Measurement and Control of charged Particle Beam, Springer Verlag 2003

$$\frac{p}{p} = \eta^{-1} \cdot \frac{\Delta f_{acc}}{f_{acc}}$$

65

Excitation of **coherent** betatron oscillations:

 \rightarrow Time-dependent position reading results the phase advance between BPMs

The phase advance is:

$$\Delta \mu = \mu_i - \mu_0$$

 β -function from

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$

Remark: Determination of β -function with 3 BPMs: $\beta_{meas}(BPM_1) = \beta_{model}(BPM_1) \cdot \frac{\cot[\mu_{meas}(1 \rightarrow 2)] - \cot[(\mu_{model}(1 \rightarrow 3)]]}{\cot[\mu_{model}(1 \rightarrow 2)] - \cot[(\mu_{model}(1 \rightarrow 3)]]}$

See e.g.: R. Tomas et al., Phys. Rev. Acc. Beams **20**, 054801 (2017) A. Wegscheider et al., Phys. Rev. Acc. Beams **20**, 111002 (2017)

Peter Forck, CAS 2021, Chavannes de Bogis

→Conclusion

'Beta-beating' from Bunch-by-Bunch BPM Data

Example: 'Beta-beating' at BPM $\Delta\beta = \beta_{meas} - \beta_{model}$ with measured β_{meas} & calculated β_{model} for each BPM at BNL for RHIC (proton-proton or ions circular collider with 3.8 km length)

Result concerning 'beta-beating':

- Model doesn't fit reality completely e.g. caused by misalignments
- Corrections executed
- Increase of the luminosity

Remark:

Measurement accuracy depends on

- BPM accuracy
- Numerical evaluation method

From X. Shen et al., Phys. Rev. Acc. Beams **16**, 111001 (2013)

See lecture 'Imperfections and Corrections' by Volker Ziemann

 $67 \rightarrow Conclusion$

High band-width measurements delivers:

- > Bunch shape given by the sum $\Sigma U(t) = U_{right}(t) + U_{left}(t)$ of two plates
- ► Intra-bunch movement of the **center** by $x_{center}(t) \propto \Delta U(t) = U_{right}(t) U_{left}(t)$

Example: Single bunch observation on turn-by-turn basis with beam excitation at SPS

Goal: Monitoring instabilities

See lecture 'Collective Effects' by Kevin Li

(a) Headtail mode 1 for chromaticity $\xi = 0.2$

Courtesy Kevin Li, CAS Proceedings 2021

Peter Forck, CAS 2021, Chavannes de Bogis->stripline BPM 69

→Conclusion

Beam Instrumentation & Diagnostics I

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transformers they are the most often used instruments! Differentiated or proportional signal: rf-bandwidth \leftrightarrow beam parameters Proton synchrotron: 1 to 100 MHz, mostly 1 M $\Omega \rightarrow$ proportional shape LINAC, e⁻-synchrotron: 0.1 to 3 GHz, 50 $\Omega \rightarrow$ differentiated shape Important quantity: Transfer impedance $Z_t(\omega, \beta)$. Types of capacitive pick-ups:

Linear-cut (p-synch.), button (p-LINAC, e⁻-LINAC and synch.)

Position reading: Difference signal of two or four pick-up plates (BPM):

Non-intercepting reading of center-of-mass → online measurement and control *Synchrotron: Fast* reading, *'bunch-by-bunch'*→ trajectory, *slow reading* → closed orbit
 Synchrotron: Excitation of *coherent* betatron oscillations ⇒ tune *q*, *ξ*, β(s), D(s)...
 Remark: BPMs have high pass characteristic ⇒ no signal for dc-beams

Thank you for your attention!

Backup slides

- For short bunches, the *capacitive* button deforms the signal
- ightarrow Relativistic beam $oldsymbol{eta} pprox oldsymbol{1} \Rightarrow$ field of bunches nearly TEM wave
- \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strips

 \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$

From C. Boccard, CERN

For relativistic beam with $\beta \approx 1$ and short bunches:

→ Bunch's electro-magnetic field induces a **traveling pulse** at the strip

 \rightarrow **Assumption:** $I_{bunch} \ll I$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$ **Signal treatment at upstream port 1:**

t=0: Beam induced charges at **port 1**: \rightarrow half to R_1 , half toward **port 2**

t=l/c: Beam induced charges at port 2: → half to R_2 , but due to different sign, it cancels with the signal from port 1 → half signal reflected

t=2·l/c: reflected signal reaches port 1

$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

If beam repetition time equals 2·I/c: reflected preceding port 2 signal cancels the new one: → no net signal at **port 1**

Signal at downstream port 2: Beam induced charges cancel with traveling charge from port 1

 \Rightarrow Signal depends on direction \Leftrightarrow can distinguish between counter-propagation beams

Stripline BPM: Transfer Impedance

➤ Z_t show maximum at *I=c/4f=λ/4* i.e. 'quarter wave coupler' for bunch train ⇒ *I* has to be matched to v_{beam}

- > No signal for $l=c/2f=\lambda/2$ i.e. destructive interference with **subsequent** bunch
- > Around maximum of IZ_tI : phase shift $\varphi=0$ i.e. direct image of bunch

 F_{center} =1/4 · c/l · (2n-1). For first lope: f_{low} =1/2· f_{center} , f_{high} =3/2 · f_{center} i.e. bandwidth ≈1/2· f_{center} > Precise matching at feed-through required t o preserve 50 Ω matching.

Stripline BPM: Transfer Impedance

 $> Z_t(\omega)$ decreases for higher frequencies

If total bunch is too long $\pm 3\sigma_t > I$ destructive interference leads to signal damping *Cure:* length of stripline has to be matched to bunch length

	Stripline	Button
Idea	traveling wave	electro-static
Requirement	Careful \mathbf{Z}_{strip} = 50 Ω matching	
Signal quality	Less deformation of bunch signal	Deformation by finite size and capacitance
Bandwidth	Broadband,	Highpass,
	but minima	but f_{cut} < 1 GHz
Signal strength	Large Large longitudinal and transverse coverage possible	Small Size <Ø3cm, to prevent signal deformation
Mechanics	Complex	Simple
Installation	Inside quadrupole possible ⇒improving accuracy	Compact insertion
Directivity	YES	No

FIASH BPM inside quadrupole

From . S. Vilkins, D. Nölle (DESY)

→Conclusion

Ideal 2-dim model:

Due to the non-linearity, the beam size enters in the position reading.

Remark: For most LINACs: Linearity is less important, because beam has to be centered Position correction as feed-forward for next macro-pulse.

Finite beam size: