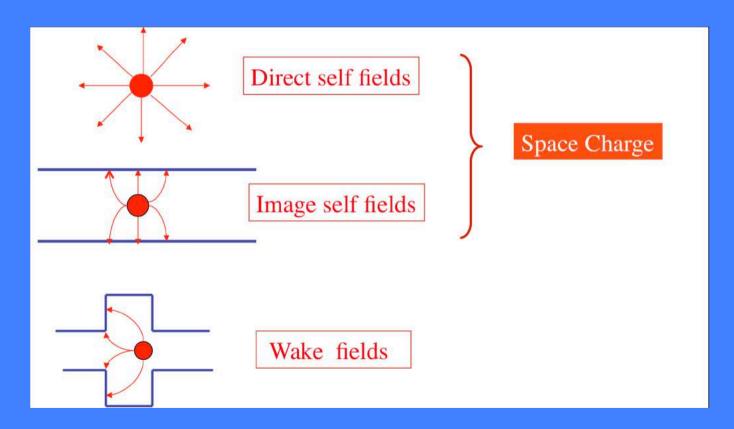
Space Charge in Linear Machines

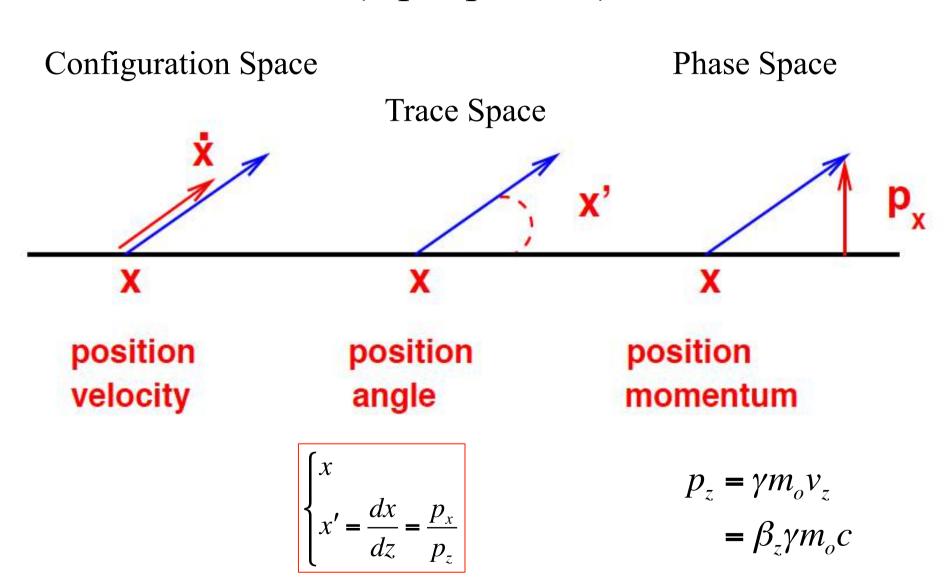
Massimo.Ferrario@LNF.INFN.IT



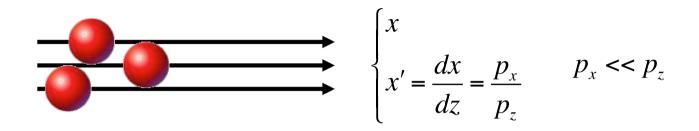
OUTLINE

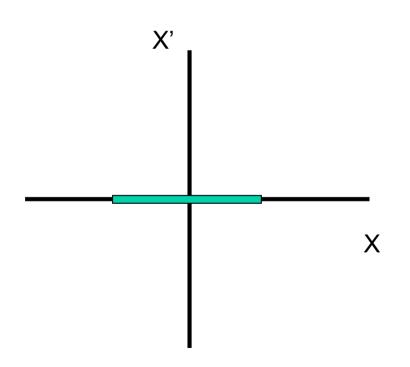
- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Typical coordinates to describe the particle motion (6 per particle)

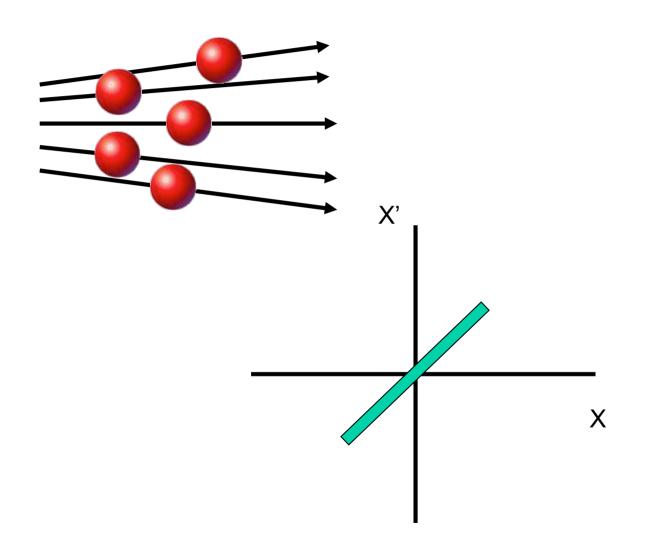


Trace space of an ideal laminar beam





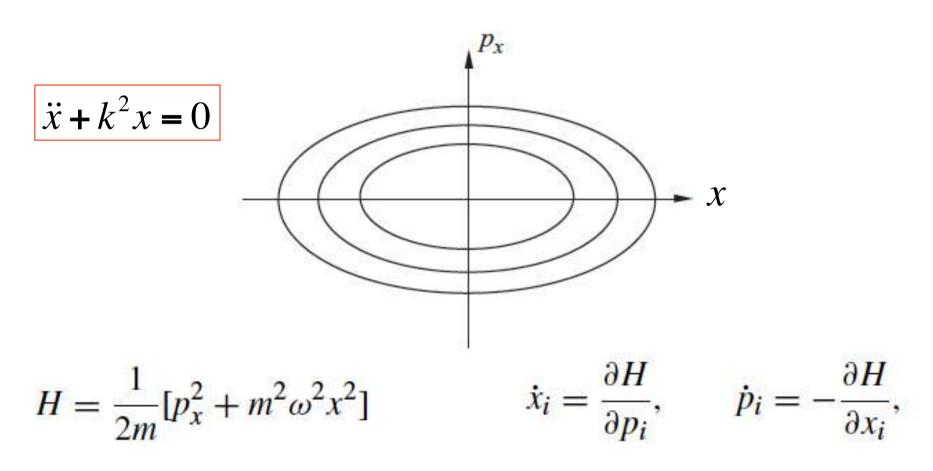
Trace space of a laminar beam



Trace space of non laminar beam



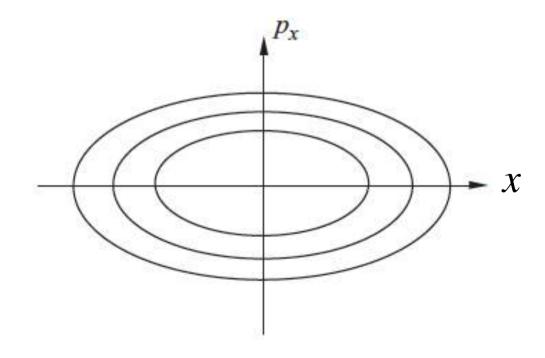
In a system where all the forces acting on the particles are linear (i.e., proportional to the particle's displacement x from the beam axis), it is useful to assume an elliptical shape for the area occupied by the beam in x-x trace space or $x-p_x$ phase space.

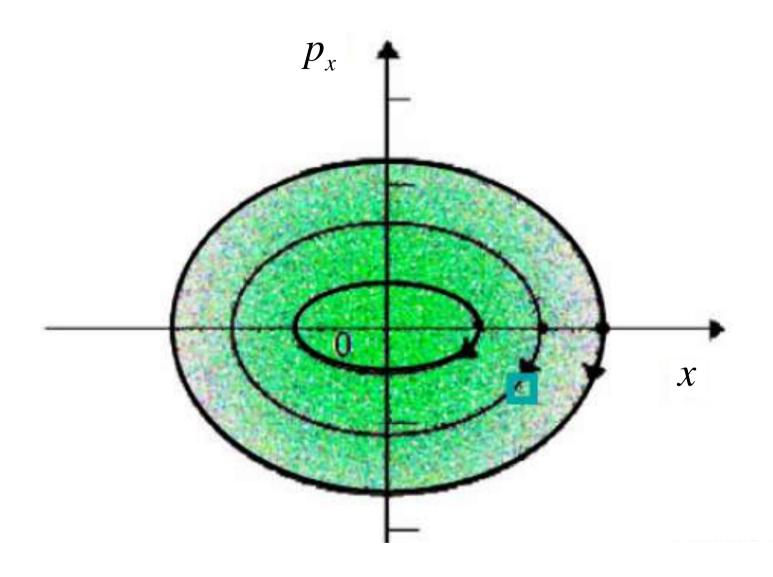


The action is related to the area enclosed by the phase space trajectory.

$$J = \frac{1}{2\pi} \oint p_x \, \mathrm{d}x.$$

The action is also generally known to be an *adiabatic invariant*, in that when the parameters of an oscillatory system are changed slowly, the action remains a constant.





Geometric emittance:

Ellipse equation:
$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon_g$$

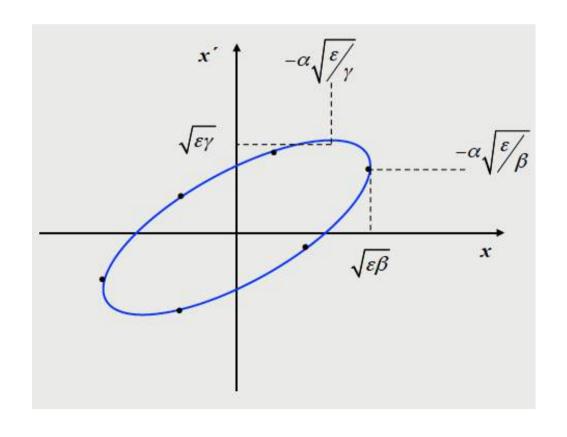
Twiss parameters: $\beta \gamma - \alpha^2 = 1$ $\beta' = -2\alpha$

$$\beta \gamma - \alpha^2 = 1$$

$$\beta' = -2\alpha$$

Ellipse area:

$$A = \pi \varepsilon_g$$



Analytical Geometry: Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 Canonical Ellipse equation $Area = \pi ab$

$$Ax^2 + Bxy + Cy^2 = 1$$
 Rotated Ellipse $Area = \frac{2\pi}{\sqrt{4AC - B^2}}$

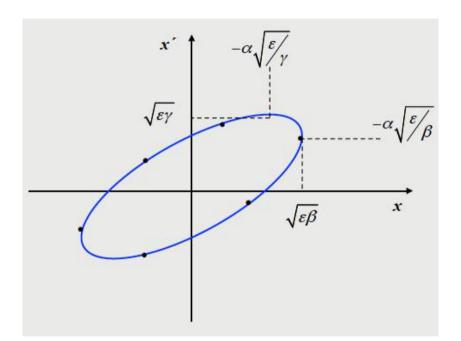
$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon$$
 Emittance Ellipse

$$Area = \frac{\pi \varepsilon}{\sqrt{\gamma \beta - \alpha^2}} = \pi \varepsilon \Leftrightarrow \gamma \beta - \alpha^2 = 1$$

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon$$

$$\gamma\beta - \alpha^2 = 1$$

Solving for x=f(x') and computing df(x')/dx'=0 =>



$$\begin{cases} x'_{x_{\text{max}}} = -\alpha \sqrt{\frac{\varepsilon}{\beta}} \\ x_{\text{max}} = \sqrt{\varepsilon \beta} \end{cases}$$

From:
$$\frac{dx_{\text{max}}}{dz} = x'_{x_{\text{max}}}$$

$$\frac{dx_{\text{max}}}{dz} = x'_{x_{\text{max}}} \qquad \frac{\beta'}{2} \sqrt{\frac{\varepsilon}{\beta}} = -\alpha \sqrt{\frac{\varepsilon}{\beta}}$$

$$\beta' = -2\alpha$$

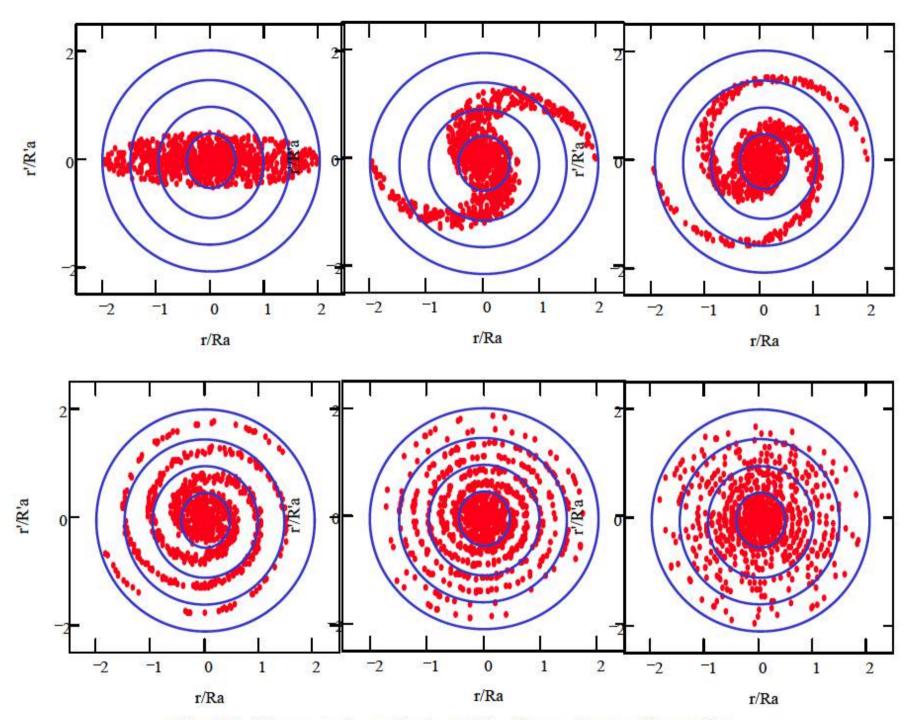
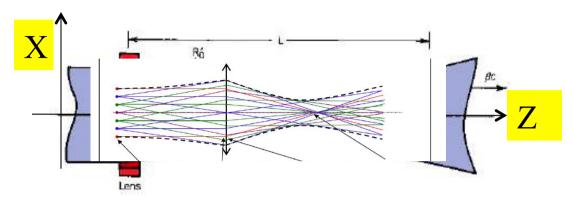


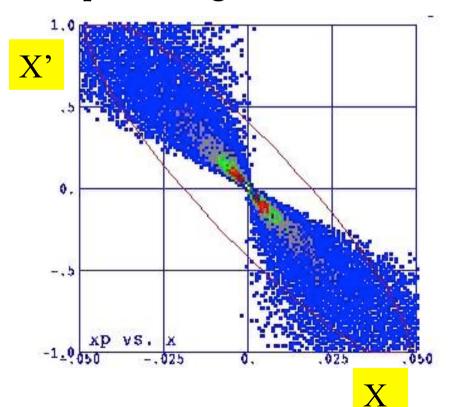
Fig. 17: Filamentation of mismatched beam in non-linear force

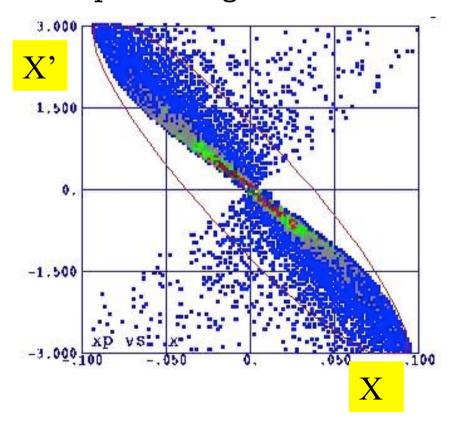
Phase space evolution



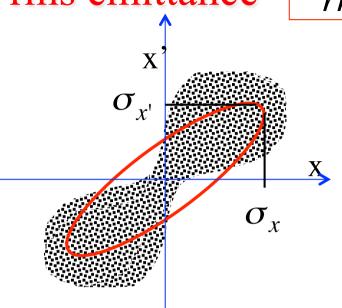
No space charge => cross over

With space charge => no cross over





rms emittance



$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, x') dx dx' = 1 \qquad f'(x, x') = 0$$

rms beam envelope:

$$\sigma_x^2 = \langle x^2 \rangle = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 f(x, x') dx dx'$$

Define rms emittance:

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon_{rms}$$

such that:

$$\sigma_x = \sqrt{\langle x^2 \rangle} = \sqrt{\beta \varepsilon_{rms}}$$

$$\sigma_{x'} = \sqrt{\langle x'^2 \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$

Since: $\beta' = -2\alpha$

it follows: $\alpha = -\frac{1}{2\varepsilon_{rms}} \frac{d}{dz} \langle x^2 \rangle = -\frac{\langle xx' \rangle}{\varepsilon_{rms}} = -\frac{\sigma_{xx'}}{\varepsilon_{rms}}$

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta \varepsilon_{rms}}$$

$$\sigma'_{x} = \sqrt{\langle x^{'2} \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$

$$\sigma_{xx'} = \langle xx' \rangle = -\alpha \varepsilon_{rms}$$

It holds also the relation:

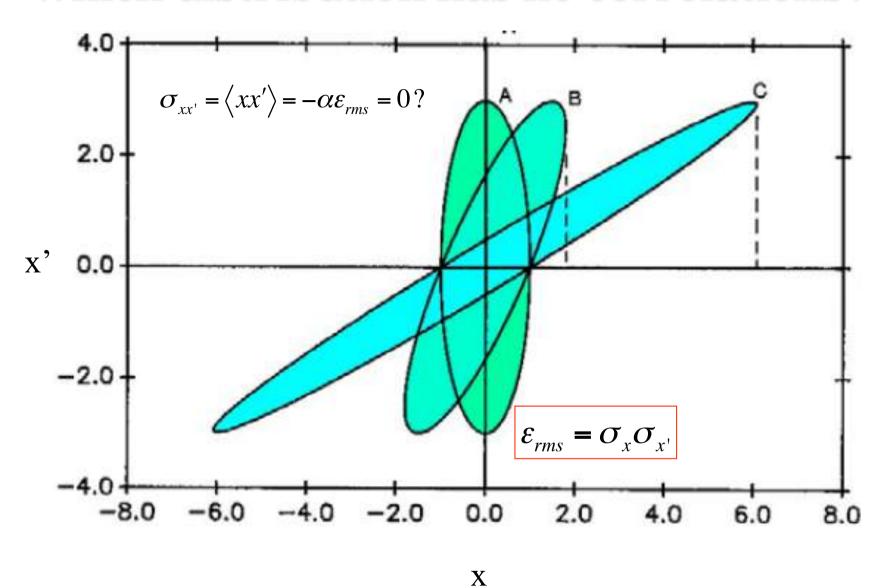
$$\gamma \beta - \alpha^2 = 1$$

Substituting
$$\alpha, \beta, \gamma$$
 we get
$$\frac{\sigma_{x'}^2}{\varepsilon_{rms}} \frac{\sigma_x^2}{\varepsilon_{rms}} - \left(\frac{\sigma_{xx'}}{\varepsilon_{rms}}\right)^2 = 1$$

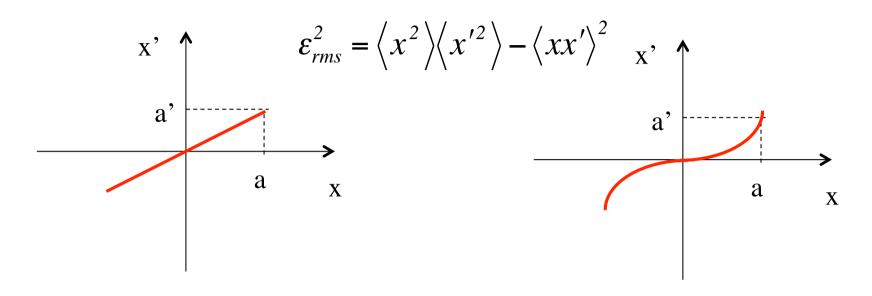
We end up with the definition of rms emittance in terms of the second moments of the distribution:

$$\varepsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2\right)} \qquad x' = \frac{p_x}{p_z}$$

Which distribution has no correlations?



What does rms emittance tell us about phase space distributions under linear or non-linear forces acting on the beam?



Assuming a generic x, x' correlation of the type: $x' = Cx^n$

When
$$n = 1 = > \epsilon_{rms} = 0$$

$$\varepsilon_{rms}^2 = C^2 \left(\left\langle x^2 \right\rangle \left\langle x^{2n} \right\rangle - \left\langle x^{n+1} \right\rangle^2 \right)$$
When $n \neq 1 = > \epsilon_{rms} \neq 0$

Constant under linear transformation only

$$\frac{\mathrm{d}}{\mathrm{d}z} \left[\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2 \right] = 2 \langle xx' \rangle \langle x'^2 \rangle + 2 \langle x^2 \rangle \langle x' \rangle \langle x'' \rangle - 2 \langle xx'' \rangle \langle xx' \rangle = 0$$

For linear transformations, $x'' = -k_x^2 x$, and the right-hand side of the equation is

$$2k_x^2\langle x^2\rangle\langle xx'\rangle - 2\langle x^2\rangle\langle xx'\rangle k_x^2 = 0,$$

SO

$$\frac{\mathrm{d}}{\mathrm{d}z} \langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2 = 0$$

And without acceleration:

$$x' = \frac{p_x}{p_z}$$

Normalized rms emittance: $\varepsilon_{n,rms}$

Canonical transverse momentum: $p_x = p_z x' = m_o c \beta \gamma x'$ $p_z \approx p$

$$\varepsilon_{n,rms} = \frac{1}{m_o c} \sqrt{\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2} = \frac{1}{m_o c} \sqrt{\left(\left\langle x^2 \right\rangle \left\langle p_x^2 \right\rangle - \left\langle x p_x \right\rangle^2\right)} \approx \left\langle \beta \gamma \right\rangle \varepsilon_{rms}$$

Liouville theorem: the density of particles n, or the volume V occupied by a given number of particles in phase space (x,p_x,y,p_y,z,p_z) remains invariant under conservative forces.

$$\frac{dn}{dt} = 0$$

It hold also in the projected phase spaces $(x,p_x),(y,p_y)(z,p_z)$ provided that there are no couplings.

But rms emittance is not Liouvillian!

Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two conjugate variables (x,p_x) . According to Heisenberg:

$$\sigma_x \sigma_{p_x} \ge \frac{\hbar}{2}$$

This limitation can be expressed by saying that the state of a particle is not exactly represented by a point, but by a small uncertainty volume of the order of \hbar^3 in the 6D phase space.

In particular for a single electron in 2D phase space it holds:

$$\varepsilon_{n,rms} = \frac{1}{m_o c} \sqrt{\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2} \implies \begin{cases} = 0 & \text{classical limit} \\ \ge \frac{1}{2} \frac{\hbar}{m_o c} = \frac{\lambda_c}{2} = 1.9 \times 10^{-13} m \end{cases}$$
quantum limit

Where λ_c is the reduced Compton wavelength.

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Envelope Equation without Acceleration

Now take the derivatives:

$$\frac{d\sigma_{x}}{dz} = \frac{d}{dz}\sqrt{\langle x^{2}\rangle} = \frac{1}{2\sigma_{x}}\frac{d}{dz}\langle x^{2}\rangle = \frac{1}{2\sigma_{x}}2\langle xx'\rangle = \frac{\sigma_{xx'}}{\sigma_{x}}$$

$$\frac{d^{2}\sigma_{x}}{dz^{2}} = \frac{d}{dz}\frac{\sigma_{xx'}}{\sigma_{x}} = \frac{1}{\sigma_{x}}\frac{d\sigma_{xx'}}{dz} - \frac{\sigma_{xx'}^{2}}{\sigma_{x}^{3}} = \frac{1}{\sigma_{x}}(\langle x'^{2}\rangle + \langle xx'\rangle) - \frac{\sigma_{xx'}^{2}}{\sigma_{x}^{3}} = \frac{\sigma_{x'}^{2} + \langle xx''\rangle}{\sigma_{x}} - \frac{\sigma_{xx'}^{2}}{\sigma_{x}^{3}}$$

And simplify:
$$\sigma_x'' = \frac{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2}{\sigma_x^3} + \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3} + \frac{\langle xx'' \rangle}{\sigma_x}$$

We obtain the rms envelope equation in which the rms emittance enters as defocusing pressure like term.

$$\sigma_x'' - \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

$$\frac{\varepsilon_{rms}^2}{\sigma_x^3} \approx \frac{T}{V} \approx P$$

Beam Thermodynamics

Kinetic theory of gases defines temperatures in each directions and global as:

$$k_B T_x = m \langle v_x^2 \rangle$$
 $T = \frac{1}{3} (T_x + T_y + T_z)$ $E_k = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} k_B T$

Definition of beam temperature in analogy:

$$k_B T_{beam,x} = \gamma m_o \left\langle v_x^2 \right\rangle \qquad \left\langle v_x^2 \right\rangle = \beta^2 c^2 \left\langle x'^2 \right\rangle = \beta^2 c^2 \sigma_{x'}^2 = \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\sigma_x^2} = \beta^2 c^2 \frac{\varepsilon_{rms}}{\beta_x}$$

We get:
$$k_B T_{beam,x} = \gamma m_o \langle v_x^2 \rangle = \gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\sigma_x^2} = \gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}}{\beta_x}$$

$$P_{beam,x} = nk_B T_{beam,x} = n\gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\sigma_x^2} = N_T \gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}^2}{\sigma_L \sigma_x^2}$$

$$k_B T_{beam,x} = \gamma m_o \beta^2 c^2 \frac{\varepsilon_{rms}}{\beta_x}$$

Property	Hot beam	Cold beam
ion mass (m ₀)	heavy ion	light ion
ion energy (βγ)	high energy	low energy
beam emittance (ε)	large emittance	small emittance
lattice properties $(\gamma_{x,y} \approx 1/\beta_{x,y})$	strong focus (low β)	high β
phase space portrait	hot beam x	cold beam *'

Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving cold (light) electron beam.

Particle Accelerators 1973, Vol. 5, pp. 61-65 © Gordon and Breach, Science Publishers Ltd. Printed in Glasgow, Scotland

EMITTANCE, ENTROPY AND INFORMATION

J. D. LAWSON

Rutherford Laboratory, Chilton, Berkshire, England

P. M. LAPOSTOLLE

Centre National d'Études des Télécommunications, Issy-les-Moulineaux, France

and

R. L. GLUCKSTERN

Department of Physics and Astronomy, University of Massachusetts, Amherst, Mass. USA

$$S = kN \log(\pi \varepsilon)$$

Envelope Equation with Linear Focusing

$$\sigma_x'' - \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

Assuming that each particle is subject only to a linear focusing force, without acceleration: $x'' + k_x^2 x = 0$

take the average over the entire particle ensemble $\langle xx'' \rangle = -k_x^2 \langle x^2 \rangle$

$$\sigma_x'' + k_x^2 \sigma_x = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

We obtain the rms envelope equation with a linear focusing force in which, unlike in the single particle equation of motion, the rms emittance enters as defocusing pressure like term.

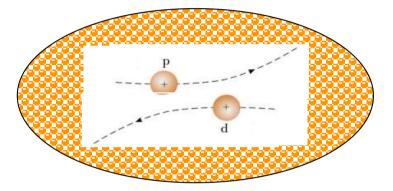
OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

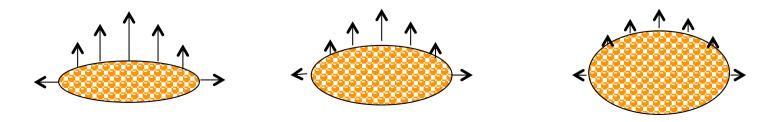
Space Charge: what does it mean?

The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close particle encounters ==> Single Particle Effects



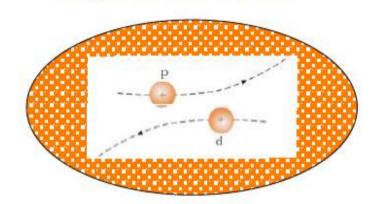
2) Space Charge Regime ==> dominated by the self field produced by the particle distribution, which varies appreciably only over large distances compare to the average separation of the particles ==> Collective Effects



The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:

Collisional Regime ==> dominated by binary collisions caused by close particle encounters ==> Single Particle Effects

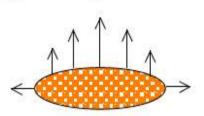
$$\lambda_D = \gamma \sqrt{\frac{\varepsilon_o k_B T}{e^2 n}}$$

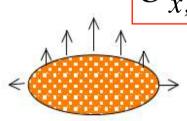


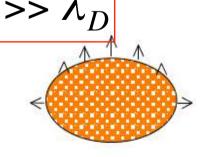
$$\sigma_{x,y,z} << \lambda_D$$

2) Space Charge Regime ==> dominated by the self field produced by the particle distribution, which varies appreciably only over large distances compare to the average separation of the particles ==> Collective Effects,

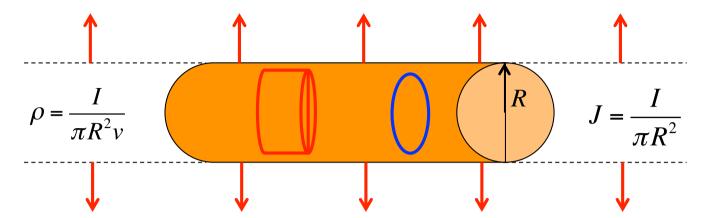
Single Component Cold Plasma







Continuous Uniform Cylindrical Beam Model



Gauss's law

$$\int \varepsilon_o E \cdot dS = \int \rho dV$$

$$\int B \cdot dl = \mu_o \int J \cdot dS$$

$$E_r = \frac{I}{2\pi\varepsilon_o R^2 v} r \quad \text{for } r \le R$$

$$E_r = \frac{I}{2\pi\varepsilon_o v} \frac{1}{r} \quad \text{for } r > R$$

 $B_{\vartheta} = \frac{\beta}{2} E_r$

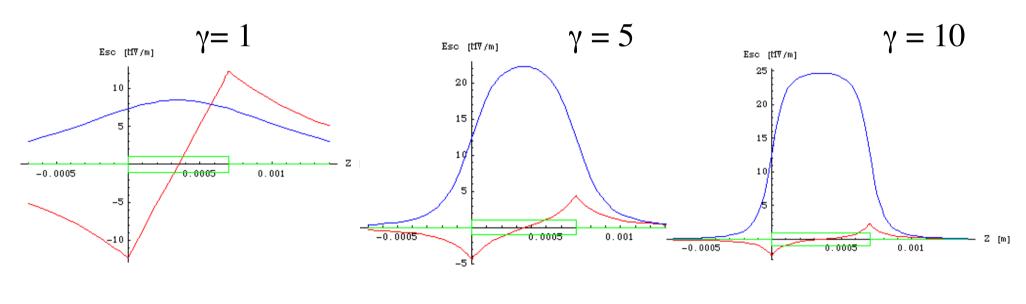
$$B_{\vartheta} = \mu_o \frac{Ir}{2\pi R^2} \quad \text{for} \quad r \le R$$

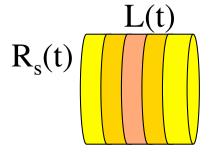
$$B_{\vartheta} = \mu_o \frac{I}{2\pi r} \quad \text{for} \quad r > R$$

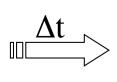
Bunched Uniform Cylindrical Beam Model

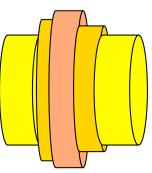
$$E_z(0, s, \gamma) = \frac{I}{2\pi\gamma\varepsilon_0 R^2 \beta c} h(s, \gamma)$$

$$E_r(r, s, \gamma) = \frac{Ir}{2\pi\varepsilon_0 R^2 \beta c} g(s, \gamma)$$









$$E_r(r,s,\gamma) = \frac{Ir}{2\pi\varepsilon_0 R^2 \beta c} g(s,\gamma)$$
Lorentz Force

$$F_r = e(E_r - \beta c B_{\vartheta}) = e(1 - \beta^2) E_r = \frac{eE_r}{\gamma^2} \qquad B_{\vartheta} = \frac{\beta}{c} E_r$$

is a **linear** function of the transverse coordinate

$$\frac{dp_r}{dt} = F_r = \frac{eE_r}{\gamma^2} = \frac{eIr}{2\pi\gamma^2 \varepsilon_0 R^2 \beta c} g(s, \gamma)$$

The attractive magnetic force, which becomes significant at high velocities, tends to compensate for the repulsive electric force. Therefore space charge defocusing is primarily a non-relativistic effect. Using $R=2\sigma_x$ for a uniform distribution:

$$F_{x} = \frac{eIx}{8\pi\gamma^{2}\varepsilon_{0}\sigma_{x}^{2}\beta c}g(s,\gamma)$$

Envelope Equation with Space Charge

Single particle transverse motion:

$$\frac{dp_{x}}{dt} = F_{x} \qquad p_{x} = p \ x' = \beta \gamma m_{o} c x' \qquad p = const.$$

$$\frac{d}{dt}(px') = \beta c \frac{d}{dz}(p \ x') = F_{x}$$

$$F_{x} = \frac{eIx}{8\pi \gamma^{2} \varepsilon_{0} \sigma_{x}^{2} \beta c} g(s, \gamma)$$

$$K_{sc} = \frac{2I}{I_{A}} g(s, \gamma)$$

$$I_{A} = \frac{4\pi \varepsilon_{o} m_{o} c^{3}}{e}$$

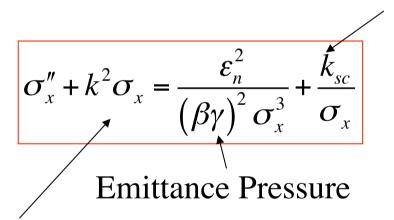
Now we can calculate the term $\langle xx'' \rangle$ that enters in the envelope equation

$$\sigma_x'' = \frac{\varepsilon_{rms}^2}{\sigma_x^3} - \frac{\langle xx'' \rangle}{\sigma_x}$$

$$\langle xx'' \rangle = \frac{k_{sc}}{\sigma_x^2} \langle x^2 \rangle = k_{sc}$$

Including all the other terms the envelope equation reads:

Space Charge De-focusing Force



External Focusing Forces

Laminarity Parameter:
$$\rho = \frac{(\beta \gamma)^2 k_{sc} \sigma_x^2}{\varepsilon_n^2}$$

The beam undergoes two regimes along the accelerator

$$\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_x^2}{(\beta \gamma)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$

 $\rho >> 1$

Laminar Beam

$$\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_n^2}{(\beta \gamma)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$

<<1

Thermal Beam

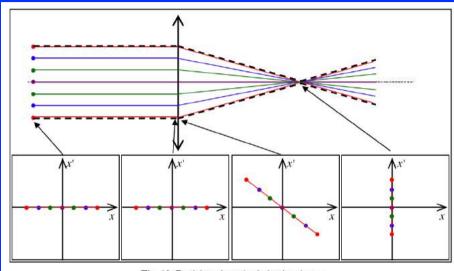


Fig. 10: Particle trajectories in laminar beam

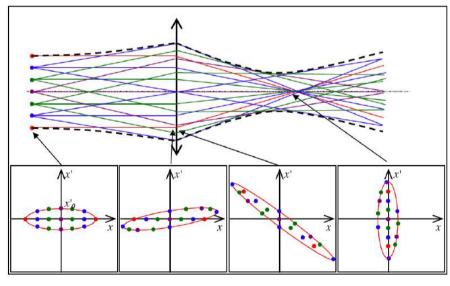
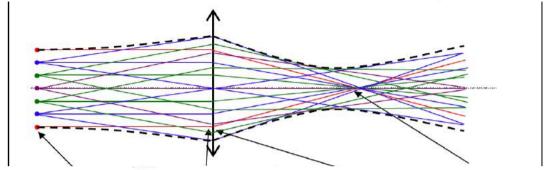
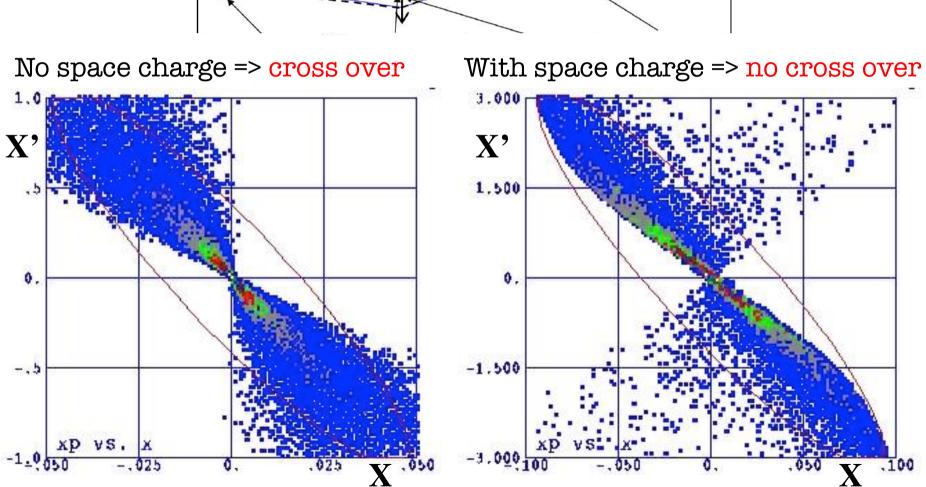


Fig. 11: Particle trajectories in non-zero emittance beam

Trace space evolution





OUTLINE

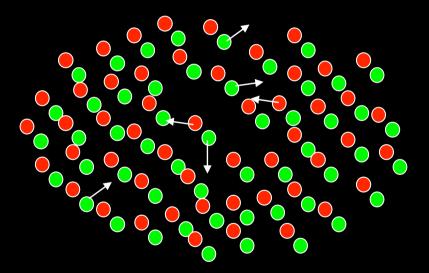
- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

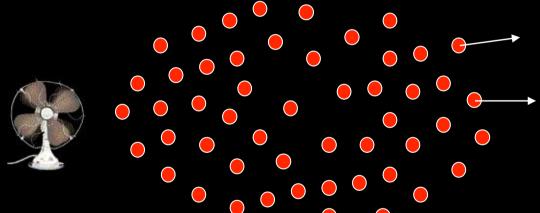
Neutral Plasma

Single Component Cold Relativistic Plasma

- Oscillations
- Instabilities
- EM Wave propagation

Magnetic focusing

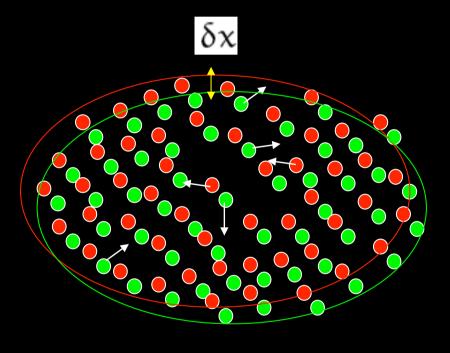




Magnetic focusing

Surface charge density

$$\sigma = e n \delta x$$



Surface electric field

$$E_x = -\sigma/\epsilon_0 = -e \, n \, \delta x/\epsilon_0$$

Restoring force

$$m\frac{d^2\delta x}{dt^2} = e E_x = -m \omega_p^2 \delta x$$

Plasma frequency

$$\omega_{\rm p}^{\ 2} = \frac{\rm n \ e^2}{\epsilon_0 \ m}$$

Plasma oscillations

$$\delta x = (\delta x)_0 \cos(\omega_p t)$$

$$\sigma'' + k_s^2 \sigma = \frac{k_{sc}(s, \gamma)}{\sigma}$$

Equilibrium solution:

$$\sigma_{eq}(s,\gamma) = \frac{\sqrt{k_{sc}(s,\gamma)}}{k_{s}}$$

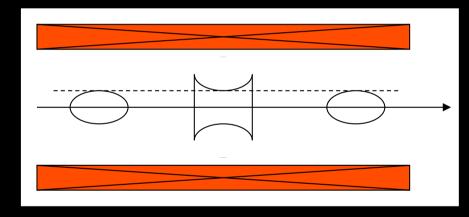
Small perturbation:

$$\sigma(\zeta) = \sigma_{eq}(s) + \delta\sigma(s)$$

$$\delta\sigma''(s) + 2k_s^2\delta\sigma(s) = 0$$

Single Component Relativistic Plasma

$$k_s = \frac{qB}{2mc\beta\gamma}$$

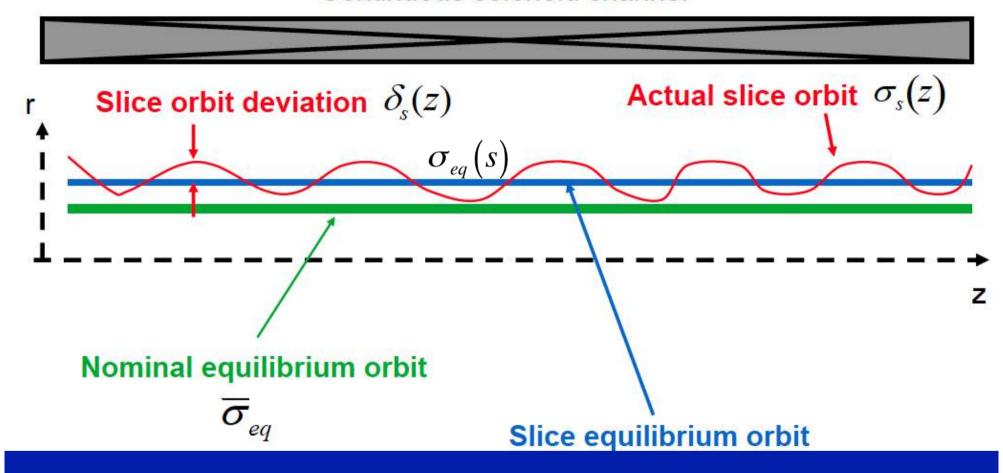


$$\delta\sigma(s) = \delta\sigma_o(s)\cos(\sqrt{2}k_s z)$$

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$\sigma(s) = \sigma_{eq}(s) + \delta\sigma_{o}(s)\cos(\sqrt{2}k_{s}z)$$

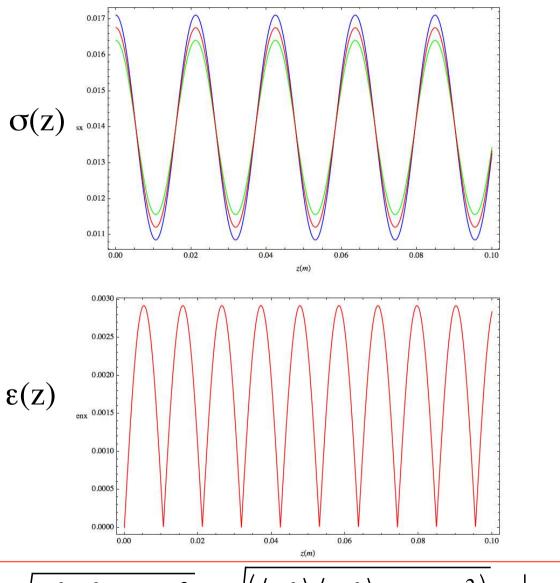
Continuous solenoid channel



Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$\sigma(s) = \sigma_{eq}(s) + \delta\sigma_{o}(s)\cos(\sqrt{2}k_{s}z)$$

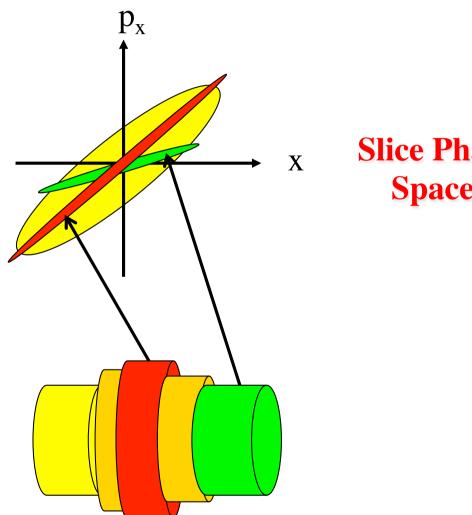
Envelope oscillations drive Emittance oscillations



$$\varepsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2\right)} \approx \left| sin(\sqrt{2}k_s z) \right|$$

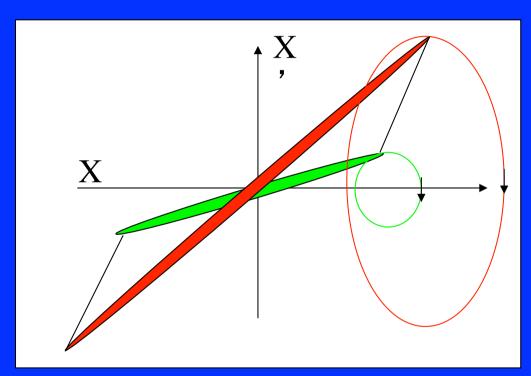
Emittance Oscillations are driven by space charge differential defocusing in core and tails of the beam

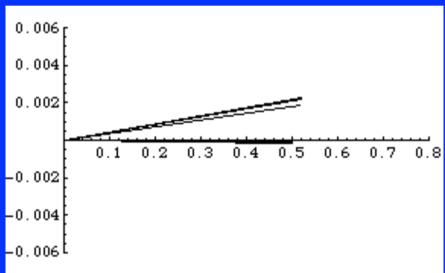
Projected Phase Space



Slice Phase Spaces

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes

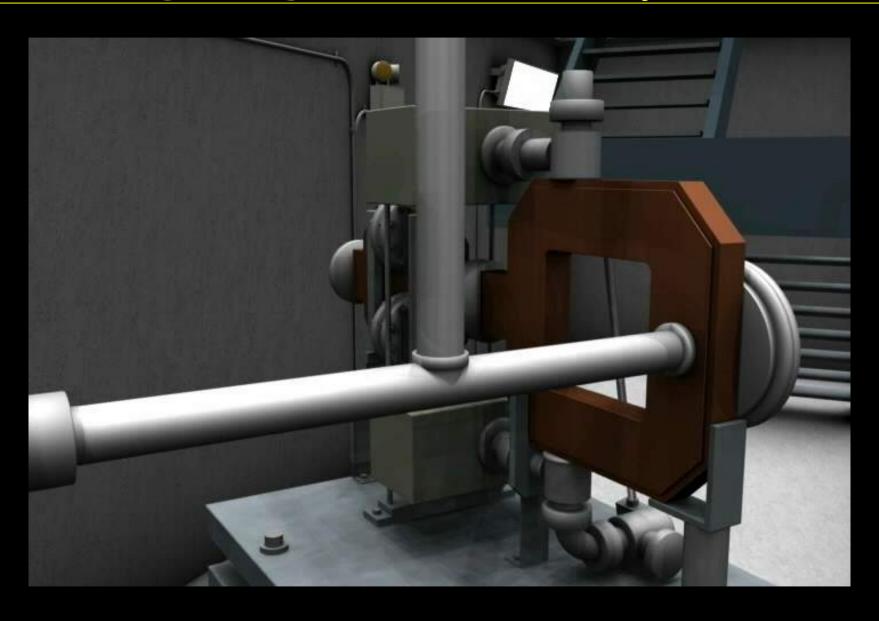




OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

High Brightness Photo-Injector



Envelope Equation with Acceleration

$$\frac{dp_{x}}{dt} = \frac{d}{dt}(px') = \beta c \frac{d}{dz}(px') = 0$$

$$x'' + \frac{p'}{p}x' = 0$$

$$x'' = -\frac{(\beta \gamma)}{\beta \gamma}$$

$$p = \beta \gamma m_o c$$

$$\sigma_x'' = \frac{\varepsilon_{rms}^2}{\sigma_x^3} + \frac{\langle xx'' \rangle}{\sigma_x}$$

$$\langle xx'' \rangle = -\frac{(\beta \gamma)'}{\beta \gamma} \langle xx' \rangle = -\frac{(\beta \gamma)'}{\beta \gamma} \sigma_{xx'} = -\frac{(\beta \gamma)'}{\beta \gamma} \sigma_{x} \sigma_{x}'$$

Space Charge De-focusing Force

$$\sigma_x'' + \frac{(\beta \gamma)'}{\beta \gamma_x} \sigma_x' + k^2 \sigma_x = \frac{\varepsilon_n^2}{(\beta \gamma)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$

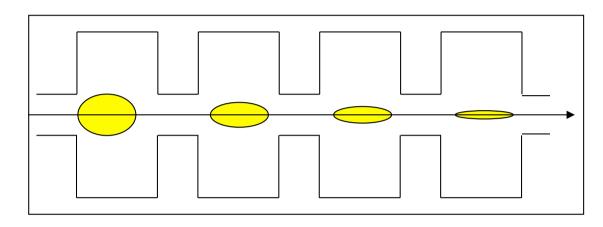
Adiabatic Damping

Emittance Pressure

Other External Focusing Forces

 $\varepsilon_n = \beta \gamma \varepsilon_{rms}$

Beam subject to strong acceleration



$$\sigma_x'' + \frac{\gamma'}{\gamma}\sigma_x' + \frac{k_{RF}^2}{\gamma^2}\sigma_x = \frac{\varepsilon_n^2}{\gamma^2\sigma_x^3} + \frac{k_{sc}^o}{\gamma^3\sigma_x}$$

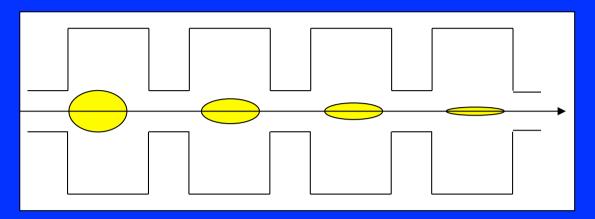
We must include also the RF focusing force:

$$k_{RF}^2 = \frac{{\gamma'}^2}{2}$$

$$k_{sc}^{o} = \frac{2I}{I_A} g(s, \gamma)$$

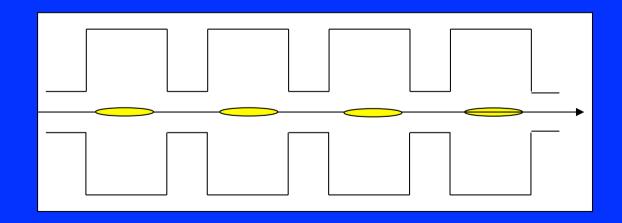
Space charge dominated beam (Laminar)

$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$

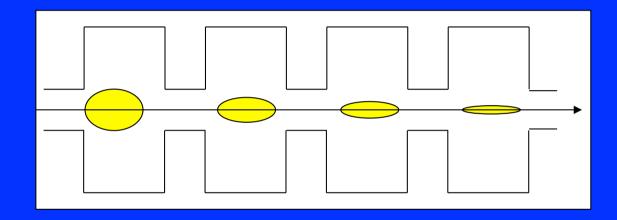


Emittance dominated beam (Thermal)

$$\sigma_{\varepsilon} = \sqrt{\frac{2\varepsilon_n}{\gamma'}}$$



$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$



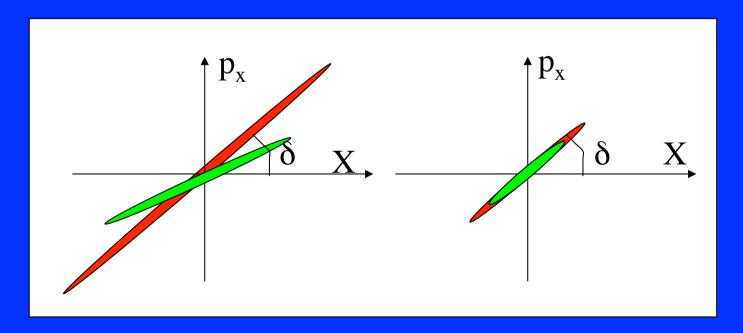
This solution represents a beam equilibrium mode that turns out to be the transport mode for achieving minimum emittance at the end of the emittance correction process

An important property of the laminar beam

$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$

$$\sigma_q' = -\sqrt{\frac{2I}{I_A \gamma^3}}$$

Constant phase space angle:
$$\delta = \frac{\gamma \sigma_q'}{\sigma_q} = -\frac{\gamma'}{2}$$

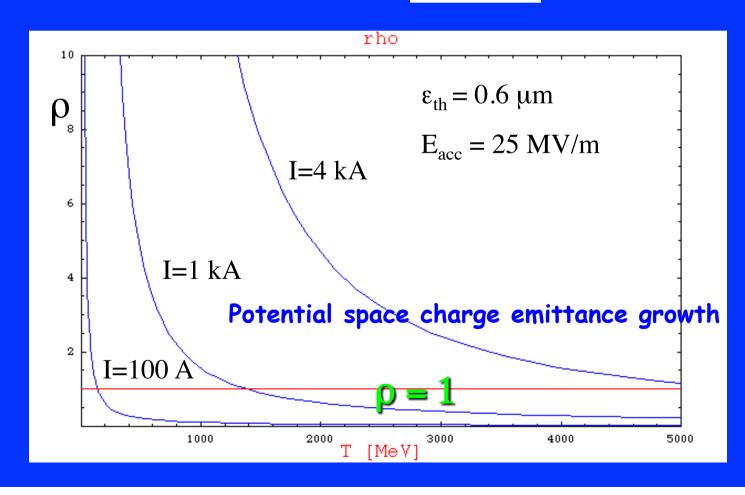


Laminarity parameter

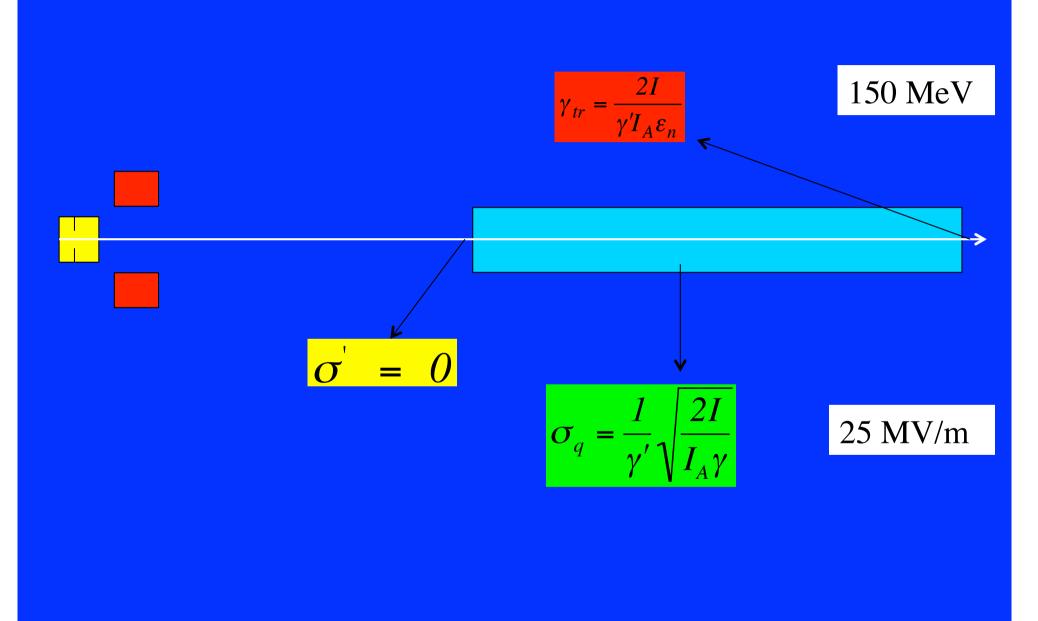
$$\rho = \frac{2I\sigma^2}{\gamma I_A \varepsilon_n^2} \equiv \frac{2I\sigma_q^2}{\gamma I_A \varepsilon_n^2} = \frac{4I^2}{\gamma'^2 I_A^2 \varepsilon_n^2 \gamma^2}$$

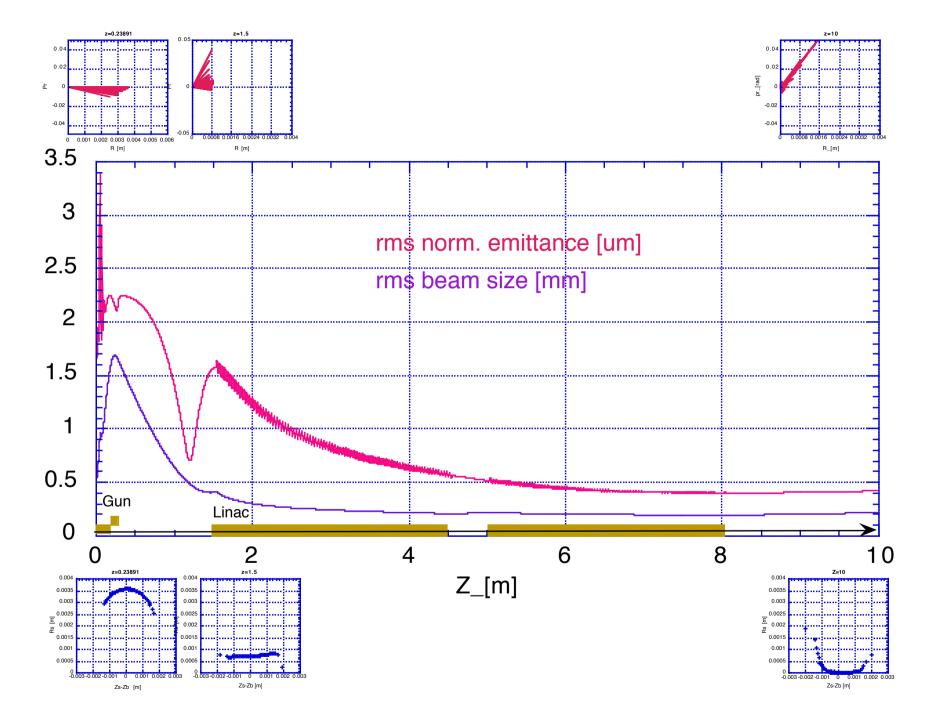
Transition Energy (p=1)

$$\gamma_{tr} = \frac{2I}{\gamma' I_A \varepsilon_n}$$



Matching Conditions with a TW Linac





Emittance Compensation for a SC dominated beam: Controlled Damping of Plasma Oscillations

- ε_n oscillations are driven by Space Charge
- * propagation close to the laminar solution allows control of ϵ_{n} oscillation "phase"
- \bullet ϵ_n sensitive to SC up to the transition energy

References:

- [1] T. Shintake, Proc. of the 22nd Particle Accelerator Conference, June 25-29, 2007, Albuquerque, NM (IEEE, New York, 2007), p. 89.
- [2] L. Serafini, J. B. Rosenzweig, PR E55 (1997) 7565
- [3] M. Reiser, "Theory and Design of Charged Particle Beams", Wiley, New York, 1994
- [4] J. B. Rosenzweig, "Fundamentals of beam physics", Oxford University Press, New York, 2003
- [5] T. Wangler, "Principles of RF linear accelerators", Wiley, New York, 1998
- [6] S. Humphries, "Charged particle beams", Wiley, New York, 2002
- [7] F. J. Sacherer, F. J., IEEE Trans. Nucl. Sci. NS-18, 1105 (1971).
- [8] M. Ferrario et al., Int. Journal of Modern Physics A, Vol 22, No. 23, 4214 (2007)
- [9] J. Buon, "Beam phase space and emittance", in CERN 94-01