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“Particle accelerator physics is the realm of applied special relativity”
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Part 1.

Introduction:

Principle of Special Relativity
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Einstein’s principle of relativity

In Albert Einstein’s original treatment, in 1905, the principle of relativity is based
on two postulates:

1. the laws of physics are invariant (i.e. identical) in all inertial frames of
reference (i.e. non-accelerating frames of reference); and

2. the speed of light in a vacuum is the same for all observers, regardless of
the motion of the light source or observer.
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Newton’s principle of relativity and Galilean
transformation

The principle of relativity was first stated by Galileo Galilei in 1632, and later by
Newton in one of his corollaries to the laws of motion:

I “The motions of bodies included in a given space are the same among themselves,
whether that space is at rest or moves uniformly forward in a straight line.”

At the time of Newton the relation of the coordinates between two systems in motion
with relative velocity v , was defined by the Galilean transformation of motion:

x ′ = x − v t
y ′ = y
z ′ = z
t ′ = t

⇒ r′ = r − vt
t ′ = t

with r =
(
x , y , z

)
.

6/31 A. Latina - Special Relativity



Galilean transformation and Maxwell’s equations

I The principle of relativity has been used in mechanics for a long time. It was
employed by various people, in particular Huygens, to obtain the rules for the
collision of billiard balls, based on the conservation of momentum.

I In the 19th century interest in it was heightened as the result of investigations
into the phenomena of electricity, magnetism, and light. A long series of careful
studies of these phenomena by many people culminated in Maxwell’s equations of
the electromagnetic field, which describe electricity, magnetism, and light in one
uniform system.

I However, the Maxwell equations did not seem to obey the principle of relativity.
That is, if we transform Maxwell’s equations by the substitution of equations (of
the Galilean transformation, their form does not remain the same:
I Therefore, it seemed like if in a moving space ship the electrical and optical

phenomena should be different from those in a stationary ship.
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Maxwell’s equations and principle of relativity
I One of the consequences of Maxwell’s equations is that if there is a disturbance in the

field such that light is generated, these electromagnetic waves go out in all directions
equally and at the same speed

c = 2.99792458× 108 m/s

I Another consequence of the equations is that if the source of the disturbance is moving,
the light emitted goes through space at the same speed c.

This is analogous to the case of sound, the speed of sound waves being likewise
independent of the motion of the source.

These considerations lead to the idea of a “ether”. Attempts were made to determine the
absolute velocity of the earth through the hypothetical “ether” that was supposed to pervade all
space.8/31 A. Latina - Special Relativity



The problem with Galilean transformation
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The Michelson-Morley experiment (1887)
The goal was to determine the absolute velocity of the earth through this hypothetical “ether”:

A: light source; B: partially silvered glass
plate; C and E: mirrors; D and F: super-
imposed light beams

I Time from B to E and back:

B → E : ct1 = L + ut1 ⇒ t1 = L/ (c − u)

E → B : ct2 = L− ut2 ⇒ t2 = L/ (c + u)

total time:

t1 + t2 =
2L

(1− u2/c2)

I Time from B to C and back:

B → C : (ct3)
2 = L2 + (ut3)

2 ⇒ t3 = L/
√

c2 − u2

C → B : t4 = t3

total time:

t3 + t4 =
2L

√
c2 − u2

If there is an “ether drift” then
t1+t2 6= t3+t4

The apparatus was amply sensitive to observe such an effect, but no time difference was found—the velocity
of the earth through the ether could not be detected. The result of the experiment was null .
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Lorentz transformation
I To solve the Michelson-Morley puzzle, Lorentz suggested that material bodies contract

when they are moving, and that this shortening is only in the direction of the motion, and
also, that if the length is L0 when a body is at rest, then when it moves with speed v
parallel to its length, the new length, L‖ is given by:

L‖ = L0
√
1− v2/c2

I He also noticed that the remarkable and curious thing that the Maxwell equations were
invariant under the following substitutions:

x ′ =
x − vt√
1− v2/c2

y ′ = y

z ′ = z

t′ =
t−vx/c2√
1− v2/c2

These equations are known as Lorentz transformation.

I In their 1905 papers on electrodynamics, Henri Poincaré and Albert Einstein explained
that with the Lorentz transformation the relativity principle holds perfectly.
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Rewrite of the Lorentz transformation
In relativity, it is common practice to write the velocity v as β

β =
v
c

∈ [0, 1]

and to define, γ, the Lorentz factor,

γ =
1√

1− β2
∈ [1,∞)

Therefore

x ′ = γ (x − βct)
y ′ = y
z ′ = z
ct ′ = γ (ct − βx)

⇒
r′‖ = γ

(
r‖ − βct

)
r′⊥ = r⊥
ct ′ = γ

(
ct − r‖ · β

)
where r‖ and r⊥ are the components of r w.r.t. β (or v).

where v is the relative velocity of the two frames.
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Time dilation and length contraction
I Length contraction, or Lorentz contraction, is the solution that Lorentz proposed

to solve the Michelson-Morley experiment:
I is the phenomenon that a moving object’s length is measured to be shorter

than its proper length, which is the length as measured in the object’s own
rest frame

∆x ′ =
∆x
γ

I Time dilation:
I is a difference in the elapsed time measured by two clocks, either due to

them having a velocity relative to each other (or by there being a
gravitational potential difference between their locations)

∆t ′ = γ∆t

Definitions:
I proper mass: mass of a body at rest
I proper time: time as measured in its own frame
I proper length: length as measured in its own frame
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Time dilation made intuitive
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Example of time dilation: muon decay in the atmosphere
Muons are formed in collisions of cosmic rays with nuclei of atmosphere’s atoms, at heights of about 12000
m

I The half-life of a muon is 2.2 microseconds and
so even moving at 0.994 c they would only
expect to travel about 660 m before half of
them decayed.

I As they are formed at 12000 m altitude it
would take 40 µs, or about 20 half lives, to
reach the ground.

I This would mean that only 1/220of the original
number would be detected.

I The fact that the proportion is much higher
than this means that the muons are living
longer.

I Their relativistic factor is:

γ =
1

√
1− 0.9942

= 9.1424

Their time slows down, and 2.2 µs become about γ
times longer, or
Lengths contract and the 12000 m become 12000/γ
m.
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Relativistic velocity-addition formula

In Galilean relativity, the velocity of an object u, in motion over a moving
reference with velocity v, is seen from an observer at rest as moving with a
velocity u′:

u′ = u + v

The equation of Einstein’s special relativity is different: for collinear motions, the
velocity u′ is

u′ =
u + v

1+ vu/c2

For arbitrary velocities the 3d vector formula is more complex:

u′‖ =
u‖ + v
1+ v·u‖

c2
; u′⊥ =

√
1− v2

c2 u⊥

1+ v·u‖
c2

Question: what happens if u = v = c ?
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Einstein postulates

There is not simultaneity
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To be clear
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About mass
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Part 2.

Relativistic Kinematics
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Definitions
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Definitions and practical units

m rest mass MeV/c2

E0 = mc2 rest energy MeV

E = γmc2 total energy MeV

K = E −mc2 kinetic energy MeV

v velocity m/s

β = v/c relativistic velocity −

γ = 1/
√
1− β · β lorentz factor −

P = βγmc momentum MeV/c

E 2 = (Pc)2 +
(
mc2

)2
total energy MeV
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Useful relations and quantities

E 2 = P2c2 + m2c4 total energy MeV

Pc = Eβ total momentum times c

me = 0.510999 rest mass of the electron MeV/c2

mp = 938.272 rest mass of the proton MeV/c2

mµ = 105.66 rest mass of the muon MeV/c2

Frequent subdivisions

γ ' 1 non-relativistic

γ > 1 relativistic

γ � 1 ultra-relativistic
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Forces and momentum

In presence of a force, for example, the Lorentz force

F = q (E + v × B)

Newton’s second law of motion is

F =
dP
dt

In presence of a constant collinear force, e.g. a constant acceleration through an
appropriate field E , the momentum of a particle grows linearly, and so does the
particle’s mass. Recall: P = (γm)βc
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Transformations of electromagnetic fields

Unprimed quantities are in the lab frame, primed quantities in the a frame moving with velocity
v along the z axis 

Ex = γ
(
E ′

x + vB′
y
)

Ey = γ
(
E ′

y − vB′
x
)

Ez = E ′
z


Bx = γ

(
B′

x − vE ′
y/c
)

By = γ
(
B′

y + vE ′
x/c
)

Bz = B′
z

In compact 3d vector form, with γ = 1/
√
1− v2/c2, for a frame moving with arbitrary velocity

~v :

E = γ
(
E′ − v × B′)− γ2

1+ γ

(
v · E′) v

B = γ
(
B′ + v × E′)− γ2

1+ γ

(
v · B′) v

Quote Einstein: For a charge moving in an electromagnetic field, the force experienced by the
charge is equal to the electric force, transformed into the rest frame of the charge.
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Example of the electric field

At high energies, electric

fields get compressed in the direction of propagation
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Every day example

GPS satellite:
I 20’000 km above ground, (unlike popular believe: not on geostationary

orbits)
I Orbital speed 14’000 km/h (i.e. relative to observer on earth)
I On-board clock accuracy 1 ns
I Relative precision of satellite orbit ≤ 10−8

I At GPS receiver, for 5 m need clock accuracy ≈ 10 ns
I Do we correct for relativistic effects ?
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If you do the math...
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...The End!

Thank you

for your attention!
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