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• HL-LHC motivation and goals

• HL-LHC building blocks

• FCC motivation and scope

• Parameters

• Design Status

• Technologies
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Goal of High Luminosity LHC (HL-LHC)

The main objective of HiLumi LHC Design Study is to determine a hardware 

configuration and a set of beam parameters that will allow the LHC to reach the

following targets:

Prepare machine for operation beyond 2025 and up to 2035

Devise beam parameters and operation scenarios for:

# enabling at total integrated luminosity of 3000 fb-1

# implying an integrated luminosity of 250 fb-1 per year, 

# design oper. for m = 140 ( peak luminosity 5 1034 cm-2 s-1)

 Operation with levelled luminosity! (beta*, crossing angle & crab cavity)

10x the luminosity reach of first 10 years of LHC operation!!

5 events
400 

events
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Recap: Luminosity

colliding bunches:

with:

is determined by the magnet arrangement & powering

Lpeak >2 x 1035 cm-2s-1

   

L =
nb ×N1 ×N2 × frev

A

  

A = 4p ×s x ×s y

  

s = b ×e

   

b

  

e = en /g n is determined by the injector chain

goal: high bunch intensity and many bunches

small  at IP and high collision energy 
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LHC upgrade goals: performance optimization

• Luminosity recipe (round beams): 

 maximize bunch intensities (1.1  2.2x1011 )

 minimize the beam emittance (3.75 2.5 μm)

 minimize beam size (* 0.55  0.15 m); 

compensate for ‘F’ geometry crossing; 

 improve machine ‘Efficiency’

L =
nb ×N1 ×N2 ×g × frev

4p × b* ×en
×F(f, b*,e,s s )

 Injector complex 

Upgrade LIU

 New triplets

 Crab Cavities

 minimize number of 

unscheduled beam aborts
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LHC Limitations and HL-LHC challenges

• Insertion quadrupole magnets lifetime and aperture:

 New insertion magnets and low- with increased aperture

• Geometric Reduction Factor:  SC Crab Cavities

 New technology and first time for a hadron storage ring!

• Performance Optimization: Pileup density Lumi levelling

 requires virtual luminosity >> target levelled luminosity

• Beam power & losses addt’l collimators in dispersion suppressors

• Machine effciency and availability:

# R2E  removal of all electronics from tunnel region

# e-cloud  beam scrubbing (conditioning of surface), etc

• Technical bottle necks (e.g. cryogenics)

• Civil Engineering (underground) 
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LHC technical bottleneck:

Radiation damage to triplet magnets at 300 fb-1

 0

 5

 10

 15

 20

 25

 30

 20  25  30  35  40  45  50  55

p
e
a
k

 d
o

se
 [

M
G

y
 /

 3
0
0
 f

b
-1

]

distance from IP [m]

peak dose longitudinal profile

7+7 TeV proton interactions
IT quadrupoles

MCBX-1
MCBX-2

MQSX
MCTX nested in MCBX-3

MCSOX

Q2

27 MGy

MCBX3 

20 MGy

Cold bore 

insulation

≈ 35 MGy



8
HL-LHC and FCC

Michael Benedikt

CAS, Archamps, 10 October 2019

HL-LHC technical bottleneck:

Radiation damage to triplet magnets

 Requires larger aperture!

 New magnet technology

 LHC: 70mm at 210 T/m HL@ 150mm diameter 140 T/m

 LHC: 8T peak field at coils  HL> 12T field at coils (Nb3Sn)!

Need to replace existing triplet 

magnets with radiation hard system 

(shielding!) such that the new magnet 

coils receive a similar radiation dose 

@ 10 times higher integrated 

luminosity 3000 fb-1!  Shielding!

US-LARP MQXF 
magnet design
Based on Nb3Sn
technology

Tungsten blocks

Capillaries
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HL-LHC Challenges: Crossing Angle

• Parasitic bunch encounters:

• Perturbations from long-range beam-beam interaction:

Operation requires crossing angle prop. 1/√*. 

 Factor 2 increase, 2 x 150 to 2 x 300 mrad)

efficient operation requires large beam separation at unwanted collision points  

 Separation of 10 -12 s  larger triplet apertures for HL-LHC!

• Insertion Layout: ca.130m  150m

ca.50m

Operation with ca. 2800 bunches @ 25ns spacing 

 approximately 30 unwanted collisions per 

Interaction Region (IR).
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HL-LHC Upgrade Ingredients: Crab Cavities

HL-LHC

Geometric Luminosity 

Reduction Factor:

F =
1

1+Q2
;    Q º

qcs z

2s x

effective cross section

   

b*

F(b*)

• Reduces the effect of 

geometrical reduction factor 

• Independent for each IP

• Challenging space 

constraints:

 requires novel compact 

cavity design

Crab Cavities:
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HL-LHC crab cavity designs

RF Dipole: Waveguide or

waveguide-coax couplers

Double ¼-wave: 

Coaxial couplers with

hook-type antenna

4-rod: Coaxial couplers with 

different antenna types

3 Advanced Design Studies with 

Different Coupler concepts

Double ¼-wave installed in SPS  

during last shutdown 2017/2018

Present baseline: 4 cavity/cryomod

Succesful tests in SPS
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LHC Challenges: Beam Power

Unprecedented beam power:

 potential equipment 

damage in case 

of failures 

during 

operation

 In case of 

failure the 

beam must 

never reach 

sensitive 

equipment!

Stored Beam power:

HL-LHC > 500 MJ / 

beam
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Collimation system upgrades

Ion physics debris: 

DS collimation

Cleaning: DS coll. + 11T 

dipoles, 2 units per 

beam

Low-impedance, high 
robustness secondary 
collimators

Completely new layouts

Novel materials. 

IR1+IR5, per beam:

4 tertiary collimators

3 physics debris collimators

fixed masks

40 new collimators to 

be produced by LS3 in 

the present baseline!

S. Redaelli, 

Chamonix 2016, 28-01-2016
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Dispersion Suppressor collimators –

11 T Nb3Sn Dipole (LS2 -2018)

MB.B8R/L

MB.B11R/L

11 T Nb3Sn
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Implementation & Performance Projection:

Splices 
fixed

Injectors
upgrade

11 T 
dipoles

25 fb-1

3000 fb-1

300 fb-1

0.75 1034 cm-2s-1

50 ns bunch
high pile up 40

1.5 1034 cm-2s-1

25 ns bunch 
high pile up 

40

Run I Run II Run III

New
Low-β*
quads 
Crab

Cavity
Phase1

Detectors

LI
U

 

1.5 -2.2  1034

cm-2s-1

25 ns bunch 
very high 

pile up > 60

Technical limits (in 
experiments, too)

Cryogenic limit, Radiation & 
Damage of triplet magnets

5 1034 cm-2s-1

levelled
25 ns bunch 

very high pile 
up 140

Crab
Cavity
Phase2

1000 fb-1

Energy
6.5TeV

Intensity
Upgrade
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The critical zones around IP1 and IP5

 More than 1.2 km of LHC !!

 Plus technical infrastructure 

(e.g. Cryo and Powering)!!

ATLAS

1. New triplet Nb3Sn

required due to:

-Radiation damage

-Need for more aperture

Changing the triplet region 

is not enough for reaching 

the HL-LHC goal!

2. We also need to 

modify a large part of 

the  matching section

e.g. Crab Cavities & 

D1, D2, Q4 & corrector

3. For collimation we also 

need to change the DS in 

the continuous cryostat: 

11T Nb3Sn dipole

CMS
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Luminosity profile : NOMINAL HL-LHC

After LS4, proton physics days increase from 

standard 160 days to 200 and after LS5 to 220 
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• Very large circular hadron collider - only feasible approach to reach 

100 TeV c.m. collision energy in coming decades

• Access to new particles (direct production) in few-TeV to 30 TeV

mass range, far beyond LHC reach 

• Much-increased rates for phenomena in sub-TeV mass range → 

much increased precision w.r.t. LHC 

Energy frontier in the 21st century

Hadron collider energy reach

FCC-hh aims at O(10) higher performance (E, L) than LHC

LHC: factor ~4 in radius, factor ~2 in field  O(10) in Ecms

𝐸 ∝ 𝐵𝑑𝑖𝑝𝑜𝑙𝑒 × 𝜌𝑏𝑒𝑛𝑑𝑖𝑛𝑔

M. Mangano
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International FCC collaboration 

(CERN as host lab) to study: 

• pp-collider (FCC-hh)       

 main emphasis, defining 

infrastructure requirements 

• 80-100 km tunnel infrastructure 

in Geneva area, site specific

• e+e- collider (FCC-ee),                

as potential first step

• p-e (FCC-he) option,    

integration one IP, FCC-hh & ERL

• HE-LHC with FCC-hh technology

~16 T  100 TeV pp in 100 km

Future Circular Collider Study            
Goal: CDR for European Strategy Update 2018/19
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CepC/SppC study (CAS-IHEP) 100 km (new 

baseline!) , e+e- collisions ~2028; pp collisions ~2042

Qinhuangdao (秦皇岛）

easy access

300 km east 

from Beijing

3 h by car

1 h by train 

Yifang Wang

CepC, SppC

“Chinese Toscana”

100 km 
50 km 
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Constr. Physics LEP

Construction PhysicsProtoDesign LHC – operation run 2

Construction PhysicsDesignHL-LHC - ongoing project

PhysicsConstructionProto

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

~20 years

DesignFCC – design study

Must advance fast now to be ready for the period 2035 – 2040

Results phase 1: CDR published end 2018 for update European Strategy

CERN Circular Colliders & FCC

2040
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Progress on site investigations



23
HL-LHC and FCC

Michael Benedikt

CAS, Archamps, 10 October 2019

Progress on site investigations

• 90 – 100 km fits geological situation well

• LHC suitable as potential injector

• The 97.75 km version, intersecting LHC,    

is now being studied in more detail
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FCC 100 km intersecting version

Current baseline: 

• injection energy 3.3 TeV LHC

Alternative options:

• Injection around 1.3 – 1.4 TeV

• compatible with: SPSupgrade, LHC, FCC booster

• SPSupgrade could be based on fast-cycling SC magnets, 6-7T, ~ 1T/s ramp

 SC Magnet R&D program being launched (similar to SIS 300 parameters)

Injector options:

• SPS  LHC  FCC

• SPS/SPSupgrade  FCC

• SPS -> FCC booster  FCC

FCC-hh injector studies
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• 2 main IPs in A, G for both machines

• asymmetric IR optic/geometry for ee

to limit synchrotron radiation to detector

Common layouts for hh & ee

11.9 m 30 mrad

9.4 m

FCC-hh/

ee Booster

Common

RF (tt)
Common

RF (tt)

IP

IP

0.6 m

Max. separation of 3(4) rings is about 12 m: 

wider tunnel or two tunnels are necessary 

around the IPs, for ±1.2 km. 

Lepton beams must cross over through the 

common RF to enter the IP from inside.

Only a half of each ring is filled with bunches.

FCC-ee 1, FCC-ee 2, 
FCC-ee booster (FCC-hh footprint)

FCC-hh

layout
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parameter FCC-hh HE-LHC (HL) LHC

collision energy cms [TeV] 100 27 14

dipole field [T] 16 16 8.3

circumference [km] 100 27 27

# IP 2 main & 2 2 & 2 2 & 2

beam current [A] 0.5 1.27 (1.12) 0.58

bunch intensity  [1011] 1 (0.2) 1 (0.2) 2.5 (2.2) 1.15

bunch spacing  [ns] 25 (5) 25 (5) 25 (5) 25

IP *
x,y [m] 1.1 0.3 0.45 (0.15) 0.55

luminosity/IP [1034 cm-2s-1] 5 30 16 (5) 1

peak #events/bunch crossing 170 1020 (204) 460 (92) (135) 27

stored energy/beam [GJ] 8.4 1.4 (0.7) 0.36

synchrotron rad. [W/m/beam] 30 4.1 (0.35) 0.18

hadron collider parameters (pp)
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pp/p-pbar in the L-E plane
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phase 1: *=1.1 m, xtot=0.01, tta=5 h, 250 fb-1 / year 

phase 2: *=0.3 m, xtot=0.03, tta=4 h, 1000 fb-1 / year 

for both 

phases:

beam current 

0.5 A, 

unchanged!

total 

synchrotron 

radiation 

power ~5 MW.

radiation damping: t~1 h

luminosity evolution over 24 h

PRST-AB 18, 101002 (2015) 
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FCC-hh MDI status
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L* 45 m, spectrometer off
L* 45 m, spectrometer on

Design of interaction region
• Distance from IP to first machine 

quadrupole L*=45 m.

• Allows integrated spectrometers and 

compensation dipoles (or fwd solenoids)

• Optics and magnet optimization for 

beam stay clear and collision debris. 
 Magnet (triplet) lifetime should be 

collider lifetime (from radiation damage).
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contributions: beam screen 

(BS) & cold bore (BS heat 

radiation)
Beam power & machine protection

Stored energy 8.4 GJ per beam

– Factor 25 higher than for LHC, equivalent to A380 (560 t) 

at nominal speed (850 km/h). Can melt 12t of copper.

– Collimation, control of beam losses and radiation 

effects (shielding) are of prime importance.

– Injection, beam transfer and beam dump all critical.

Damage of a beam with 

an energy of 2 MJ

Machine protection issues to be addressed early on!  

Hydrodynamic tunneling:

beam penetrates ~300 m in Cu
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FCC-hh beam dilution system

1.4 km dump insertion 2.8 km collimation insertion

2.5 km dump line

Kicker Septum 10 mrad

bend
Dilution Absorber

Fluka studies:

• Bunch separation >1.8 mm

• Branch separation: 4 cm

• Keeps T<1500°C

2m

SC septum

Very reliable 

kickers, high 

segementation,

new methods for 

triggering (laser) 

Huge energy to be extracted and dumped => need large dump section 
Beam rigidity: 167 T.km => need long way to dilute beam ~2.5km!
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10/11/2019

R&D on Superconducting Septa 

Need an extraction system for safely removing the beam from the collider

hybrid system: short overall length with high robustness & availability

SuShi concept:
SC shield creates 

field-free region 

inside strong 

dipole field

3 candidate technologies:
(1) NbTi/Nb/Cu multilayer sheet

(2) HTS tape/coating

(3) Bulk MgB2
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Synchrotron radiation

beam screen prototype

Photon distribution

FCC-hh beam screen prototypes 
Ready for Testing 2017 in ANKA within 

EuroCirCol study

High synchrotron radiation load          

of proton beams @ 50 TeV:

• ~30 W/m/beam (@16 T) (LHC <0.2W/m)

• 5 MW total in arcs (@1.9 K!!!)

New Beam screen with ante-chamber

• absorption of synchrotron radiation            

at 50 K to reduce cryogenic power  

• factor 50! reduction of cryo power 

Simulation of 

quench behaviour
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contributions: beam screen 

(BS) & cold bore (BS heat 

radiation)
Cryo power for cooling of SR heat

Overall optimisation of cryo-power, vacuum and impedance

Termperature ranges: <20,   40K-60K,  100K-120K
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Tcm=1.9 K, 28.4 W/m

Tcm=1.9 K, 44.3 W/m

Tcm=4.5 K, 28.4 W/m

Tcm=4.5 K, 44.3 W/m

100MW

200MW

300MW

Multi-bunch instability growth time:  25 turns        9 turns     (DQ=0.5)
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Main SC Magnet system  

FCC (16 T) vs LHC (8.3 T)

FCC

Bore diameter: 50 mm

Dipoles: 𝟒𝟓𝟕𝟖 𝒖𝒏𝒊𝒕𝒔, 𝟏𝟒. 𝟑 𝒎 𝒍𝒐𝒏𝒈, 𝟏𝟔 𝑻 ⇔ 𝑩𝒅𝒍~𝟏𝑴𝑻𝒎

𝐒𝐭𝐨𝐫𝐞𝐝 𝐞𝐧𝐞𝐫𝐠𝐲 ~ 𝟐𝟎𝟎 𝐆𝐉 𝐆𝐢𝐠𝐚𝐉𝐨𝐮𝐥𝐞 ~𝟒𝟒 𝐌𝐉/𝐮𝐧𝐢𝐭

Quads:  𝟕𝟔𝟐𝒎𝒂𝒈𝒏𝒆𝒕𝒔, 𝟔. 𝟔 𝒎 𝒍𝒐𝒏𝒈, 𝟑𝟕𝟓 𝑻/𝒎

LHC

Bore diameter: 56 mm

Dipoles: 𝟏𝟐𝟑𝟐 𝒖𝒏𝒊𝒕𝒔, 𝟏𝟒. 𝟑 𝒎 𝒍𝒐𝒏𝒈, 𝟖. 𝟑 𝑻 ⇔ .𝑩𝒅𝒍~𝟎 𝟏𝟓 𝑴𝑻𝒎

𝐒𝐭𝐨𝐫𝐞𝐝 𝐞𝐧𝐞𝐫𝐠𝐲 ~ 𝟗 𝐆𝐉 𝐆𝐢𝐠𝐚𝐉𝐨𝐮𝐥𝐞 ~𝟕 𝐌𝐉/𝐮𝐧𝐢𝐭

Quads:  𝟑𝟗𝟐 𝒖𝒏𝒊𝒕𝒔, 𝟑. 𝟏𝟓 𝒎 𝒍𝒐𝒏𝒈, 𝟐𝟑𝟑 𝑻/𝒎



36
HL-LHC and FCC

Michael Benedikt

CAS, Archamps, 10 October 2019

Nb3Sn conductor program

Nb3Sn is one of the major cost & performance factors for 

FCC-hh and is given highest attention

Main development goals until 2020:

• Jc increase (16T, 4.2K) > 1500 A/mm2 

i.e. 50% increase wrt HL-LHC wire

• Reference wire diameter 1 mm

• Potentials for large scale production 

and cost reduction

3150 mm2

~1.7 times 

less SC

~10% margin

HL-LHC

~10% margin

FCC ultimate

5400 mm2
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16 T dipole options and plans

Cos-theta

Blocks 

Common coils

• Model production 2018 – 2022, 

• Prototype production 2023 - 2025 

Swiss contribution 
via PSI

Canted

Cos-theta
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identical FCC-ee baseline optics for all energies

FCC-ee: 2 separate rings,  LEP: single beam pipe

lepton collider parameters

parameter Z WW H (ZH) ttbar

beam energy [GeV] 45 80 120 182.5

beam current [mA] 1390 147 29 5.4

no. bunches/beam 16640 2000 393 48

bunch intensity  [1011] 1.7 1.5 1.5 2.3

SR energy loss / turn [GeV] 0.036 0.34 1.72 9.21

total RF voltage [GV] 0.1 0.44 2.0 10.9

horizontal beta* [m] 0.15 0.2 0.3 1

vertical beta* [mm] 0.8 1 1 1.6

horiz. geometric emittance [nm] 0.27 0.28 0.63 1.46

vert. geom. emittance [pm] 1.0 1.7 1.3 2.9

luminosity per IP [1034 cm-2s-1] >200 >25 >7 >1.4
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FCC-ee

Barry Barish

13 January 2011 

DAFNE

VEPP2000

combining successful ingredients 
of recent colliders → extremely 
high luminosity at high energies 

LEP: 
high energy
SR effects 

B-factories:
KEKB & PEP-II:

high beam 
currents
top-up injection

DAFNE: crab waist 

Super B-factories
S-KEKB: low y* 

KEKB: e+ source 

HERA, LEP, RHIC: 
spin 
gymnastics 

FCC-ee exploits lessons & recipes 

from past e+e- and pp colliders
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FCC-ee optics design

IP

Beam

Local chromaticity correction

+ crab waist sextupoles

Local chromaticity correction

+ crab waist sextupoles

Optics design for all working points achieving baseline performance 

Interaction region: asymmetric optics design

• Synchrotron radiation from upstream dipoles <100 keV up to 450 m from IP

• Dynamic aperture & momentum acceptance requirements fulfilled at all WPs
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FCC-ee MDI optimisation

MDI work focused on optimization of

• l*, IR quadrupole design

• Detector, compensation solenoid

• SR masking and chamber layout

CERN model of

CCT IR quadrupole

BINP prototype IR quadr.

2 cm aperture, 100 T/m

10

5

0

-5

-10
0 1 2-1-2

m

cm
Be

Cu
Be

Cu

Central detector

beam pipe +/-

12.5 cm in Z

radius=15 mm

Central detector 

SA inside +/-150 

mrad 

NEG pump NEG pump

HOM Abs HOM Abs

BPMS BPMS
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Efficient 2-in-1 FCC-ee arc magnets

Dipole:

twin aperture yoke

single busbars as coils

• Novel arrangements allow for 

considerable  savings in Ampere-

turns and power consumption

• Less units to manufacture, 

transport, install, align, remove,…

Quadrupole:

twin 2-in-1 design
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RF system requirements

Vtotal

GV

nbunches Ibeam

mA

DE/turn

GeV

hh 0.032 500

Z 0.4/0.2 30000/90000 1450 0.034

W 0.8 5162 152 0.33

H 5.5 770 30 1.67

t 10 78 6.6 7.55

“Ampere-class” machines

“high gradient” machines 

x6

≈ 16 x 1 cell 

400MHz, 

x12

Naive scale up from an hh system

Very large range of operation parameters

• Voltage and beam current ranges span more than factor > 102 

• No well-adapted single RF system solution satisfying requirements 
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RF system R&D lines

hh

≈ 16 cells per beam ≈ 100 per beam

(+ 100 for booster ring)

Z W

≈ 210 per beam

(+ 210 for booster ring)

W

≈ 800 per beam

(+ 800 for booster)

≈ common 2600 cells    

for both beams

(+ 2600 for booster)

H t

≈ 200 per beam

(+ 200 for booster)

400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)
• Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC

• R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-ZH, ee-tt and ee-WW
• Baseline options 400 MHz Nb/Cu @4.5 K, ◄▬► 800 MHz bulk Nb system @2K

• R&D: High Q0 cavities, coating, long-term: Nb3Sn like components 
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Michael Benedikt

CAS, Archamps, 10 October 2019

• The HL-LHC upgrade project is in full swing with first installations in LS2.

• The FCC study phase 1 is completed with Design Reports.

• Clearly HL-LHC is a necessary first step in the development of 

technologies for future HE accelerators, in particular the FCC.

• Superconductivity is the key enabling technology for LHC, HL-LHC, HE 

LHC and FCC.

• The Nb3Sn program for HL-LHC triplets and 11 T dipoles is of prime 

importance towards development fo 16 T model magnets.

• SC crab cavities are a major ingredient for HL-LHC and the development 

of high efficiency SRF systems is critical for FCC-ee.

• Both HL-LHC project and FCC study show the importance of  international 

collaboration in our field, to advance on all challenging subjects and to 

assure a long-term future!

• In this sense we rely on your future contributions!

Summary


