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Space Charge: what does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close 

particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 

particle distribution, which varies appreciably only over large distances 

compare to the average separation of the particles ==> Collective Effects



A measure for the relative importance of collisional versus collective effects is the:

Debye Length lD

Let consider a non-neutralized system of identical charged particles

We wish to calculate the effective potential of a fixed test charged particle

surrounded by other particles that are statistically distributed.
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e2nN => total number of particles               

n => particle number  density (N/V)

kB=> Boltzman constant

T => Temperature

kB T => average kinetic energy of the particles

The effective potential of a test charge can be defined as the sum of 

the potential of the single particle d and a “perturbation” term Dn.
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the effective interaction range of the test particle is limited to the 

Debye length

The charges sourrounding the test particles have a screening effect
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Smooth functions for the charge and field distributions can be used 

as long as the Debye length remains small compared to the particle 

bunch size
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In a charged particle beam moving at a longitudinal relativistic 

velocity, assuming that the random transverse motion in the 

beam is non-relativistic, the Debye length has the following 

form:
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Collisional regime

1) Collisional Regime ==> dominated by binary collisions caused by close 

particle encounters ==> Single Particle Effects

1) multiple small-angle scattering events Intra-Beam Scattering (IBS) 

1) large-angle single scattering events Touschek Effect



Liouville theorem does not hold anymore under Collisions => 

non Conservative forces involved









Beam Thermodynamics

Definition of beam temperature in analogy with kinetic theory of 

gases : 

In a Circular machine when a particle accelerates above transition

energy it becomes slower and behaves like a particle with negative

mass:

transverse longitudinal



Let us first consider the ideal machine with a smooth-focusing lattice

below transition and negligible dispersion.

Coulomb collisions drive the beam toward an isotropic thermal

equilibrium, in which case the three temperatures would be the same:

The total thermal energy per particle in a smooth linear beam

channel is conserved, for a beam with constant energy (γ0 = const)

We can put the conservation law into the form:

Conservation Law



in a circular machine we must replace 1/o by:

This relationship is the invariant for intra-beam scattering derived in

1974 by Piwinski. For a circular machine the behavior of the system

depends on the sign of η i.e. whether it is below transition (γ0 < γt) or

above (γ0 > γt ).

below transition η < 0 thermal equilibrium can be reached.

above transition η > 0  thermal equilibrium is not possible.

An increase in momentum spread must be balanced by a

corresponding increase in the transverse emittances to maintain the

“conservation law”



The growth rate for intra-beam scattering in high-energy circular

machines defined as:

can be written in the relativistic form



In a relativistic storage ring, Coulomb collisions lead to a momentum

transfer from the transverse into the longitudinal direction that is

amplified by the Lorentz factor γo

Touschek Effect

While the total momentum in the collision is preserved, the two

particles emerge from this collision with opposite longitudinal

momentum components that are larger by the factor γo than the

original transverse momentum component before the collision.



If the longitudinal momentum acquired in such a collision is greater

than the momentum acceptance of the rf bucket that keeps the beam

longitudinally bunched, the two particles involved in such a

collisions will be lost.

The net result is that the lifetime of the stored beam is reduced.
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IMAGE SELF FIELDS

Direct self fields

Image self fields

Wake  fields  

Space Charge



Static Fields: conducting screens

Let us consider a point charge q close to a conducting screen. 

The electrostatic field can be derived through the "image method". Since the

metallic screen is an equi-potential plane, it can be removed provided that a

"virtual" charge is introduced such that the potential is constant at the position of

the screen

q q - q



I

A constant current in the free space produces circular magnetic field 

If r1, the material, even in the case of a good conductor, does not 

affect the field lines.



Circular  Perfectly Conducting  Pipe (Beam at Center)

there is a cancellation of the electric and magnetic forces



In some cases, the beam pipe cross section is such that we can consider only the

surfaces closer to the beam, which behave like two parallel plates. In this case, we

use the image method to a charge distribution of radius a between two conducting

plates 2h apart. By applying the superposition principle we get the total image field

at a position y inside the beam.
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Where we have assumed:   h>>a>y. 

For d.c. or slowly varying currents, the boundary condition imposed by the

conducting plates does not affect the magnetic field. We do not need “image

currents “As a consequence there is no cancellation effect for the fields produced

by the "image" charges.
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From the divergence equation we derive also the other transverse component, 

notice the opposite sign:

   

¶

¶x
Ex

im = -
¶

¶y
Ey

im Þ Ex

im(z,x) =
-l(z)

4p eoh
2

p 2

12
x

Including also the direct space charge force, we get:
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Therefore, for >>1, and for d.c. or slowly varying currents the cancellation effect 

applies only for the direct space charge forces. There is no cancellation of the 

electric and magnetic forces due to the "image" charges.



It is necessary to compare the wall thickness and the skin depth (region of 

penetration of the e.m. fields) in the conductor. 

If the fields penetrate and pass through the material, we are practically in 

the static boundary conditions case. Conversely, if the skin depth is very 

small, fields do not penetrate, the electric filed lines are perpendicular to 

the wall, as in the static case, while the magnetic field line are tangent to 

the surface. 
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Usually, the frequency beam spectrum is quite rich of harmonics,

especially for bunched beams.

It is convenient to decompose the current into a d.c. component, I,

for which dw>>Dw, and an a.c. component, Î, for which dw<< Dw.

While the d.c. component of the magnetic field does not perceives

the presence of the material, its a.c. component is obliged to be

tangent at the wall. For a charge density l we have I=lv.

We can see that this current produces a magnetic field able to cancel

the effect of the electrostatic force.

Parallel Plates (Beam at Center) a.c. currents

Dw

dw
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There is cancellation of the electric and magnetic forces !!
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-L. J. Laslett, LBL Document PUB-6161, 1987, vol III
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When the beam is located at the centre of symmetry of the pipe, the e.m. forces due

to space charge and images cannot affect the motion of the centre of mass

(coherent), but change the trajectory of individual charges in the beam

(incoherent).

These force may have a complicate dependence on the charge position. A simple

analysis is done considering only the linear expansion of the self-fields forces

around the equilibrium trajectory.

Incoherent and Coherent Transverse Effects



Consider a perfectly circular accelerator with radius x. The beam

circulates inside the beam pipe. The transverse single particle

motion in the linear regime, is derived from the equation of

motion. Including the self field forces in the motion equation, we

have
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Self Fields and betatron  motion



In the analysis of the motion of the particles in presence of the self

field, we will adopt a simplified model where particles execute

simple harmonic oscillations around the reference orbit.

This is the case where the focussing term is constant. Although this

condition in never fulfilled in a real accelerator, it provides a reliable

model for the description of the beam instabilities
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betatron oscillations per turn:

Self Fields and betatron  motion



Transverse Incoherent  Effects

We take the linear term of the transverse force in the betatron equation:
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The shift of betatron wave numbers (tune shift) is negative since the space charge

forces are defocusing on both planes. Notice that the tune shift is, in general,

function of “z”, therefore we have also a tune spread inside the beam. Furthermore,

by including higher order terms in the transverse force, we don’t have the harmonic

oscillator equation any more.
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Example: Incoherent betatron tune shift for an uniform

electron beam of radius a, length lo, inside circular perfectly

conducting pipe
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For a real  bunched beams the space charge forces, and the tune shift 

depend on the longitudinal and radial position of the charge. 



Consequences of the space charge  tune shifts

In circular accelerators the values of the betatron tunes should

not be close to rational numbers in order to avoid the crossing of

linear and non-linear resonances where the beam becomes unstable.

The tune spread induced by the space charge force can make hard to

satisfy this basic requirement. Typically, in order to avoid major

resonances the stability requires

DQu < 0.3



Transverse Coherent  Effects

If the beam experiences a transverse deflection kick, it starts to

perform betatron oscillations as a whole. The beam, source of the

space charge fields moves transversely inside the pipe, while

individual particles still continue their incoherent motion around

the common coherent trajectory.
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The image charge is at a distance “d” such that

the pipe surface is at constant voltage, and pulls

the beam away from the center of the pipe.

Circular  Perfectly Conducting  Pipe (Beam off Center)



The effect is defocusing, the horizontal electric image field E and 

the horizontal force F are: 
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This coherent betatron tune shift, differently from the incoherent one 

does not depend on the beam size but on the pipe radius and it is 

inversely proportional to the beam energy.
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