LHC Upgrades and Future Circular Colliders

gratefully acknowledging input from HL-LHC project team, FCC coordination group global design study team and many other contributors.

M. Benedikt

FCC

HL-LHC SPS Particular thanks to O. Bruning and F. Zimmermann for providing some read-to-use slides.

EuroCirCol <u>http://cern.ch/fcc</u>

Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305

Outline

- HL-LHC motivation and goals
- HL-LHC building blocks
- FCC motivation and scope
 - Parameters
 - Design Status
 - Technologies

Goal of High Luminosity LHC (HL-LHC)

implying an integrated luminosity of **250 fb⁻¹ per year**,

design oper. for $\mu = 140$ (\rightarrow peak luminosity 5 10³⁴ cm⁻² s⁻¹

Operation with levelled luminosity! (beta*, crossing angle & crab cavity)

→ 10x the luminosity reach of first 10 years of LHC operation!!

Recap: Luminosity

LHC upgrade goals: performance optimization

• Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

- → maximize bunch intensities $(1.1 \rightarrow 2.2 \times 10^{11})$ → Injector complex
- → minimize the beam emittance $(3.75 \rightarrow 2.5 \,\mu\text{m})$ Upgrade LIU
- → minimize beam size ($\beta * 0.55 \rightarrow 0.15$ m);
- \rightarrow compensate for 'F' geometry crossing;
- → improve machine 'Efficiency'

- → New triplets
- → Crab Cavities
- minimize number of unscheduled beam aborts

LHC Limitations and HL-LHC challenges

- Insertion quadrupole magnets lifetime and aperture:
 - \rightarrow New insertion magnets and low- β with increased aperture
- Geometric Reduction Factor: → SC Crab Cavities
 - → New technology and first time for a hadron storage ring!
- Performance Optimization: Pileup density → Lumi levelling
 - ➔ requires virtual luminosity >> target levelled luminosity
- Beam power & losses → addt'l collimators in dispersion suppressors
- Machine effciency and availability:
 # R2E → removal of all electronics from tunnel region
 # e-cloud → beam scrubbing (conditioning of surface), etc
- Technical bottle necks (e.g. cryogenics)
- Civil Engineering (underground)

LHC technical bottleneck: Radiation damage to triplet magnets at 300 fb-1

HL-LHC and FCC Michael Benedikt CAS, Archamps, 10 October 2019

HL-LHC technical bottleneck: Radiation damage to triplet magnets

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magr coils receive a similar radiation dos @ 10 times higher integrated luminosity 3000 fb⁻¹! → Shielding!

- → Requires larger aperture!
- → New magnet technology
- → LHC: 70mm at 210 T/m →HL@ 150mm diameter 140 T/m
- → LHC: 8T peak field at coils → HL> 12T field at coils (Nb₃Sn)!

HL-LHC Challenges: Crossing Angle

• Parasitic bunch encounters:

Operation with ca. 2800 bunches @ 25ns spacing → approximately 30 unwanted collisions per Interaction Region (IR).

Operation requires crossing angle prop. $1/\sqrt{\beta^*}$. → Factor 2 increase, 2 x 150 to 2 x 300 µrad)

Perturbations from long-range beam-beam interaction: efficient operation requires large beam separation at unwanted collision points \rightarrow Separation of 10 -12 σ \rightarrow larger triplet apertures for HL-LHC!

HL-LHC Upgrade Ingredients: Crab Cavities

Geametrictieseminosity

- Reduction Factor:
 Reduces the effect of geometrical reduction factor
- Independent for each IP

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

- Challenging space constraints:
 - requires novel compact cavity design

HL-LHC crab cavity designs

LHC Challenges: Beam Power

Unprecedented beam power:

Collimation system upgrades

Dispersion Suppressor collimators – 11 T Nb3Sn Dipole (LS2 -2018)

HL-LHC and FCC Michael Benedikt CAS, Archamps, 10 October 2019

Implementation & Performance Projection:

The critical zones around IP1 and IP5

3. For collimation we also need to change the DS in the continuous cryostat:
11T Nb₃Sn dipole

2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2, Q4 & corrector New triplet Nb₃Sn required due to:
 Radiation damage
 Need for more aperture

Changing the triplet region is not enough for reaching the HL-LHC goal!

More than 1.2 km of LHC !! Plus technical infrastructure (e.g. Cryo and Powering)!!

HL-LHC and FCC Michael Benedikt CAS, Archamps, 10 October 2019

Luminosity profile : NOMINAL HL-LHC

- Very large circular hadron collider only feasible approach to reach 100 TeV c.m. collision energy in coming decades
- Access to new particles (direct production) in few-TeV to 30 TeV mass range, far beyond LHC reach
- Much-increased rates for phenomena in sub-TeV mass range → much increased precision w.r.t. LHC

M. Mangano

Hadron collider energy reach

$$E \propto B_{dipole} \times \rho_{bending}$$

FCC-hh aims at O(10) higher performance (E, L) than LHC

LHC: factor ~4 in radius, factor ~2 in field \rightarrow O(10) in E_{cms}

Future Circular Collider Study Goal: CDR for European Strategy Update 2018/19

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- **80-100 km tunnel infrastructure** in Geneva area, site specific
- e+e⁻ collider (FCC-ee), as potential first step
- *p-e (FCC-he) option,* integration one IP, FCC-hh & ERL
- HE-LHC with FCC-hh technology

CepC/SppC study (CAS-IHEP) 100 km (new baseline!), e⁺e⁻ collisions ~2028; *pp* collisions ~2042

50 km

526

Image 2013 DigitalGlobe Data SLO, DOAA, U.S. Navy, NGA, GEBCO

高能所

2102

Qinhuangdao (秦皇岛)

easy access 300 km east from Beijing 3 h by car 1 h by train

Google earth Yifang Wang

100 km

HL-LHC and FCC Michael Benedikt CAS, Archamps, 10 October 2019

\$363

抚宁县。

CepC, SppC

山海关区

CERN Circular Colliders & FCC

Must advance fast now to be ready for the period 2035 – 2040 Results phase 1: CDR published end 2018 for update European Strategy

HL-LHC and FCC Michael Benedikt CAS, Archamps, 10 October 2019

Progress on site investigations

HL-LHC and FCC Michael Benedikt CAS, Archamps, 10 October 2019

Progress on site investigations

Alignment	Shafts Query	Query Alignment Location				Geology Intersected by Shafts			Shaft Depths						
Choose alignment option 100km guasi-circular				+0//		- C	181	Point	Actual	Molasse SA	Shaft Depth (m) Wildflysch	Quatemary	Molasse	Geology (n Urgonian	n) Calcaire
Tunnel elevation at centre:261mASL						12 1 2 1		A	304	0	0	12	213	0	79
					Contraction of	ASSESS V		в	266						
ored, Perams								с	257						
	Sione Anni	e x-x(%): 0	65	14	Land Contractor	a start	A GROUP AND AND	D	272						
	Slope Angl	e v-v(%): 0				· / · · ·		Е	132						
LOAD	SAVE	-776-7	CALCULATE			1 Alexand		F	392						
Alignment centre	GAVE		CALCODATE		all all	1 Carrows		G	354						
X: 2499731 Y: 1108403					月中 秋季。	Carena Barran and	н	268							
	CP 1		CP 2		and the first			1	170						
Angle	Depth	Angle	Depth		A A A	1		J	315						
LHC -64	t* 220m	64*	172m		Concert Branch	1. 3.2.2.4		к	221						
SPS	242m		241m			E /	and the second second		260						
TI2	235m		241m			1 1 3	the second states		-200		0:	-14	4.02		
TIB	242m		170m		C. Handler		38° -	Total	3211	52	0	517	2478	0	109

90 – 100 km fits geological situation well
LHC suitable as potential injector
The 97.75 km version, intersecting LHC, is now being studied in more detail

Alignment Profile

FCC-hh injector studies

Common layouts for hh & ee

hadron collider parameters (pp)

parameter	F	CC-hh	HE-LHC	(HL) LHC	
collision energy cms [TeV]		100	27	14	
dipole field [T]		16	16	8.3	
circumference [km]		100	27	27	
# IP	2 r	main & 2	2 & 2	2 & 2	
beam current [A]		0.5	1.27	(1.12) 0.58	
bunch intensity [10 ¹¹]	1 (0.2)	1 (0.2)	2.5	(2.2) 1.15	
bunch spacing [ns]	25 (5)	25 (5)	25 (5)	25	
ΙΡ β [*] _{x,y} [m]	1.1	0.3	0.45	(0.15) 0.55	
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	16	(5) 1	
peak #events/bunch crossing	170	1020 (204)	460 (92)	(135) 27	
stored energy/beam [GJ]		8.4	1.4	(0.7) 0.36	
synchrotron rad. [W/m/beam]		30	4.1	(0.35) 0.18	

pp/p-pbar in the *L-E* plane

luminosity evolution over 24 h

phase 1: $\beta^*=1.1 \text{ m}$, $\xi_{tot}=0.01$, $t_{ta}=5 \text{ h}$, 250 fb⁻¹ / year phase 2: $\beta^*=0.3 \text{ m}$, $\xi_{tot}=0.03$, $t_{ta}=4 \text{ h}$, 1000 fb⁻¹ / year

FCC-hh MDI status

peak dose [MGy]

Design of interaction region

- Distance from IP to first machine quadrupole L^{*}=45 m.
- Allows integrated spectrometers and compensation dipoles (or fwd solenoids)
- Optics and magnet optimization for beam stay clear and collision debris.
 - Magnet (triplet) lifetime should be collider lifetime (from radiation damage).

Beam power & machine protection

Stored energy 8.4 GJ per beam

 Factor 25 higher than for LHC, equivalent to A380 (560 t) at nominal speed (850 km/h). Can melt 12t of copper.

- Collimation, control of beam losses and radiation effects (shielding) are of prime importance.
- Injection, beam transfer and beam dump all critical.

Machine protection issues to be addressed early on!

Hydrodynamic tunneling: beam penetrates ~300 m in Cu

FCC-hh beam dilution system

R&D on Superconducting Septa

Need an extraction system for safely removing the beam from the collider hybrid system: short overall length with high robustness & availability

Synchrotron radiation beam screen prototype

High synchrotron radiation load of proton beams @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)
- 5 MW total in arcs (@1.9 K!!!)

New Beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power
- factor 50! reduction of cryo power

FCC-hh beam screen prototypes Ready for Testing 2017 in ANKA within EuroCirCol study

Cryo power for cooling of SR heat

Overall optimisation of cryo-power, vacuum and impedance Termperature ranges: <20, 40K-60K, 100K-120K

Main SC Magnet system FCC (16 T) vs LHC (8.3 T)

FCC

Bore diameter: 50 mm

Dipoles: 4578 *units*, 14.3 *m long*, 16 $T \Leftrightarrow \int Bdl \sim 1 MTm$

Stored energy ~ 200 GJ (GigaJoule) ~44 MJ/unit

Quads: 762 *magnets*, 6.6 *m long*, 375 *T/m*

LHC

Bore diameter: 56 mm
Dipoles: 1232 units, 14.3 m long, 8.3 T ⇔ ∫ Bdl~0.15 MTm
Stored energy ~ 9 GJ (GigaJoule) ~7 MJ/unit
Quads: 392 units, 3.15 m long, 233 T/m

Nb₃Sn is one of the major cost & performance factors for

FCC-hh and is given highest attention

16 T dipole options and plans

- Model production 2018 2022,
- Prototype production 2023 2025

HL-LHC and FCC Michael Benedikt CAS, Archamps, 10 October 2019

lepton collider parameters

parameter	Ζ	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4

identical FCC-ee baseline optics for all energies

FCC-ee: 2 separate rings, LEP: single beam pipe

FCC-ee exploits lessons & recipes from past e⁺e⁻ and pp colliders

FCC-ee optics design

Optics design for all working points achieving baseline performance Interaction region: asymmetric optics design

- Synchrotron radiation from upstream dipoles <100 keV up to 450 m from IP
- Dynamic aperture & momentum acceptance requirements fulfilled at all WPs

FCC-ee MDI optimisation

Efficient 2-in-1 FCC-ee arc magnets

Very large range of operation parameters

- Voltage and beam current ranges span more than factor > 10²
- No well-adapted single RF system solution satisfying requirements

RF system R&D lines

400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)

- Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC
- R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-ZH, ee-tt and ee-WW

- Baseline options 400 MHz Nb/Cu @4.5 K, ◀—▶ 800 MHz bulk Nb system @2K
- R&D: High Q₀ cavities, coating, long-term: Nb₃Sn like components

Summary

- The HL-LHC upgrade project is in full swing with first installations in LS2.
- The FCC study phase 1 is completed with Design Reports.
- Clearly HL-LHC is a necessary first step in the development of technologies for future HE accelerators, in particular the FCC.
- Superconductivity is the key enabling technology for LHC, HL-LHC, HE LHC and FCC.
- The Nb3Sn program for HL-LHC triplets and 11 T dipoles is of prime importance towards development fo 16 T model magnets.
- SC crab cavities are a major ingredient for HL-LHC and the development of high efficiency SRF systems is critical for FCC-ee.
- Both HL-LHC project and FCC study show the importance of international collaboration in our field, to advance on all challenging subjects and to assure a long-term future!
- In this sense we rely on your future contributions!

