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In the last lecture, we have introduced and discussed the concept of wake fields and impedances, and have
looked at some of the different variants in the longitudinal and transverse planes. We have learned that
impedances can have a detrimental impact on both the machine environment (beam induces heating) as
well as the beam itself (coherent beam instabilities).

A careful design of machine elements to minimize the impedance is therefore necessary.
We have also discussed the mechanism of coherent instabilities on the instability loop. In this lecture, we will
be looking at examples of different types of instabilities and some of their phenomenology.

e Part IV: Coherent beam instabilities
o Examples of coherent beam instabilities at CERN
o Slow headtail instability at finite chromaticity

o Fast headtail or transverse mode coupling instability
o Longitudinal instabilities
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In the last lecture, we have introduced and discussed the concept of wake fields and impedances, and have
looked at some of the different variants in the longitudinal and transverse planes. We have learned that
impedances can have a detrimental impact on both the machine environment (beam induces heating) as
well as the beam itself (coherent beam instabilities).

A careful design of machine elements to minimize the impedance is therefore necessary.

We have also discussed the mechanism of coherent instabilities on the instability loop. In this lecture, we will
be looking at examples of different types of instabilities and some of their phenomenology.

e Part IV: Coherent beam instabilities

o Examples of coherent beam instabilities at CERN
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Example: coupled bunch instability 00
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* Coupled bunch instabilities vs. single bunch instabilities
* Depends on: long range vs. short range wakefields
* Mitigated by: transverse damper systems and Landau damping
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Horizontal coupled bunch instability observed during the 2015 scrubbing run in the SPS.
The transverse damper was set up to damp low frequency oscillations. It would not reach up to
20MHz. It would turn off, once a certain oscillation amplitude was exceeded, as a safety measure.
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* Coupled bunch instabilities vs. single bunch instabilities
* Depends on: long range vs. short range wakefields
* Mitigated by: transverse damper systems and Landau damping

As a consequence, bunches blow up and intensity or even the full beam are lost during the cycle.

During some adjustments in 2017 the bandwidth of the transverse damper up to 20MHz could
be fully exploited, successfully suppressing this instability.

Instead, a new type of instability emerged...

: ‘ <
Horizontal coupled bunch instability observed during the 2015 scrubbing run in the SPS.
The transverse damper was set up to damp low frequency oscillations. It would not reach up to
20MHz. It would turn off, once a certain oscillation amplitude was exceeded, as a safety measure.
200 220 240 760 Z80 300
CERN Bunch no.
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Example: single bunch instabilities de'e,

e Pure centroid vs. intra-bunch motion (slow headtail instability)

Investigation beam stability and
* Relation between bunch length and impedance spectrum & y

incoherent losses as a function of
chromaticity for high intensity beams.

e BCMS beam -4 x 48 bunches
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[ The horizontal coupled bunch instability at 20 MHz did no longer appear with the transverse damper

now having been fine adjusted resulting in finite gain at these frequencies.
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e Pure centroid vs. intra-bunch motion (slow headtail instability)

* Investigation beam stability and
* Relation between bunch length and impedance spectrum & y

incoherent losses as a function of
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Setting the chromaticity to 0.2 (normalized units) yielded instabilities that were not mitigated by the
transverse damper.
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e Pure centroid vs. intra-bunch motion (slow headtail instability)

* Investigation beam stability and
* Relation between bunch length and impedance spectrum & y

incoherent losses as a function of
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Setting the chromaticity to 0.4 (normalized units) yielded instabilities that were not mitigated by the

transverse damper.
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Example: single bunch instabilities 00
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We have seen some examples of coherent beam instabilities observed in recent years at the CERN Super
Proton Synchrotron (SPS). We were able to observe a coupled bunch instability and have seen that these
types of instabilities can be mitigated by a transverse feedback system.

We have then seen another type of instability arising at finite chromaticities. This instability features higher
frequency intra-bunch motion and is therefore called a (slow) headtail instability.

We will now have a brief look at a more formal description of this type of instability.

e Part IV: Coherent beam instabilities

o Slow headtail instability at finite chromaticity

CERN
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* Headtail instabilities can be derived from the Vlasov equation in the presence of impedances. They evolve
as eigenmodes of the coupled accelerator-beam system. The eigenvalue of these modes is the complex
tune Q — this number fully characterizes a mode and thus an instability:

W (o< |tho| + il) exp (1{91 s/c)

=
A 4 A 4

Stationary solution Perturbation mode Eigenfrequency

From solving Vlasov equation

* F. Sacherer: Methods for computing bunched-beam instabilities, CERN-SI-BR-72-5. - 1972. - 41 p.
o
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* Ultimately, we express the characteristics of a given perturbation mode via its complex tune shift
Ay x exp (€2 s/c)

perturbation A’gbl on the single particle probability density function z,b

* The real part of this number gives the coherent tune shift of the respective unperturbed mode

AQ; x Re (AS)

 The imaginary part gives the growth rate of the perturbation mode

7" oc Tm (AQY)

e * F. Sacherer: Methods for computing bunched-beam instabilities, CERN-SI-BR-72-5. - 1972. - 41 p.
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* Writing down the full Vlasov equation with the beam coupling impedance and finding a solution in terms
of eigenmodes and eigenfrequencies is non-trivial.

* In 1972, Frank Sacherer wrote down an approximate solution for the headtail modes, which very well
matched observations in the CERN Proton Synchrotron (PS) (*):

(COS((Z—Fl)ﬂ' ) , 1=0,2,4,...

pi(2) =

2| W x| W

Sin((l—}—l)ﬂ’ ) , 1=1,3,5,...

\

* Thus, Sacherer found that the observed signal at a (wideband) pickup for a given mode | can be described
as:

. :ij
S o pl(Z) " eXP (_27” (k Qs + §Qato Z)) k:  turn number
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n. slippage factor
wp. revolution frequency

CE?W * F. Sacherer: Methods for computing bunched-beam instabilities, CERN-SI-BR-72-5. - 1972. - 41 p.
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Headtail modes (I»\’)

BPM signal [arb. units]

-04 -0.2 00 02 04 -04 -02 00 02 04 -04 -02 00 02 04 -04 -02 00 02 04
Bunch length [normalized] Bunch length [normalized] Bunch length [normalized] Bunch length [normalized]

=0

It is to be noted, that these bunch modes are always latently present, but not usually excited.
It requires an impedance as source of energy together with chromaticity to generate a synchronization of the
bunch motion with the wake fields kicks in order to drive a given bunch mode into resonance.

* F. Sacherer: Methods for computing bunched-beam instabilities, CERN-SI-INT-BR-72-5. - 1972. - 44 p.
o
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It is to be noted, that these bunch modes are always latently present, but not usually excited.
It requires an impedance as source of energy together with chromaticity to generate a synchronization of the
bunch motion with the wake fields kicks in order to drive a given bunch mode into resonance.

* F. Sacherer: Methods for computing bunched-beam instabilities, CERN-SI-INT-BR-72-5. - 1972. - 44 p.
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Headtail modes (I»\’)

BPM signal [arb. units]
o
w
o

-04 -0.2 00 02 04 -04 -02 00 02 04 -04 -02 00 02 04 -04 -02 00 02 04
Bunch length [normalized] Bunch length [normalized] Bunch length [normalized] Bunch length [normalized]

£#0

It is to be noted, that these bunch modes are always latently present, but not usually excited.
It requires an impedance as source of energy together with chromaticity to generate a synchronization of the
bunch motion with the wake fields kicks in order to drive a given bunch mode into resonance.

* F. Sacherer: Methods for computing bunched-beam instabilities, CERN-SI-INT-BR-72-5. - 1972. - 44 p.
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Headtail modes (I»\’)

BPM signal [arb. units]
o
w
o

-04 -0.2 0.0 0.2 0.4 -04 -0.2 0.0 0.2 0.4

-04 -0.2 00 02 04 -04 -02 00 02 04
Bunch length [normalized] Bunch length [normalized]

Bunch length [normalized] Bunch length [normalized]

Below transition Above transition

It turns out that 1/7 o< (1 +1)7! i.e.,
the lower order modes are the fastest

growing ones

Chromaticity negative | =0 stable; | = 0 unstable;
| >0 unstable | >0 stable

Chromaticity positive | =0 unstable; | = 0 stable;
| >0 stable | >0 unstable

e * F. Sacherer: Methods for computing bunched-beam instabilities, CERN-SI-INT-BR-72-5. - 1972. - 44 p.
o
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Headtail modes (I»\’)

BPM signal [arb. units]
o
w
o

-04 -0.2 00 02 04 -04 -02 00 02 04 -04 -02 00 02 04 -04 -02 00 02 04
Bunch length [normalized] Bunch length [normalized] Bunch length [normalized] Bunch length [normalized]

Below transition Above transition

It turns out that 1/7 o< (1 +1)7! i.e.,
the lower order modes are the fastest

growing ones

Chromaticity negative | =0 stable; | = 0 unstable;
| > 0 unstable | > 0 stable

Chromaticity positive | =0 unstable; | = 0 stable;
| > 0 stable | > 0 unstable

* F. Sacherer: Methods for computing bunched-beam instabilities, CERN-SI-INT-BR-72-5. - 1972. - 44 p.
o
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We have seen how we can describe headtail modes as Sacherer’s sinusoidal modes. We have learned that it
requires impedances and chromaticity for these modes to actually be resonantly excited via a
synchronization between the transverse and longitudinal particle motion and the wake field kicks.

We have also seen how we usually operate machines in certain chromaticity regimes, depending on the state
of transition, in order to suppress the mode 0.

Another very violent type of instability is the transverse mode coupling instability (TMCI) which occurs also
for vanishing chromaticity and provides a hard limit on the intensity reach of many machines.

e Part IV: Coherent beam instabilities

o Fast headtail or transverse mode coupling instability

CERN
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 The pure betatron motion follows from
Hill’s equation to
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 The pure betatron motion follows from
Hill’s equation to

'E 0.04
Q E
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D
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e A spectral analysis of the betatron %’ 0.00
motion yield a single distinct line at the ¢
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* Any coupling of the transverse to the
longitudinal motion, such in the case of
wake fields for example, leads to a
modulation of the betatron motion with
the synchrotron motion.
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Azimuthal bunch modes 0D
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* The pure betatron motion follows from ¢ N
Hill’s equation to * Impedances generate a complex tune shift AQ, for every
0 mode
y(s) = \/2Jy By(s) cos (Ey S)

* The real part of this shift indicates the shifting of the
e A spectral analysis of the betatron corresponding mode
motion vyield a single distinct line at the
betatron tune

The imaginary part of this shift indicates the growth rate of
the corresponding mode p.

7
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e At zero chromaticity, all
headtail modes are usually
symmetrically at the same
time damped and excited.
None of the modes begins
to grow and the beam is
inherently stable.
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Transverse mode coupling instability (TMCI)

e At zero chromaticity, all GoeLy 90020 =2
headtail modes are usually 0.00%5 e
symmetrically at the same 0.0005 0.0010 3.0
time damped and excited. = 0.0005 2.5
None of the modes begins ~= 0.0000 = 0.0000 20 3

. i 8
to grow and the beam is ~0.0005 15 W
inherently stable. ~0.0005 ~0.0010 1.0
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e At zero chromaticity, all 0.0010 0.0020 4.0
headtail modes are usually 0.0015 3.5
symmetrically at the same 0.0005 0.0010 3.0
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Transverse mode coupling instability (TMCI)

« At zero chromaticity, all 00010 00020 M 0
headtail modes are usually 0.0015 3.5
symmetrically at the same 0.0005 0.0010 3.0
time damped and excited. = 0.0005 2.5
None of the modes begins 0.0000 = 0.0000 20 3
to grow and the beam is < _0.0005 15 W
inherently stable. ~0.0005 ~0.0010 1.0
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Transverse mode coupling instability (TMCI)

e At zero chromaticity, all GoeLy 0.0620 %0
headtail modes are usually DOOLS =3
symmetrically at the same 0.0005 0.0010 3.0
time damped and excited. = 0.0005 25—
None of the modes begins ~= 0.0000 = 0.0000 20 3
to grow and the beam is < _0.0005 15 ©
inherently stable. ~0.0005 ~0.0010 1.0
As the bunch intensity ~0.0015 0.5

i i ~0.0010 ~0.0020 0.0
grows tunes will shift ~0.04 -0.02 000 002 004 0 1000 2000 3000 4000 5000 6000 7000 8000
further... z[m] Turn
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Aﬁ};{\uthal .mode lines ciucn 0.04 ) —) | ¢
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o Q
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[ The TMCI threshold is often a hard limit on the reachable intensity in many machines. 0-25
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Transverse mode coupling instability in the SPS

e TMCI in the SPS (modeled using a broadband resonator impedance at around 1.3GHz)
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Mitigation of TMCI is usually done already at the design stage by maintaining a strict impedance budget.
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®
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An intensity scan in the SPS from 2017 0D

The CERN Accelerator School

3.0 lell
* Intensity scans clearly reveal
an intensity limitation at
around 2.4ell ppb
2.5 . Q o o®
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An intensity scan in the SPS from 2017 0D
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Turn 0/200
* Intensity scans clearly reveal 0.2
an intensity limitation at
around 2.4ell ppb 0.1

* This limit manifests itself via
a strong instability
accompanied by very fast
losses. This is the transverse
mode coupling instability
(TMCI).

Delta signal
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o
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[arb. units]
o

I
p—

0.300 0.325 0.350 0.375 0400 0425 0450 0475 0.500
Time [device units] 4.0
CERN - 211 .

\

N 4N (3. October 2021 Kevin Li - Collective effects IV - Chavannes-de-Bogis 33



TMCI threshold de e
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Are there any means to breach
; the wall...?! _ ' |
Is this excluded?
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TMCI threshold

P 1)

the wall...?!
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Are there any means to breach
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Wideband feedback systems de @

B o= i
Active closed loop

GHz Feedback

_— /\,/ Js, n I éOTTTOl N ARV AY \/\/

transverse pre-processed calculated correction pre-distortion drive sienal

Simulations show that a wideband feedback system in principle can mitigate both TMCI and e-cloud driven instabilities.
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Intensity scan

CERN

Headtail monitor acquisition: Donnerstag 02.11.2017 10:06:13

\

, , le1l

First test... looking at the BCT,
a constant signal is observed 5 5 5
all along the cycle. o p——— .

2.0 o
To be noted that we are
injecting high intensity beams ~—
(~2.5e11 ppb) - TMCI >15
induced losses occur before [z
the first BCT sampling point! b= Lo
A look into the HEADTAIL 05
monitor just after injection
reveals the TMCI.

00l No feedback

2017-11-02 10:18:04
0 500 1000 1500 2000 2500 3000 3500 4000
Time [ms]
O
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Intensity scan 0D
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lell

* The standard transverse
damper was set up and put 25
into operation in an attempt X

to mitigate the instability. L
2.0

* The fast growth was reduced =
but could not be stopped. >15
The losses are ultimately 0
comparable to running 2
without the transverse =10
damper.
0.5
____No feedback
* This is expected due to the 2017-11-02 10:18:04
bandwidth limitations of the 0.0 | ___ Transverse damper only
transverse damper... the high 2017711-02 10:28:21
frequency content of the 0 500 1000 1500 2000 2500 3000 3500 4000
instability remains unaffected. Time [ms]
\ O
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Intensity scan 0D
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* Finally, the wideband
feedback system was time
aligned, configured and 2.5
activated by closing the loop K

over the observed instability. - L
* The transverse damper was =
kept active to control the 213
large amplitude low 2
frequency motion to prevent g
saturation of the ADCs which = 1.0
would otherwise render the No febdback
H O Teedpac
m:if?gcatri\\;jefeedback system 05| 2017-11-02 10:18:04
' Transverse damper only
2017-11-02 10:23:21
. . Transverse damper + wideband feedback
* With the two systems active 00} —

e ’ 2017-11-02 11:05:36
the losses are significantly
reduced and comparable to 0 500 1000 1500 2000 2500 3000 3500 4000
what is observed in absence Time [ms]
of TMCI.
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Intensity scan

* The wideband feedback
loop was closed and
opened several times
over a period of half an
hour to ensure
reproducibility of both
the TMCI and the
stabilization of the latter.
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Intensity scan de'e,
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* The wideband feedback 3.0 Aol
loop was closed and = 2.8 —e— PS etxracted intensity
i 2.6 —— SPS injected intensit
over  period af haltan & 24 | ”
hour to ensure . 2.2
reproducibility of both c 2.0 z
the TMCl and the £ 77
stabilization of the latter. 1'4
105
e Thereis a clear ¢ 100 | | - | WBFB on
correlation between = 95 | | | | WBFB off
transmission and 2 90
open/closed loop E 85
configuration. G 8o
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We seen another type of particularly violent instability — the fast headtail instability. This occurs at zero
chromaticity of the intensity is high enough, such that different sidebands in the bunch spectrum couple. For
this reason, it is also called the transverse mode coupling instability (TMCI). As opposed to the slow headtail
instabilities, TMCI has a distinct intensity threshold.

TMCI usually poses a hard limit on the machines reachable intensity and is usually avoided during the design
phase of the machine. Recent developments of wideband feedback systems indicate, however, that these
limits could probably also be breached by means of active mitigation.

e Part IV: Coherent beam instabilities

o Longitudinal instabilities

CERN

\ O
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Longitudinal instabilities Je'e,
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* For the case of longitudinal wake fields, two regimes can be found:

o Regime of potential well distortion (i.e. perturbations to equilibrium solutions are damped)

= Stable phase shift
= Synchrotron frequency shift
= Different matching (= bunch lengthening for lepton machines)

o Regime of longitudinal instability (i.e. perturbations to equilibrium solutions grow exponentially):
= Dipole mode instabilities
= Coupled bunch instabilities
= Microwave instability (longitudinal mode coupling)

CERN
9

\
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Example: bunch lengthening and MW instability

0.0200

0.16

RMS buch length [m]
=

0.14

03. October 2021

Below MWI threshold

IR

0.0 0.2 0.4 0.6

Examples of numerical simulations —
SPS bunch with single broad-band
resonator wake:

Initializing a matched bunch at
different intensities, two regimes are
found:

* Bunch lengthening/emittance
blow up regime with roughly
linear increase of the synchronous
phase and bunch length with
intensity

* Unstable regime (turbulent bunch
lengthening)

Kevin Li - Collelntensitytfle 1dhppibhes-de-Bogis
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Example: bunch lengthening and MW instability
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0.0175
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Example: bunch lengthening and MW instability de'e,
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Example: bunch lengthening and MW instability de'e,

The CERN Accelerator School

Turn# 0 - bunch intensity: 100.00% of initial
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Closing remarks de @
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In the last four lectures we have briefly touched the topic of collective effects in accelerator physics and
beam dynamics. We have treated most items phenomenologically to gain an intuitive understanding of the
involved mechanismes.

By now we should be able to identify the main differences between the dynamics of single particles vs. multi-
particle systems.

We understand the features of collective effects such as space charge and how instead of being constant
forces, instead, they depend on the particle distribution function itself.

We know how we can use the concept of wake fields and impedances to model the impact of more complex
elements.

And we know how to identify an instability, with a rough overview over the different type of instabilities
typically observed in synchrotrons along with possible mitigations.

More complex analysis involve the Vlasov formalism to analytically model simplified cases or full
macroparticle models to simulate the beam dynamics of collective effects.
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