
Injection and extraction

• Introductory slides:

– Kickers, septa, normalised phase-space and emittance

• Injection methods

– Single-turn hadron injection

– Injection errors, filamentation and blow-up

– Multi-turn hadron injection

– Charge-exchange H- injection

– Lepton injection

• Extraction methods

– Single-turn (fast) extraction

– Non-resonant and resonant multi-turn (fast) extraction

– Resonant multi-turn (slow) extraction

Francesco M. Velotti, CERN (TE-ABT-BTP)

based on lectures by M. Fraser, B. Goddard, W. Bartmann



• An accelerator has limited 
dynamic range

• Chain of stages needed to 
reach high energy

• Periodic re-filling of 
storage rings, like LHC

• External facilities and 
experiments:

– e.g. ISOLDE, 
HIRADMAT, AWAKE…

Beam transfer (into, out of, and

between machines) is necessary.

Injection and extraction

CERN Accelerator Complex
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Kicker magnet

I

Ferrite

Bg

B = μ0I / g

L [per unit length] = μ0w / g   

dI/dt = V / L

Typically 3 kA in 1 μs rise time

w
Pulsed magnet with very fast rise time

(100 ns – few μs)

Ferrite Conductors
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Magnetic septum

Soft iron 

Laminated yoke

Return coilSeptum coil

B0B=0

Yoke

Septum coil

I

Bo = μ0I / g

Typically I 5 - 25 kA

Pulsed or DC magnet with thin (2 – 20 mm)

septum between zero field and high field region

Typically ~10x more deflection given by magnetic 

septa, compared to kickers
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Electrostatic septum

E0 E=0

High voltage

electrode Hollow earth 

electrode

Thin wire or

foil (~0.1 mm)

High voltage

electrode

Hollow earth

electrodeSeptum wires

E = V / g

Typically V = 200 kV

E = 100 kV/cm

g

DC electrostatic device with very thin septum between zero field and high field region 
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Normalised phase space

• Transform real transverse coordinates (x, x’, s) to normalised co-ordinates 

( ,    ,   ) where the independent variable becomes the phase advance μ:

x(s) = e b(s) cos m(s)+m0[ ] m(s) =
ds

b(s )0

s

ò

X X ' m
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Normalised phase space
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Single-turn injection – same plane

Septum magnet

Kicker magnet

• Septum deflects the beam onto the closed orbit at the centre of the kicker

• Kicker compensates for the remaining angle 

• Septum and kicker either side of D quad to minimise kicker strength

F-quad

t

kicker field

intensity injected 

beam

‘boxcar’ stacking

Circulating beam

D-quad
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Single-turn injection
Normalised phase space at centre of idealised septum

X

'X

ABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



Single-turn injection

septum

Normalised phase space at centre of idealised septum

X

'X
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Single-turn injection
Normalised phase space at centre of idealised septum

X

'X
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Single-turn injection

μ/2 phase advance to kicker location

X

'X
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Single-turn injection

Kicker deflection places beam on central orbit:

X

'X

Normalised phase space at centre of idealised kicker

kicker
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Injection oscillations

X

'X

kicker - Δ

For imperfect injection the beam oscillates around the central orbit,

e.g. kick error, Δ:
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Injection oscillations

X

'X

After 1 turn…

For imperfect injection the beam oscillates around the central orbit,

e.g. kick error, Δ:
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Injection oscillations

X

'X

After 2 turns…

For imperfect injection the beam oscillates around the central orbit,

e.g. kick error, Δ:

ABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



Injection oscillations

X

'X

After 3 turns etc…

For imperfect injection the beam oscillates around the central orbit,

e.g. kick error, Δ:
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Injection oscillations

• Betatron oscillations with respect to the Closed Orbit:

Transfer line LHC (first turn)

Horizontal

Vertical
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X

'X

Filamentation
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Filamentation
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Filamentation
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Filamentation
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Filamentation
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Filamentation
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• Residual transverse oscillations lead to an effective emittance blow-

up through filamentation:
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Filamentation
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Filamentation

• Non-linear effects (e.g. higher-order field components) introduce 

amplitude-dependent effects into particle motion

• Over many turns, a phase-space oscillation is transformed into an 

emittance increase

• So any residual transverse oscillation will lead to an emittance

blow-up through filamentation

– Chromaticity coupled with a non-zero momentum spread at injection can 

also cause filmentation, often termed chromatic decoherence

– “Transverse damper” systems are used to damp injection oscillations -

bunch position measured by a pick-up, which is linked to a kicker

– See appendix for more details and mathematical description
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Multi-turn injection

• For hadrons the beam density at injection can be limited either by 

space charge effects or by the injector capacity

• If we cannot increase charge density, we can sometimes fill the 

horizontal phase space to increase overall injected intensity.

– If the acceptance of the receiving machine is larger than the delivered 

beam emittance we can accumulate intensity
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Multi-turn injection for hadrons

Septum magnet

• No kicker but fast programmable bumpers 

• Bump amplitude decreases and a new batch injected turn-by-turn

• Phase-space “painting”

Programmable closed orbit bump

Circulating beam
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1

Turn 1

Septum

X

'X

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space

On each turn inject a new 
batch and reduce the 
bump amplitude

Multi-turn injection for hadrons
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1

2

Turn 2

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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2

1

Turn 3

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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1

2

3

Turn 4

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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51

Turn 5

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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1

Turn 6

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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Turn 7

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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Turn 8

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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8

9

Turn 9

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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Turn 10

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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Turn 11

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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Turn 12
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Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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Turn 13

X
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Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space

ABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



7

6

5

4

3

2

1

8

9

10

11

Turn 14

X

'X

Septum

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune Qh ≈ 0.25 

Beam rotates π/2 per turn in phase space
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Turn 15

In reality, filamentation (often space-charge driven) occurs to produce a quasi-

uniform beam

X

'X

Phase space has been “painted”

Multi-turn injection for hadrons
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Charge exchange H- injection

• Multi-turn injection is essential to accumulate high intensity

• Disadvantages inherent in using an injection septum:

– Width of several mm reduces aperture

– Beam losses from circulating beam hitting septum:

• typically 30 – 40 % for the CERN PSB injection at 50 MeV

– Limits number of injected turns to 10 - 20

• Charge-exchange injection provides elegant alternative

– Possible to “cheat” Liouville’s theorem, which says that emittance is 

conserved….

– Convert H- to p+ using a thin stripping foil, allowing injection into the 

same phase space area
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Charge exchange H- injection

Injection chicane dipoles

Circulating p+

Stripping foil

H0

Circulating p+

Start of injection process
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Charge exchange H- injection

Circulating p+

Stripping foil

End of injection process with painting

H0

Injection chicane dipoles

Displace orbit

Circulating p+

ABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



Accumulation process on foil 

V. Forte, Performance of the CERN PSB at 160 MeV with H- charge exchange injection, PhD thesis – CERN and Université Blaise Pascal

• Linac4 connection to the PS booster at 160 MeV:

– H- stripped to p+ with an estimated efficiency ≈98 % with C foil 200 μg.cm-2 
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Charge exchange H- injection

• Paint uniform transverse phase space density by modifying closed 

orbit bump and steering injected beam

• Foil thickness calculated to double-strip most ions (≈99%) 

– 50 MeV – 50 μg.cm-2 

– 800 MeV – 200 μg.cm-2 (≈ 1 μm of C!)

• Carbon foils generally used – very fragile

• Injection chicane reduced or switched off after injection, to avoid 

excessive foil heating and beam blow-up
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H- injection - painting

Time
x’ vs x y’ vs y y vs x

Note injection into 

same phase 

space area as 

circulating beam

≈100 turns
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Lepton injection

• Single-turn injection can be used as for hadrons; however, lepton 

motion is strongly damped (different with respect to proton or ion 

injection).

– Synchrotron radiation

• Can use transverse or longitudinal damping:

– Transverse - Betatron accumulation

– Longitudinal - Synchrotron accumulation
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Betatron lepton injection

• Beam is injected with an angle with respect to the closed orbit 

• Injected beam performs damped betatron oscillations about the closed orbit

Septum magnet

Closed orbit bumpers or kickers

Circulating

beam
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Betatron lepton injection

Injected bunch performs damped betatron oscillations

In LEP at 20 GeV, the damping time was about 6’000 turns (0.6 seconds)

X

'X
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Synchrotron lepton injection

Septum magnet

• Beam injected parallel to circulating beam, onto dispersion orbit of a 

particle having the same momentum offset Δp/p

• Injected beam makes damped synchrotron oscillations at Qs but does 

not perform betatron oscillations

Closed orbit bumpers or kickers
xs = Dx · Δp/p0

xs
p = p0

p = p0 + Δp

Inject an off-momentum beam
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Synchrotron lepton injection

F

E

Double batch injection possible….

Longitudinal damping time in LEP was ~3’000 turns (2x faster than transverse)

Injection 1 (turn N)

Injection 2 (turn N + Qs/2)

Stored beam

RF bucket
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Synchrotron lepton injection in LEP

Synchrotron injection in LEP gave improved background for LEP experiments 

due to small orbit offsets in zero dispersion straight sections
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Injection - summary

• Several different techniques using kickers, septa and bumpers:

– Single-turn injection for hadrons

• Boxcar stacking: transfer between machines in accelerator chain

• Angle / position errors  injection oscillations

• Uncorrected errors  filamentation  emittance increase

– Multi-turn injection for hadrons

• Phase space painting to increase intensity

• H- injection allows injection into same phase space area

– Lepton injection: take advantage of damping

• Less concerned about injection precision and matching
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Extraction

• Different extraction techniques exist, depending on requirements

– Fast extraction: ≤1 turn

– Non-resonant (fast) multi-turn extraction: few turns

– Resonant low-loss (fast) multi-turn extraction: few turns

– Resonant multi-turn extraction: many thousands of turns

• Usually higher energy than injection  stronger elements (∫B.dl)

– At high energies many kicker and septum modules may be required

– To reduce kicker and septum strength, beam can be moved near to 

septum by closed orbit bump
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Fast single turn extraction

Septum magnet

Kicker magnet

• Bumpers move circulating beam close to septum to reduce kicker strength

• Kicker deflects the entire beam into the septum in a single turn

• Most efficient (lowest deflection angles required) for π/2 phase advance 

between kicker and septum

Closed orbit bumpers

Entire beam kicked into septum gap and extracted over a single turn

F-quad D-quad

Circulating

beam

t

kicker field

intensity
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Fast single turn extraction

• For transfer of beams between accelerators in an injector chain

• For secondary particle production

– e.g. neutrinos, radioactive beams

• Losses from transverse scraping or from particles in extraction gap:

– Fast extraction from SPS to CNGS:

1.E+08

1.E+09

1.E+10

1.E+11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time us

p
+

0.0

0.2

0.4

0.6

0.8

1.0

1.2 k
/k

o

Intensity [10^9 p/25ns]

Kicker strength

Particles in SPS extraction kicker rise- and fall-time gaps
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Multi-turn extraction

• Some filling schemes require a beam to be injected in several turns to 
a larger machine…

• And very commonly Fixed Target physics experiments and medical 
accelerators often need a quasi-continuous flux of particles…

• Multi-turn extraction…

– Fast: Non-resonant and resonant multi-turn ejection (few turns) for filling

• e.g. PS to SPS at CERN for high intensity proton beams (>2.5 1013 protons)

– Slow: Resonant extraction (ms to hours) for experiments
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Extracted beam
Magnetic

septum

• Fast bumper deflects the whole beam onto the septum

• Beam extracted in a few turns, with the machine tune rotating the beam

• Intrinsically a high-loss process: thin septum essential

• Often combine thin electrostatic septa with magnetic septa

Non-resonant multi-turn extraction

Fast closed orbit bumpers

Beam bumped to septum; part of beam ‘shaved’ off each turn

Electrostatic 

septum
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Non-resonant multi-turn extraction

• Example system: CERN PS to SPS Fixed-Target ‘continuous transfer’.

– Accelerate beam in PS to 14 GeV/c

– Empty PS machine (2.1 μs long) in 5 turns into SPS

– Do it again

– Fill SPS machine (23 μs long)

– Quasi-continuous beam in SPS (2 x 1 μs gaps)

– Total intensity per PS extraction ≈ 3  1013 p+

– Total intensity in SPS ≈ 5  1013 p+

Extracted beam

beam

To the SPS

The PSABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



Non-resonant multi-turn extraction

X

'X

CERN PS to SPS: 5-turn continuous transfer – 1st turn 

Qh = 0.25

1     2     3     4     5

Bump vs. turn

1

2

3

4

5

septum
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Non-resonant multi-turn extraction

X

'X

CERN PS to SPS: 5-turn continuous transfer – 2nd turn 

Qh = 0.25

1     2     3     4     5

Bump vs. turn

1

2

3

4 5

septum
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Non-resonant multi-turn extraction

X

'X

CERN PS to SPS: 5-turn continuous transfer – 3rd turn 

Qh = 0.25

1     2     3     4     5

Bump vs. turn

septum

1

2

3

4

5
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Non-resonant multi-turn extraction

X

'X

CERN PS to SPS: 5-turn continuous transfer – 4th turn 

Qh = 0.25

1     2     3     4     5

Bump vs. turn

septum

1

2

3

45
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Non-resonant multi-turn extraction

X

'X

CERN PS to SPS: 5-turn continuous transfer – 5th turn 

Qh = 0.25

5

1     2     3     4     5

Bump vs. turn
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Non-resonant multi-turn extraction

• CERN PS to SPS: 5-turn continuous transfer 

– Losses impose thin (ES) septum… 

…a second magnetic septum is needed

– Still about 15 % of beam lost in PS-SPS CT

– Difficult to get equal intensities per turn

– Different trajectories for each turn

– Different emittances for each turn

X

'X

1

X

'X

2

X

'X

3

X

'X

4

X

'X

5

I

1 2 3 4 5
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Resonant multi-turn (fast) extraction

• Adiabatic capture of beam in stable “islands” 

- Use non-linear fields (sextupoles and octupoles) to create islands of 

stability in phase space

- A slow (adiabatic) tune variation to cross a resonance and to drive 

particles into the islands (capture) with the help of transverse excitation 

(using damper)

- Variation of field strengths to separate the islands in phase space

• Several big advantages:

– Losses reduced significantly (no particles at the septum in transverse 

plane)

– Phase space matching improved with respect to existing non-resonant 

multi-turn extraction - ‘beamlets’ have similar emittance and optical 

parameters
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Resonant multi-turn (fast) extraction

a. Unperturbed beam

b. Increasing non-linear 

fields

a. Beam captured in 

stable islands

b. Islands separated and 

beam bumped across 

septum – extracted in 

5 turns

(see Transverse beam dynamics lectures 

by B. Holzer)

Courtesy M. Giovannozzi: MTE Design Report, CERN-2006-011, 2006
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Resonant multi-turn (fast) extraction

Septum wire

1     2     3     4     5

Bump vs. turn

Qh = 0.25

a. Unperturbed beam

b. Increasing non-linear 

fields

a. Beam captured in 

stable islands

b. Islands separated and 

beam bumped across 

septum – extracted in 

5 turns

Courtesy M. Giovannozzi: MTE Design Report, CERN-2006-011, 2006
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Extracted beam

• Slow bumpers move the beam near the septum

• Tune adjusted close to nth order betatron resonance

• Multipole magnets excited to define stable area in phase space, size 

depends on ΔQ = Q - Qr

Resonant multi-turn (slow) extraction

Closed orbit bumpers

Non-linear fields excite resonances that drive the beam slowly across the septum

Magnetic

septum

Electrostatic 

septum
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Resonant multi-turn (slow) extraction

• 3rd order resonances

– Sextupole fields distort the circular normalised phase space particle 
trajectories.

– Stable area defined, delimited by unstable Fixed Points.

– Sextupole magnets arranged to produce suitable phase space orientation 
of the stable triangle at thin electrostatic septum

– Stable area can be reduced by…

• Increasing the sextupole strength, or…

• Fixing the sextupole strength and scanning the machine tune Qh (and 
therefore the resonance) through the tune spread of the beam

2

2/1 1

k
QR fp 

Rfp
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Third-order resonant extraction

• Particles distributed on emittance contours

• ΔQ large – no phase space distortion

X

'X

Septum wire
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Third-order resonant extraction

• Sextupole magnets produce a triangular stable area in phase space

• ΔQ decreasing – phase space distortion for largest amplitudes

X

'X

Septum wire
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Third-order resonant extraction

X

'X

Septum wire

• Sextupole magnets produce a triangular stable area in phase space

• ΔQ decreasing – phase space distortion for largest amplitudes
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Third-order resonant extraction

X

'X

Septum wire

• Sextupole magnets produce a triangular stable area in phase space

• ΔQ decreasing – phase space distortion for largest amplitudes
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Third-order resonant extraction

X

'X

Septum wire

• Sextupole magnets produce a triangular stable area in phase space

• ΔQ decreasing – phase space distortion for largest amplitudes

ABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



Third-order resonant extraction

• Largest amplitude particle trajectories are significantly distorted

• Locations of fixed points discernable at extremities of phase space triangle

X

'X

Septum wire
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Third-order resonant extraction

X

'X

Septum wire

• ΔQ small enough that largest amplitude particle trajectories are unstable

• Unstable particles follow separatrix branches as they increase in amplitude
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Third-order resonant extraction

X

'X

Septum wire

• Stable area shrinks as ΔQ becomes smaller
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Third-order resonant extraction

X

'X

Septum wire

• Separatrix position in phase space shifts as the stable area shrinks
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Third-order resonant extraction

• As the stable area shrinks, the circulating beam intensity drops since 

particles are being continuously extracted 

X

'X

Septum wire

ABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



Third-order resonant extraction

X

'X

Septum wire

• As the stable area shrinks, the circulating beam intensity drops since 

particles are being continuously extracted 
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Third-order resonant extraction

X

'X

Septum wire

• As the stable area shrinks, the circulating beam intensity drops since 

particles are being continuously extracted 
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Third-order resonant extraction

X

'X

Septum wire

• As the stable area shrinks, the circulating beam intensity drops since 

particles are being continuously extracted 
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Third-order resonant extraction

X

'X

Septum wire

• As ΔQ approaches zero, the particles with very small amplitude are 

extracted
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216 217 218
electrostatic septum (ES)QFA QDA

magnetic

septum (MST) magnetic septum (MSE)QFA

TPST

mask
extraction

bumper

To TT20

and NA

ES

Slow extraction channel: SPS
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Slow extracted spill quality

Reducing Q with main machine 
quadrupoles can be augmented with a 

‘servo’ quadrupole, which can 
modulate Q in a servo loop, acting on 

a measurement of the spill intensity

50 Hz

10 Hz

A recent example of a spill at SPS to the North Area with large n x 50 Hz 

components and another noise source at 10 Hz

• The slow-extraction is a resonant process and it amplifies the smallest 

imperfections in the machine:
- e.g. spill intensity variations can be explained by ripples in the current of the 

quads (mains: n x 50 Hz) at the level of a few ppm!

- Injection of n x 50 Hz signals in counter-phase on dedicated quads can be 

used to compensate
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Second-order resonant extraction

• An extraction can also be made over a few hundred turns

• 2nd and 4th order resonances 

– Octupole fields distort the regular phase space particle trajectories

– Stable area defined, delimited by two unstable Fixed Points

– Beam tune brought across a 2nd order resonance (Q → 0.5)

– Particle amplitudes quickly grow and beam is extracted in a few 

hundred turns
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Resonant extraction separatrices

• Amplitude growth for 2nd order resonance much faster than 3rd – shorter 

spills (≈milliseconds vs. seconds)

• Used where intense pulses are required on target – e.g. neutrino production

X

'X 3rd order resonant extraction 2nd order resonant extraction
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Extraction - summary

• Several different techniques:

– Single-turn fast extraction:

• for transfer between machines in accelerator chain, beam abort, etc.

– Non-resonant (fast) multi-turn extraction

• slice beam into equal parts for transfer between machine over a few turns.

– Resonant low-loss (fast) multi-turn extraction

• create stable islands in phase space: slice off over a few turns.

– Resonant (slow) multi-turn extraction

• create stable area in phase space  slowly drive particles into resonance 
long spill over many thousand turns.

Thank you for your attention
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Further reading and references

• Lot’s of resources presented at the 
2017 CAS Specialised School:

– Beam Injection, Extraction and 
Transfer, 10-19 March 2017, Erice, 
Italy

– https://cas.web.cern.ch/schools/eric
e-2017
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Particle at turn 0

• On resonance, sextupole kicks add-up driving particles over septum

Third-order resonant extraction
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Particle at turn 1

• On resonance, sextupole kicks add-up driving particles over septum 

Third-order resonant extraction
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Particle at turn 2

• On resonance, sextupole kicks add-up driving particles over septum 

Third-order resonant extraction
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Particle at turn 3

• On resonance, sextupole kicks add-up driving particles over septum 

Third-order resonant extraction
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• On resonance, sextupole kicks add-up driving particles over septum

– Distance travelled in these final three turns is termed the “spiral step,” ΔXES

– Extraction bump trimmed in the machine to adjust the spiral step

Extracted beam

Third-order resonant extraction

DXES µ k2

XES
2

cosq
DXES

XES
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• On resonance, sextupole kicks add-up driving particles over septum

– Distance travelled in these final three turns is termed the “spiral step,” ΔXES

– Extraction bump trimmed in the machine to adjust the spiral step

• RF gymnastics before extraction:

Extracted beam

Third-order resonant extraction

DXES µ k2

XES
2

cosq
DXES

XES


Dp

p
µ-DQ

momentum spread, tune

-30
dBm

dBm
-130

A: Ch1 Spectrum 0 dBmRange: 

10 kHzSpan: Center: 1.10355665 GHz
38.20312 mSecTimeLen: RBW: 100  Hz

43.75
 Sec

7.969
 Sec

35.78
 Sec

Spill = 4.8 s
ti
m

e

Schottky measurement during spill, courtesy of T. Bohl

Δϕ = π

Δϕ = -π

small Δp

rotation: large Δp

R
F

 o
ff

RF gymn.
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Blow-up from steering error

• Consider a collection of particles with max. amplitudes A

• The beam can be injected with an error in angle and position

• For an injection error Δa, in units of σ = (βε), the mis-injected beam is 

offset in normalised phase space by an amplitude L = Δaε

X

'X

Misinjected

beam

Matched

particles

L

A



Blow-up from steering error

• Consider a collection of particles with max. amplitudes A

• The beam can be injected with an error in angle and position.

• For an injection error Δa, in units of σ = (βε), the mis-injected beam is 

offset in normalised phase space by an amplitude L = Δaε
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Blow-up from steering error

• Consider a collection of particles with max. amplitudes A

• The beam can be injected with an error in angle and position.

• For an injection error Δa, in units of σ = (βε), the mis-injected beam is 

offset in normalised phase space by an amplitude L = Δaε
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Blow-up from steering error

• Consider a collection of particles with max. amplitudes A

• The beam can be injected with an error in angle and position.

• For an injection error Δa, in units of σ = (βε), the mis-injected beam is 

offset in normalised phase space by an amplitude L = Δaε

X

'XMatched

particles

A

L

• Any given point on the matched ellipse 

is randomised over all phases after 

filamentation due to the steering error:



Effect of steering error on a given particle



Blow-up from steering error

• Consider a collection of particles with max. amplitudes A

• The beam can be injected with an error in angle and position.

• For an injection error Δa, in units of σ = (βε), the mis-injected beam is 

offset in normalised phase space by an amplitude L = Δaε

X

'XMatched

particles

A

L

• Any given point on the matched ellipse 

is randomised over all phases after 

filamentation due to the steering error

• For a general particle distribution, 

where Ai denotes amplitude in 

normalised phase of particle i: 
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Blow-up from steering error

• Consider a collection of particles with max. amplitudes A

• The beam can be injected with an error in angle and position.

• For an injection error Δa, in units of σ = (βε), the mis-injected beam is 

offset in normalised phase space by an amplitude L = Δaε

X

'X

Effect of steering error on a given particle

Matched

particles

A

L

• Any given point on the matched ellipse 

is randomised over all phases after 

filamentation due to the steering error

• For a general particle distribution, 

where Ai denotes amplitude in 

normalised phase of particle i: 

• After filamentation:



ediluted =ematched +
L2

2

See appendix for derivation



• A numerical example….

• Consider an offset Δa = 0.5σ for injected beam:

• For nominal LHC beam:

…allowed growth through LHC cycle ~10 %

Blow-up from steering error

Misinjected beam

Matched

Beam 

0.5


X

'Xediluted =ematched +
L2

2

L = Da ematched

=ematched 1+
Da2

2

é

ë
ê

ù

û
ú

=ematched 1.125[ ]



Injection errors

kicker
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phase m ~p/2 ~p/2~p/2
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Angle errors
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Measured 
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At kicker location



Injection errors

kicker

bpm1 bpm2

phase m ~p/2 ~p/2~p/2

septum

Angle errors

s,k

Measured 

Displacements

d1,2

d1 =  s (s1) sin (m1 – ms) + k (k1) sin (m1 – mk) 

≈  k (k1)

s, k,

d1

d2

Dqk bk

x

b1

» Dqk bk

At BPM1 location

d2 =  s (s2) sin (m2 – ms) + k (k2) sin (m2 – mk) 

≈ -s (s2)



Blow-up from steering error

X

'X

Misinjected

beam

Matched

particles

L

A0

• The new particle coordinates in normalised phase space are:

Xerror = X0 +Lcosq

X 'error = X '0+Lsinq

• For a general particle distribution, 

where Ai denotes amplitude in 

normalised phase of particle i:

• The emittance of the distribution is: 

L = Da ematched





• So we plug in the new coordinates:

• Taking the average over distribution:

• Giving the diluted emittance as:

Blow-up from steering error

0

X

'X

Effect of steering error on a given particle

Matched

particles

A

L



= (X0 +Lcosq)2 + (X '0+Lsinq)2

= X0

2 +X '0
2+2L(X0 cosq +X '0sinq)+L2

cos2q +sin2q =1

0

= 2ematched +L2

ediluted =ematched +
L2

2

L = Da ematched

=ematched 1+
Da2

2
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• Defining action-angle variables

Cartesian coordinates

x

x’

Area = 2pJx

phase space
Action-angle variables:

Normalised phase space
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x

x’

Area = 2pJx



Real phase space Normalised phase space

X

'X

Area = 2pJx

Normalised phase space
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• Jx… amplitude of the motion of a particle

– The Cartesian variables expressed in action-angle variables 

• The emittance is the average action of all particles in the 
beam:

Emittance from action

ABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



•

• Defined via 2nd order moments

• RMS emittance:

Emittance from (x, x’)
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Steering error – linear machine

• What will happen to particle distribution and hence emittance?

Turn 1:

Blue distribution:

on axis injection – no 

error

Red distribution:

Injection with 

horizontal injection 

error: mainly in x'
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Steering error – linear machine 

• What will happen to particle distribution and hence emittance?

• The beam will keep oscillating. The centroid will keep oscillating.

Turn 4 Turn 9
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Steering error – linear machine 

• What will happen to particle distribution and hence emittance?

• The beam will keep oscillating. The centroid will keep oscillating.

Turn 4 Turn 9Turn 100
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Injection Oscillations

• The motion of the centroid of the particle distribution over time

• Measured in a beam position monitor

– Measures mean of particle distribution

Betatron oscillations.

Undamped.

Beam will keep 

oscillating.
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Steering error – linear machine

• Turn-by-turn profile monitor: initial and after 1000 turns

– Measures distribution in e.g. horizontal plane

• Now what happens with emittance definition and  <Jx>? 

– Mean amplitude in phase-space

The same beam size,

but mean position is not 

constant
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Steering error – linear machine

• How does <Jx> behave for steering error in linear machine?

• And what about the rms definition?

Injection moment

How useful is <Jx>?

…see steering error with non-

linear machine
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Steering error – non-linear machine

• What will happen to particle distribution and hence emittance?• What will happen to particle distribution and hence emittance?

Turn 4

ABT Introductory Lectures – CERN Accelerator School, Archamps, 2019



Steering error – non-linear machine

• What will happen to particle distribution and hence emittance?• What will happen to particle distribution and hence emittance?

Turn 4 Turn 9
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Steering error – non-linear machine

• What will happen to particle distribution and hence emittance?

• The beam is filamenting….

• What will happen to particle distribution and hence emittance?

• .

Turn 4 Turn 9Turn 100
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Steering error – non-linear machine

• Phase-space after an even longer time

Large injection errors Small injection errors
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Injection oscillations

• Oscillation of centroid decays in amplitude

• Time constant of exponential decay: filamentation time t
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Injection oscillations

• Oscillation of centroid decays in amplitude

• Time constant of exponential decay: filamentation time t

t ~ 500 turns
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Steering error – non-linear machine

• Generation of non-Gaussian distributions:

– Non-Gaussian tails
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Steering error – non-linear machine

• How does <Jx> behave for steering error in non-linear machine?

• And what about the rms emittance

After filamentation: RMS 

emittance = <Jx>
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