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Cyclotrons/FFA - Outline

the classical cyclotron

history of the cyclotron, basic concepts and scalings, focusing, stepwidth,
classification of cyclotron-like accelerators

synchro-cyclotrons
concept, synchronous phase, example
isochronous cyclotrons (- sector cyclotrons )

isochronous condition, focusing in Thomas-cyclotrons, spiral angle, classical
extraction: pattern/stepwidth, space charge

applications and examples of existing cyclotrons
TRIUMF, RIKEN SRC, PSI Ring, PSI medical cyclotron

Part Il

cyclotron subsystems

Injection/extraction schemes, RF systems/resonators, magnets, vacuum issues,
instrumentation, FFA specific magnets, FFA resonators

FFA = Fixed Focus Alternating Gradient Accelerators
motivation & applications, scaling FFA’s, non-scaling and linear FFA, FFA subsystems

discussion

classification of circular accelerators, Pro’s and Con’s of cyclotrons / FFA for
different applications



The Classical Cyclotron
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=>» simplicity, compactness
=>» continuous injection/extraction

=>» multiple usage of accelerating voltage



some History ...

first cyclotron: 1931, Berkeley
1kV gap-voltage 80keV Protons

Lawrence & Livingston,
27inch Zyklotron

Ernest Lawrence, Nobel Prize 1939
“for the invention and development of the cyclotron &=
and for results obtained with it, especially with S
regard to artificial radioactive elements” g

.

fii John Lawrence (center), 1940’ies
" N first medical applications: treating patients with [images: Lawrence Berkeley
u : 4 4 neutrons generated in the 60inch cyclotron deiiltssinntl LIS




The Key to the Cyclotron?

Florentz = centrifugal BBZ
2 We =
quRB = mRw*, w=v/R m

circulation time is constant,
T T independent of energy or radius R Ca n Ce | S R !

Lawrence’s graduate student J. J. Brady later recalled his young
supervisor’s excitement following his eureka moment in early 1929:

He came bursting into the lab. . . , his eyes glowing with enthusiasm, and
pulled me over to the blackboard. He drew the equations of motion in a
magnetic field.

‘Notice that R appears on both sides,” he said. ‘Cancels out. R cancels R. Do
you see what that means? The resonance condition is not dependent on the
radius. .. Any acceleration!’. .. ‘R cancels R’ he said again. ‘Do you see?’ . ..
He left in a rush, | suppose to tell other people that R canceled R.

cited from Craddock, Symon, Reviews of Accelerator Science and Technology, 2008, p. 65






cyclotron frequency and K value

e cyclotron frequency (homogeneous) B-field:

eB
We =
 cyclotron K-value: AL
- K'is the energy reach for protons (1/12 C) from bending strength in
non-relativistic approximation: o2
K = (Bp)?
2m0

— K can be used to rescale the energy reach of protons to other

charge-to-mass ratios: ,
Ly, @
Tk (X
T k(3

— Kin [MeV] is often used for naming cyclotrons
examples: K-130 cyclotron / Jyvaskyla
cyclone C230/ IBA

<
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cyclotron - isochronicity and scalings

continuous acceleration — revolution time should stay constant, though E,, R vary

magnetic rigidity:
__ P _ mocC
BR = ¢ = fpy="

orbit radius from isochronicity:

R = SB8=R.p
We

deduced scaling of B:

— B(R) x7(R)

. ' main difficulty to be
to be isochronous, B must be raised o y(R) :> overcome by
— this contradicts the focusing requirements! cyclotron & FFA

variants.




field index

the field index describes the (normalized)
radial slope of the bending field:

. _ RdB
- E ﬁ from isochronous condition:
Bdy —— Bk
~ ydp
— 72 — 1

— thus k > 0 (positive slope of field) to keep beam isochronous!
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focusing in a classical cyclotron

centrifugal force mv?/r
H Lorentz force qvxB

I

mi = mré? — qréBz

focusing: consider small deviations x from beam orbit R (r = R+x):

i+ LuB.(R+ ) — o
m ¥ R+« B ’

B q dBZ v? XL
i+ Lo(Bm+ o) -5 (1-F) = 0
i+wi(l+kx = 0.

using: w. = ¢B,/m = v/R, Té%”vk: %g_g
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betatron tunes in cyclotrons

thus in radial plane: W, = weV1+k=w.,
VT = V ]_ —I— k using isochronicity condition
D

note: simple case fork=0: v, =1
(one circular orbit oscillates w.r.t the other)

dB. _

. 3 __ dB
using Maxwell to relate B, and Bg: rot B = S — T

in vertical plane: v, =vV—-k {7

thus: in classical cyclotron k < 0 required for vert. focus;
however this violates isochronous condition k =y2-1 >0

"“,
. 4
<

k<0 to obtain
vertical focus.
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naming conventions of cyclotrons ...

1.) resonant acceleration 2.) transverse focusing

classical cyclotron
limit energy / ignore problem

classical cyclotron
negative field slope

~
synchro- cyclotron
frequency is varied
W,
\ AVF-/Thomas-/sector cyclotron
e ene Gl focusing by flutter, spiral angle
avg. field slope positive
W,

13



classification of cyclotron like accelerators

Classical Cyclotron

Thomas cyclotron

AVF concept — harmonic pole shaping,
electron model, Richardson et al (1950),
courtesy of Lawrence Berkeley National Laboratory

Separated Sector

high intensity high energy compact machine

:% 14



— concept and properties

— frequency variation and synchronous phase

— an example for a modern synchrocyclotron




Synchrocyclotron -concept

first proposal by

25—

431 4

-2

accelerating frequency is variable, is reduced during acceleration
negative field index (= negative slope) ensures sufficient focusing
operation is pulsed, thus avg. intensity is low

bending field constant in time, thus rep. rate high, e.g. 1kHz

Mc.Millan, Berkeley

16



Synchrocyclotron continued

- high energies possible (>1Gev) - low intensity, at least factor 100
- focusing by field gradient, no less than CW cyclotron
complicated flutter required — - complicated RF control
thus compact magnet required
- only RF is cycled, fast repetition - weak focusing, large beam

as compared to synchrotron

100 extraction

b

numerical example
field and frequency vs.

frequency [MHz]
iy
field strength [T]

- L 4 3
radius: 40
- 230MeV p, strong field ol 1°
f
- RF curve must be e !
programmed In Some Way 0 0 0.65 0I.1 0.I15 0l2 0.I25 (;.3 0.135 OI.4 0.;15 0.50
radius [m]

"



RF voltage

Synchrocyclotron and synchronous phase

internal source generates continuous beam; only a fraction is captured by RF wave

in a phase range around a synchronous particle

in comparison to a synchrotron the “storage time” is short, thus in practice no
synchrotron oscillations

max [
V

synchronous phase
and stable range

relation of
energy gain per turn and
rate of frequency change

qUo N cos s 27 dw

-t/2

phase

Ps

Ek + E() N wQ dt
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A modern synchrocyclotron for medical application —
IBA S2C2

— at the same energy synchrocyclotrons can be build more compact and with lower
cost than sector cyclotrons; however, the achievable current is significantly lower

4

S 230 MeV | Feb/2013, | courtesy:
current 130 nA Y| PVerbruggen IBA
dimensions Z25m x 2m g4

weight <50t

extraction radius 0.45m

s.c. coil strength 5.6 Tesla

RF frequency 90...60 MHz

repetition rate 1 kHz

19




compact treatment facility using the high field synchro-cyclotron

SC 5.6T 230 MeV

\synchro-cyclotron
-

[image courtesy: IBA]

* required area: 24x13.5m?(is small)
e 2-dim pencil beam scanning

% 20
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* next: isochronous- / sector cyclotrons
— focusing and AVF vs. separated sector cyclotron
— how to keep isochronicity
— extraction: pattern/stepwidth
— RF acceleration
— transv./long. space charge



focusing in sector cyclotrons

hill / valley variation of magnetic field (Thomas focusing) makes it possible
to design cyclotrons for higher energies

lllustration of focusing at edges

N

vertical lens 1 q
- Valley - Hill — Valley - — B - B taIl K
}:} E-{ )_j éﬁ at boundary: [ ﬁ’ymoc( H v)
//// ~ Z
' B
resu.ltlng V2 = _Ed :
vertical tune: B, dR
| Flutter factor B—g — B_z2
describes b= B—2

modulation depth:

22




adding a spiral angle

the spiral angle introduces additional R
focusing with alternating contribution 5
at entry and exit of the sector fields: z

dB.,

T + F(1 + 2tan? )

A Y
spiral angle , ©

s

strong term, e.g.:
a=27° 2tan?a=1.0

%. e 23




Azimuthally Varying Field vs. Separated Sector Cyclotrons

PSI/Varian comet: 250MeV sc. medical cyclotron

AVF = single pole with shaping

often spiral poles used

internal source possible

D-type RF electrodes, rel. low energy gain
compact, cost effective

depicted Varian cyclotron: 80% extraction
efficiency; not suited for high power

modular layout, larger cyclotrons possible,
sector magnets, box resonators, stronger
focusing, injection/extraction in straight
sections
external injection required, i.e. pre-
accelerator
box-resonators (high voltage gain)
high extraction efficiency possible:

e.g. PSI: 99.98% = (1 - 2x10%)

24

PSI Ring cyclotron




three methods to raise the average magnetic field with y

remember:
rev.time: R o f

momentum : BR oc [y

thus: B o« 7

1.) broader hills (poles) with radius
2.) decrease pole gap with radius

3.) s.c. coil arrangement to enhance field at large
radius (in addition to iron dominated field)

e [—

(photo: S. Zaremba, IBA) .



field stability is critical for isochronicity

example: medical Comet cyclotron (PSI)

® 95 Phase with respect to RF
s
g
m E
N =
o
60
E C3. 2 [mAd e.g. :
(%) =]
c =
7] E
£ =
158.41 158.43 158.45

Current in main coil (A)

APrr

Nturn

AB
X Nturn 5
R
= 600
26



derivation of (relativistic) turn separation in a cyclotron

starting point: bending strength
— compute total log.differential
— use field index k = R/B-dB/dR

BR =

dB dR
B R
dR
dy

radius change per dR
turn dny

[U, = energy gain per turn]

Ut YR isochronicity not
moc? (72 —1)(1 + k) conserved (last turns)

U, R
moc? (v — 1)y

isochronicity conserved
(general scaling)

27



turn separation - discussion

for clean extraction a large stepwidth (turn separation) is of utmost
importance; in the PSI Ring most efforts were directed towards maximizing
the turn separation

desirable:

Uy Rextr * limited energy (< 1GeV)
moc? (v? — 1)y |« large radius R,
* high energy gain U,

general scaling at AR(R
extraction: ( extr)

scaling during d_R ~ Ui E — AR(R) x 1
] 2 32 R
acceleration: dny mocC 5
50 T T T
Beyy = 1.5T ——
By = 1.0T
Bem=0.7T R —
40 + dR at extraction 7

illustration: 0T

stepwidth vs. radius in
cyclotrons of different sizes but
same energy;

100MeV inj —> 800MeV extr

<d 0 1 2 3 4 5 6 7 8 .
§‘§§% radius R [m]

20 |

stepwidth dR [mm]

10




extraction with off-center orbits

betatron oscillations around the “closed orbit” can be used
to increase the radial stepwidth by a factor 3 !

without orbit oscillations: stepwidth from E,-gain (PSI: 6mm)

1.8 T T T T T % I

14 r 1 with orbit oscillations: extraction gap; up to 3 x stepwidth possible
A for v,=1.5x (phase advance)

particle density

. beam to
1.1 : : ' ' ' extract
0 100 200 300 0 500 600
kin. energy [MeV]
. . /
radial tune vs. energy (PSI Ring)
typically v, = y during acceleration;

but decrease in outer fringe field
phase vector of orbit r
oscillations (r,r’) ""\ f "'---a. >

%, 29



extraction profile measured at PS| Ring Cyclotron

red: tracking simulation [OPAL]

black: measurement

I I I I I
1
2
10 3 _ H%%B}' ________________ L1887
£}
8
0
£10°
2
C
0
C
2
2
il
2| Simulation
107 —Messung
l 1 l 1 l |
4380 4390 4400 4410 4420 4430
Radius (mm)
[Y.Bi et al]

4440

turn numbers

from simulation

dynamic range:
factor 2.000 in
particle density

position of extraction septum

d=50um
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longitudinal space charge

sector model (W.Joho, 1981):

— accumulated energy spread transforms into transverse tails

* consider rotating uniform sectors of charge (overlapping turns)

* test particle “sees” only fraction of sector due to shielding of
vacuum chamber with gap height 2w

two factors are proportional to the number of turns:
1) the charge density in the sector
2) the time span the force acts

8 2 2
AU, = el,Zol(4=)- gma}‘ ~ 2.8009 - el, - gmax

derivation see: High Intensity Aspects of Cyclotrons, ECPM-2012, PSI

in addition:
3) the inverse of turn separation at extraction:

1
A}%ext r

X nmax

» thus the attainable current at constant losses scales as n_,,®

<
s d
2

3


http://indico.psi.ch/getFile.py/access?contribId=56&sessionId=20&resId=0&materialId=slides&confId=1146

longitudinal space charge; evidence for third power law

e at PSI the maximum attainable current indeed scales with the third power

of the turn number

* maximum energy gain per turn is of utmost importance in this type of high

intensity cyclotron

average voltage gain per turn [MV]
2.6 2.1 1.7 1.5 1.3 115

5
4 -
3 -
2 -
— with constant losses at the N
extraction electrode the maximum T
attainable current indeed scalesas: | = s |
_3 A
Imax X 1, 03 F

0.1

T T T T T T

scaling law | ,,, K N? —— |

3 cavity mode

1 1 1 1 1 1

historical development of
current and turn numbers
in PSI Ring Cyclotron

150

200 250 300 350 400 450
turns in Ring Cyclotron

32




next: cyclotron examples

 compact cyclotrons
* TRIUMF, RIKEN SRC, PSI-Comet, PSI-HIPA

33



compact cyclotrons for Isotope production

'S

Vertical setup

CYCLONE 30 (IBA) : H- 15 2 30 MeV

B 34



some cyclotrons

TRIUMF RIKEN SRC PSI Ring PSI medical
(supercond.) (supercond.)
particles H-—>p ions P P
K [MeV] 520 2600 592 250
magnets (poles) (6) 6 8 (4)
peak field strength 0.6 3.8 2.1 3.8
[T]
Rini/Rextr [M] 0.25/3.8..7.9 3.6/5.4 2.4/4.5 -/0.8
Pax [KW] 110 1 (86Kr) 1300 0.25
extraction efficiency 0.9995 0.9998 0.80
(tot. transmission) (0.70) (0.63)
extraction method stripping foil electrostatic electrostatic electrostatic
deflector deflector deflector
comment variable energy ions, flexible high intensity compact

<
£ -
7AW
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cyclotron examples: TRIUMF / Vancouver

photo: iron poles with spiral shape
(0,...=70deg)

maXx

* p, 520MeV, up to 110kW
beam power

e diameter: 18m (largest
n.c. cyclotron worldwide)

e extraction by stripping H-
— variable energy;
multiple extraction points
possible

.....

% 36



example: RIKEN (Jp) superconducting cyclotron

to BigRIPS

K=2,600 MeV

Max. Field: 3.8T (235 MJ)
RF frequency: 18-38 MHz
Weight: 8,300 tons
Diameter: 19m

Height: 8m

superconducting
Sector Magnets :6
RF Resonator :4
Injection elements.
Extraction elements.

utilization:
broad spectrum of
ions up to Uranium

[H.Okuno]

"
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[images courtesy: PSI]



250 MeV isochronous proton cyclotron

ACCEL |

Closed He system r
4x1.5W @4K

300 kW
90 tons

{ Proton source

superconducting coils R
=>24-38T N
-3
4 RF-cavities
=100 kV on 4 Dees
=D

[image courtesy: ACCEL/Varian]
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need degrader for energy variation:

measured transmission with "OPTIS" collimators

: 1.0000 »
cyclotron has fixed energy; 7
need degrader for energies & 01000 !/",
down to 70MeV 78 —=
— O el
ot E 5
colllmatlf)n after degrader to 5 200100 A/T/
keep emittance — lose i == Behind E-slits
intensity with degrader Aplp = +/-1%
0.0010 | |
0 5 100 150 200 250 300
E(MeV)

degrader: (carbon wedges in vacuum)
and laminated beam line magnets for
fast energy changes < 80 ms / step

% MkSeidel;-Cyeletrons - 41




examples: PSI High Intensity Proton Accelerator

Adsbniturg Tuahnih ( Kosnrdinatien ( Setrieh #1000
’

Loy

Ring Cyclotron 590 MeV | = = wxe

2.4mA / 1.4MW
diameter: 15m

= &

meson production
targets

proton therapie center
[250MeV sc. cyclotron]

SINQ
spallation source

dimensions:

120 x 220m?
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Outlook: Cyclotrons Il & FFA

e cyclotron subsystems

extraction schemes, RF systems/resonators, magnets,
vacuum issues, instrumentation

* FFA = Fixed Focus Alternating Gradient Accelerators

motivation & applications, scaling FFA’s, non-scaling and
linear FFA, FFA subsystems

e discussion

classification of circular accelerators, cyclotron vs. FFAG,
Pro’s and Con’s of cyclotrons for different applications
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