Legend

CERN existing LHC Potential underground siting : CLIC 500 Gev CLIC 1.5 TeV CLIC 3 TeV

Jura Mountains

Geneva

Many slides courtesy of Daniel Schulte (CERN) and Frank Tecker (CERN)

Hermann Schmickler, CERN CAS@ESI Archamps 2019

Lake Geneva

Google

Outline

- Overview future (and past) high energy colliders
- CLIC := Compact Linear (e+e-) Collider
 - Why e+e-? \rightarrow precision physics
 - Why linear? \rightarrow no synchrotron radiation
 - how compact? \rightarrow 100 MV/m with NC RF
- Basic Parameters of CLIC...Comparison with ILC
- Focus on two aspects:
 - Nanometer Size Beams at IP: Why and how?
 - RF Powering through a second particle beam: Why and how?

Past/Existing High Energy Frontier Colliders

Only referring to the highest energy

Lepton colliders:

- LEP (Large Electron Positron Colliders)
 - Z₀ factory at 90GeV electron-positron cms energy
 - W⁺W⁻ factory at 160GeV
 - Maximum 209 GeV cms energy for higgs search (bad luck: e+e- → Z⁰H needs about 250 GeV)
 - Closed in the year 2000
- **SLC** (Standford Linear Collider)
 - Z₀ factory at 90GeV electron-positron cms energy

Hadron colliders

- LHC (Large Hadron Collider):
 - Proton-proton with 13TeV
 - Ion-ion operation

Considered Future High Energy Frontier Colliders

Circular colliders:

- FCC (Future Circular Collider)
 - FCC-hh: 100TeV proton-proton cms energy, ion operation possible
 - FCC-ee: Potential intermediate step 90-350 GeV lepton collider
 - FCC-he: Lepton-hadron option
- CEPC / SppC (Circular Electron-positron Collider/Super Proton-proton Collider)
 - CepC : e⁺e⁻ 240GeV cms
 - SppC : pp 70TeV cms

Linear colliders

- ILC (International Linear Collider): e⁺e⁻, 500 GeV cms energy, Japan considers hosting project
- CLIC (Compact Linear Collider): e⁺e⁻, 380GeV-3TeV cms energy, CERN hosts collaboration

Others

- Muon collider, has been supported mainly in the US but effort has stopped
- Plasma wakefield acceleration in linear collider...not yet ready
- Photon-photon collider
- LHeC

LEP (at CERN)

27km circumference LINEAR ACCELERATOR (600 MeV) Electron-positron collider 4 experiments: ALEPH, DELPHI, L3, OPAL PROTON SYNCHROTRON (3.5 GeV) ACCUMULATOR (600 Me) CMS energy: 90GeV (LEP I) - 209GeV (LEP II) Peak Luminosity: 10³²cm⁻²s⁻¹ Operation: 1989-2000 Highest particle speed in any accelerator SUPER PROTON SYNCHROTRON (20 GeV) LEP (50 GeV PER BEAM) FOCUSING MAGNETS ELECTROSTATIC SEPARATOR BENDING MAGNEE ADIO-FREQUENCY CAVITY POSITRONS ELECTRONS

SLC (at SLAC)

Electron-positron linear collider 2 experiments: first MARK II, then SLD CMS energy: 92GeV Peak Luminosity: 2x10³⁰cm⁻²s⁻ 1

Operation: 1989-1998

The only linear collider sofar

The LHC (at CERN)

27km circumference (well, the LEP tunnel)

4 main experiments

Nominal CMS energy: 14TeV Peak Luminosity: 10³⁴cm⁻²s⁻¹ Operation: 2009-today

Highest particle energy in any accelerator

Other Colliders

Collider Choices

- Hadron collisions: compound particles
 - Mix of quarks, anti-quarks and gluons: variety of processes
 - Parton energy spread
 - QCD processes large background sources total cross section increases with log s; "interesting cross sections" decrease with s
 - Hadron collisions \Rightarrow large discovery range
- Lepton collisions: elementary particles
 - Collision process known
 - Well defined energy
 - Other physics background limited
 - Lepton collisions \Rightarrow precision measurements
 - All cross sections decrease with s
- Lepton-hadron is also possible

Higgs Physics in e+e- Collisions

The LHC: signals much smaller than "bkg"

rate

GHz

MHz

kHz

Hz

aHz

5000

CABI→I+r mHz

Z.

ev/year

10 17

10 16

10 15 10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10³

10 2

10

34

1

Physics Beyond the Standard Model (BSM) Example: Dark Matter

The outer region of galaxies rotate faster than expected from visible matter

Corbelli & Salucci (2000); Bergstrom (2000)

Dark matter would explain this

Other observations exist

• But all through gravity

What is it?

One explanation is supersymmetry

Supersymmetry

Example of Potential SUSY Scenario

A "real" story from the past ...

Barcelona, 15 March 1493

3

CristofoRolf Columbus:

Your Majesty, the fleet needs an **upgrade**, we need to go back to the Indies with **IO times** more ships

King Ferdinand and Queen IsAgnieszka:

You discovered the Indies, your theory is right, why do you need more?

CristofoRolf Columbus:

Theorists* say these may not be the standard Indies. They calculated the Earth radius, and the standard Indies cannot be so close: these are likely to be beyond the standard Indies (moving eastward ...)

* If the King had listened to theorists to start with, he would have never authorized the mission: everyone would have died of starvation well before reaching the "standard" Indies ...

Lepton Collider Options

Three main approaches

- Big LEP-type collider ring
 - FCC-ee, CepC
 - Later a proton collider in the same tunnel
- Linear collider
 - ILC, CLIC
 - The focus of this course
- Muon collider

Ring Collider Energy Limitation

Pay for installed voltage (ΔE) and size (R), so scale as: $R \propto F^2$

$$\Rightarrow \Delta E \propto E^4 / E^2$$
$$\Rightarrow \Delta E \propto E^2$$
$$\Rightarrow \Delta E \propto R$$

$$C_R = a_R E^2 + b_R$$

-> use heavier particles, e.g. muons-> or linear collider(-> or try to push a bit harder on cost)

Hardly any synchrotron radiation

Beam can only be used only once -> strong beam-beam effects

Acceleration gradient is an important issue

$$C_L = a_L E + b_L$$

Simplified Cost Scaling Comparison

There will always be an energy where linear colliders are better

Circular vs. Linear Colliders

The main linac provides the energy of the beam

Issue 1: the gradient

But little luminosity, since beams collider only once

Need very small σ_x and σ_y

The damping rings reduce the phase space (emittance $\epsilon_{x,y}$) of the beam The RTML (ring-to-main linac transport) reduces the bunch length

The beam delivery system (BDS) squeezes the beam as much as possible, i.e. reduces $\beta_{x,y}$

ILC Layout

• only one DB complex (with 2x RF pulse length compared to 2 DB complexes)

CLIC Staged Design

Staged design for CLIC to optimise physics and funding profile:

- First stage: E_{cms} =380 GeV, L=1.5x10³⁴cm⁻²s⁻¹, L_{0.01}/L>0.6
- Second stage: $E_{cms} = O(1.5 \text{ TeV})$
- Final stage: E_{cms} =3 TeV, $L_{0.01}$ =2x10³⁴cm⁻²s⁻¹, $L_{0.01}/L$ >0.3

Cavity/Accelerating Structure

ILC cavity

1.3 GHz, superconducting

Target effective operational 31.5MV/m

Target gradient 35MV/m

Q₀≈10¹⁰

CLIC accelerating structure

12 GHz, normal conducting Target loaded gradient 100MV/m Target unloaded gradient 120MV/m $Q_0 \approx 6 \ 10^3$

Warm vs Cold RF Collider

- Normal Conducting
- High gradient => short linac \odot
- High rep. rate => ground motion suppression ☺
- Small structures => strong wakefields 😕
- Generation of high peak RF power 😣

Superconducting

- long pulse = low peak power \odot
- large structure dimensions $=> low WF \odot$
- very long pulse train => feedback within train \bigcirc
- SC structures => high efficiency \bigcirc
- Gradient limited <40 MV/m => longer linac (SC material limit ~ 55 MV/m)
- Large number of e+ per pulse 😕
- very large DR 😕

ILC and CLIC Main Parameters

Parameter	Symbol [unit]	SLC	ILC	CLIC
Centre of mass energy	E _{cm} [GeV]	92	500	3000
luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	0.0003	1.8	6
Luminosity in peak	$L_{0.01} [10^{34} cm^{-2} s^{-1}]$	0.0003	1	2
Gradient	G [MV/m]	20	31.5	100
Particles per bunch	N [10 ⁹]	37	20	3.72
Bunch length	σ _z [μm]	1000	300	44
Collision beam size	σ _{x,y} [nm/nm]	1700/600	474/5.9	40/ 1
Vertical emittance	ε _{x,γ} [nm]	3000	35	20
Bunches per pulse	n _b	1	1312	312
Distance between bunches	Δz [mm]	-	554	0.5
Repetition rate	f _r [Hz]	120	5	50

ILC has parameter sets from 250 GeV to 1TeV CLIC has parameter sets from 250 GeV to 3TeV

Let us look at two main aspects:

• Why does CLIC need so small vertical beam sizes? (6 times smaller than ILC)

 \rightarrow and what does this imply for the technical systems

Why "two beam acceleration"?
usually we have already problems enough with one beam....

Luminosity and Parameter Drivers

Can re-write normal luminosity formula

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x\sigma_y} n_b f_r$$

- - 0

Need to ensure that we can achieve each parameter

Small (vertical) beam sizes

Only Normal conducting RF enables accelerating gradients of <u>100 MV/m</u>

In the present CLIC RF structure (23 cm long) some 50 MW peak power are needed to produce a 100 MV/m accelerating field

With 50 Hz repetition rate beam pulse is as short as 156 ns; i.e. duty cycle 8 * 10-6!!! Still 300 MW electrical power only for the RF acceleration in case of the 3 TeV accelerator

Max. Rf frequency in damping rings:
2 GHz (presently 1 GHz): 312 bunches/pulse
← wake fields in accelerating structure

4 * 10⁹ particles/bunch

Flat beams for minimum energy spread in luminosity spectrum; need to get high luminosity **from small vertical beam size**

Like firing bullets to hit in middle ...

30

Except that ...

Whole list of requirements for colliding small beams

- Generate small vertical emittance in high performance damping rings
- Extract from damping rings with low ripple kickers (10-4)
- Transport beams over 24 km without emittance growth
 through hundreds of quadrupoles
 - \rightarrow active stabilization against ground r
 - \rightarrow active stabilisation against ground motion
 - through thousands of acceleration cavities
 - \rightarrow 10 um alignment to avoid wakefields
- Beam delivery system with highest gradient quadrupoles
- Feedbacks....feedbacks....feedbacks

Let us look at two main aspects:

• Why does CLIC need so small vertical beam sizes? (6 times smaller than ILC)

 \rightarrow and what does this imply for the technical systems

- Why "two beam acceleration"?
 - usually we have already problems enough with one beam....

 \rightarrow Mainly a consequence of the very short beam pulse

Why not using klystrons as RF powersource?

- Reminder: Klystron
 - narrow-band vacuum-tube amplifier at microwave frequencies (an electron-beam device).
 - low-power signal at the design frequency excites input cavity
 - Velocity modulation becomes time modulation in the drift tube
 - Bunched beam excites output cavity
- We need: high power for high fields
 very short pulses (remember: 200 ns!)
- We need also: Many klystrons
 - ILC: 560 10 MW, 1.6 ms
 - NLC: 4000 75 MW, 1.6 μs
 - CLIC: would need many more klystrons with extremely short pulses
 - Avoid another critical set of components: RF pulse compression schemes
- →Drive beam like beam of a gigantic klystron

CLIC – layout for 380 GeV

• only one DB complex (with 2x RF pulse length compared to 2 DB complexes)

Two-beam acceleration

Drive beam time structure

CLIC Drive Beam Scheme

- Very high gradients possible with NC accelerating structures at high RF frequencies (12 GHz)
- Extract required high RF power from an intense e- "drive beam"
- Generate efficiently long beam pulse and compress it (in power + frequency)

More on drive beam generation

- ◆ Again a big transformer:
 → But now in time domain
- Input: Long beam pulse train low current low bunch frequency
- Output: Short beam pulse trains high current high bunch frequency
- => high beam power

Lemmings Drive Beam

Alexandra Andersson

H.Schmickler

CLIC decelerator

- Goal: transport particles of all energies through the decelerator sector: in the presence of huge energy spread (90%)
- Tight FODO focusing (large energy acceptance, low beta)
- Lowest energy particles ideally see constant FODO phase-advance μ~90^o, higher energy particles see phase-advance varying from μ~90^o to μ~10^o
- Good quad alignment needed (20μm)
- Good BPM accuracy (20μm)
- Orbit correction essential
 - 1-to-1 steering to BPM centres
 - DFS (Dispersion Free Steering) gives almost ideal case

H.Schmickler

Power extraction structure PETS

- must extract efficiently >100 MW power from high current drive beam
- passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power
- periodically corrugated structure with low impedance (big a/λ)
- ON/OFF
 mechanism

The power produced by the bunched (ω_0) beam in a constant impedance structure:

PETS design Design input parameters $P = I^2 L^2 F_b^2 W_0$

P - RF power, determined by the accelerating structure needs and the module layout.

- I Drive beam current
- L Active length of the PETS
- F_b single bunch form factor (≈ 1)

12 GHz PETS assembly

Present PETS status (12 GHz)

CLIC two-beam Module layout

- Other modules have 2,4,6 or 8 acc.structures replaced by a quadrupole (depending on main beam optics)
- Total 10462 modules, 71406 acc. structures, 35703 PETS

CLIC two-beam Module

• Alignment system, beam instrumentation, cooling integrated in design

G.Riddone

CLIC - Future Milestones

CLIC near CERN

<text><section-header><image><image><section-header><section-header>

- **Vol 1: The CLIC accelerator and site facilities** (H.Schmickler)
- CLIC concept with exploration over multi-TeV energy range up to 3 TeV
- Feasibility study of CLIC parameters optimized at 3 TeV (most demanding)
- Consider also 500 GeV, and intermediate energy range
 Vol 2: Physics and detectors at CLIC (L.Linssen)
 Complete, presented in SPC in March 2011, in print:
- Physics at a multi-TeV CLIC machine can be measured with high precision, despite challenging background conditions
- External review procedure in October 2011
- Voir3 plé Gel Grst weigtsummeary (e(SirS 530 mes) ecember
 2011
 Summary and available for the European Strategy process, including possible implementation stages for a CLIC machine as well as costing and cost-drives
- Proposing objectives and work plan of post CDR phase (2012-16)
- Completed and printed, submitted for the European Strategy Open Meeting

in September http://arxiv.org/pdf/1209.2543v1

In addition a shorter overview document was submitted as input to the European Strategy update, available at:

http://arxiv.org/pdf /1208.1402v1

Slides for detailed explanation of small vertical emittances

all slides get called from within the talk

Bunch structure

• SC allows long pulse, NC needs short pulse with smaller bunch charge

The different RF technologies ILC , NLC/JLC and CLIC require different packaging for the beam power

Beam-beam Effect

Beamstrahlung Optimisation

H.Schmickler

- Higher breakdown rate for higher gradient
- Strong function of the field (~E⁻³⁰)
 => small decrease of field lowers BDR significantly

C. Adolphsen /SLAC

Breakdown-rate vs pulse length

Higher breakdown rate for longer RF pulses

• experimental scaling: BDR ~ (pulselength) ⁶ * (gradient) ³⁰

Accelerating structure developments

- Structures built from discs
- Each cell damped by 4 radial WGs
- terminated by SiC RF loads
- Higher order modes (HOM) enter WG
- Long-range wakefields efficiently damped

Limitations of NC Gradient E_{acc}

- Surface magnetic field
 - Pulsed surface heating => material fatigue => cracks

• Field emission due to surface electric field

- RF break downs
- Break down rate => Operation efficiency
- Local plasma triggered by field emission => Erosion of surface
- Dark current capture
 => Efficiency reduction, activation, detector backgrounds

• RF power flow

• RF power flow and/or iris aperture apparently have a strong impact on achievable E_{acc} and on surface erosion. Mechanism not fully understood

- High number of cycles limits to smaller stresses
- 20 years operation => ~10¹⁰ cycles!
- Limits maximum ∆T and peak magnetic field

Cyclic compressive stresses

- Extension causes compressive stress
- Can lead to fatigue

Pulsed surface heating

- Pulsed surface heating proportional to
 - Square root of pulse length
 - Square of peak magnetic field
- Field reduced only by geometry, but high field needed for high gradient
- Limits the maximum pulse length
 => short pulses (~few 100ns)

Numerical values for copper

$$\Delta T \approx 4 \cdot 10^{-17} \left[\frac{\text{K m}^2}{\text{V}^2} \right] \sqrt{t_P f} E_{acc}^2$$

$$\Delta T_{\text{max}} \approx 50 \text{ K}$$

$$t_P < \left(\frac{\Delta T_{\text{max}}}{4 \cdot 10^{-17}} \right)^2 \frac{1}{f E_{acc}^4}$$

$$\Delta T = \sqrt{\frac{\mu_0}{2\pi} \frac{\omega t_P}{\sigma \lambda \rho c_H}} \hat{H}^2$$

- ΔT temperature rise, σ electric conductivity
 - heat conductivi ty, ρ mass density
- c_H specific heat, t_P pulse length
- \hat{H} peak magnetic field

$$\hat{H} = \frac{g_H}{377\,\Omega} E_{acc}$$

λ

 g_H geometry factor of structure design typical value $g_H \approx 1.2$

