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• Introduction 

• RF cavity parameters
• Shunt impedance, beam loading, power coupling

• Fundamental theorem of beam loading

• Passage of a bunches through a cavity
• Single passage or bunches with large spacing

• Multiple bunch passages

• Steady state beam loading and partial filling
• Few bunches with large spacing

• Summary

Outline
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Introduction
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What do these devices in common?

 They all suffer from or make use of beam loading

SLS

Electron storage ring

Klystron amplifier Microwave oven

Hadron collider
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Introduction

• The radiofrequency (RF) system 
should provide

Energy to the beam

Longitudinal focusing

• Intended energy flow usually 
from cavity to beam

• But beam also likes to influence 
the field in the cavity 

Cavity

Beam

Low-level RF

Power amplifier
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Introduction

Beam loading

• The radiofrequency (RF) system 
should provide

Energy to the beam

Longitudinal focusing

• Intended energy flow usually
from cavity to beam

• But beam also likes to influence 
the field in the cavity 

Power amplifier

Cavity

Beam

Low-level RF



6

RF cavity
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Cavity parameters

• The resonance of a cavity can be understood as simple 
parallel resonant circuit described by R, L, C

R CL

Z(w)

with
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Cavity parameters

• The resonance of a cavity can be understood as simple 
parallel resonant circuit described by R, L, C

 Resonant circuit can also be described by R, R/Q, w0 or any 
other set of three parameters

R CL

Z(w)

with



9

Cavity parameters

• The resonance of a cavity can be understood as simple 
parallel resonant circuit described by R, L, C

 Resonant circuit can also be described by R, R/Q, w0 or any 
other set of three parameters

R CL

Z(w)

Dw-3dB
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Cavity parameters

• Most common choice by cavity designers w0, R, R/Q – why?

• Resonance frequency, w0

 Exactly defined for given application, e.g. hwrev

• Shunt impedance, R

 Power required to produce a given voltage without beam

• “R-upon-Q”, R/Q

 Defined only by the cavity geometry

 Criterion to optimize a geometry

 Detuning with beam proportional to R/Q
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Why R/Q?

 Charged particle experiences cavity gap as capacitor

 Cavity geometry with small R/Q to reduce beam loading

q

Cavity Beam induced voltage
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Example: 400 MHz cavities in LHC

 Reduce beam loading in RF cavities

 Shunt impedance, R, low for small R/Q with normal 
conducting cavities  superconducting cavities in LHC

Bell shape: R/Q ~ 44 W, 400 MHz

 28 cavities, 5.3 MV/m

~o
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 After passage of charge: energy and fields decay exponentially

 Energy:

 Voltage: and

 Filling time:

Field decay in cavity

q

Cavity Beam induced voltage
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• Connection of cavity to power amplifier

 Capacitive: Capacitor coupling electrically to the gap

 Inductive: Coupling loop in region of large magnetic field

Coupling power into a cavity

C

B
e

a
m

RL

IbCavity
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• Connection of cavity to power amplifier

 Capacitive: Capacitor coupling electrically to the gap

 Inductive: Coupling loop in region of large magnetic field

Coupling power into a cavity

B
e

a
m

RL

IbCavity

C

Cc

RF power

Capacitive coupler
of CERN PS 40 MHz
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• Connection of cavity to power amplifier

 Capacitive: Capacitor coupling electrically to the gap

 Inductive: Coupling loop in region of large magnetic field

Coupling power into a cavity

B
e

a
m

RL

IbCavity

Lc
MRF power

L
. 

S
ti

n
g

e
li

n

Main coupler
PSI cyclotron

C
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 Output impedance loads the resonant circuit: Rg || R

 Reduction of quality factor: Q0  QL

 Coupling coefficient, b, defines coupling ratio 

Coupling power into a cavity

C
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RL

Ig Ib

Rg

Cavity
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 Output impedance loads the resonant circuit: Rg || R

 Reduction of quality factor: Q0  QL

 Coupling coefficient, b, defines coupling ratio

1. Generator output impedance is not a physical resistor

 Generator does not experience own output impedance

2. Beam experiences output impedance of generator as resistor

 Rg || R relevant for beam loading 

Coupling power into a cavity
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RL

Ig Ib

Rg

Cavity
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Fundamental theorem
of beam loading
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Which fraction does a charge experience of its induced voltage?

• Equal charges passing through cavity at distance l0/2 = pc0/w0

 and

Initially empty cavity

Resonator

qq
l0/2

 Principles: energy conservation and superposition



21

• 1st charge passes through the cavity and induces voltage

• Fraction, r describes part of induced voltage affecting itself: 

 and

After passage of first charge

Resonator

qq
l0/2
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• 2nd charge passes through the cavity

• Affected by induced field of 1st charge

 and

Before passage of 2nd charge

Resonator

qq
l0/2
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• 2nd charge passes through the cavity

• Affected by induced field of 1st charge and its own induced

 and

Passage of 2nd charge

Resonator

qq
l0/2
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• After passage of 2nd charge through the cavity

 Takes the same energy as brought into cavity by 1st charge

 and

After passage of first bunch

Resonator

qq
l0/2
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 Total energy brought in and taken out of cavity must be zero

 Fundamental theorem of beam loading: 

Charge passing through a resonator sees
½ of its induced voltage: Vb = ½ Vb0

Ratio of induced field



26

Single passage
through a cavity



27

• Passing charge induces voltage

• Voltage vector rotates with resonance frequency of cavity

 Vector rotation with w0 not relevant

 Need cavity voltage at arrival of next charge

Vector representation

Cavity without external drive Cavity driven by external source
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• Vector diagram at the instant of the bunch passage:

 Vector sum:

 Induced voltage changes cavity phase: detuning

 De-phase generator to obtain expected net voltage

Vb0

• Vg: Generator driven voltage
before bunch passage

• V-: Voltage after bunch passage

• V: Net voltage seen by beam

Single passage

Vg

V-

V

fS

Ib

Vb
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Multiple passages
through a cavity
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• Resonator excited by chain of charges or particle bunches

1. Fields in resonator decay from one charge to the next

 Single passage case

2. Field from previous still present

 Accumulation of induced voltages

Multiple passage of bunches

Resonator

qq
Tb

q
Tb

q
Tb
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• Arrange generator phase and voltage for real net voltage

• After 1st bunch passage



Multiple passages

Vg

Vb0V

Vb

VbIb
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• Arrange generator phase and voltage for real net voltage

• After 2nd bunch passage



 Induced voltage of 1st passage decayed:               with

 Phase advance between two bunches:                 with

Multiple passages

Vg

Vb0

V

Vb

Vb

Ib
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• Arrange generator phase and voltage for real net voltage

• After 3rd bunch passage



Multiple passages

Vg

Vb0

V

Vb

Vb

Ib
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Multiple passages

Vg

Vb0

V

Vb

Vb

Ib

• Arrange generator phase and voltage for real net voltage

• After 4th bunch passage





35

Multiple passages

Vg

Vb0

V

Vb

Vb

Ib

• Arrange generator phase and voltage for real net voltage

• After 5th bunch passage


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Multiple passages

Vg

Vb0V

Vb

VbIb

• Arrange generator phase and voltage for real net voltage

• After 10th bunch passage


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Multiple passages

Vg

Vb0V

Vb

VbIb

• Arrange generator phase and voltage for real net voltage

• After 100th bunch passage



 Infinite passages:
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General beam induced voltage

Separate real and 
imaginary part:
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Change of variables

• Variables for damping, d, and bunch-by-bunch phase 
advance, Y, not very practical

 New variables with RF system parameters:

1. Coupling coefficient, b 2. Cavity tuning angle, fc
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Beam induced voltage in new variables

with denominator

 Numerical computations required for analysis

 Let us look at a particularly relevant approximation:
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Approximation

 Bunch distance short compared filling time: 

 Approximate terms including 

Tb

Bunch train

RF envelope
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 Bunch distance short compared filling time: 

 Approximate terms including

 Ohm’s law for the loaded cavity impedance: steady state case 

Approximation
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Steady state
beam loading
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Equivalent circuit model

• Lumped element circuit model for steady state case

 Total current: 

 Power required from generator: 

C

B
e

a
m

G
e

n
e

ra
to

r
RL

Ig Ib

Rg

Cavity



45

It

fc

• Vector diagram for passage of continuous bunch train

 Parameters to achieve minimum generator current?

Steady state

Ig

V

fS

Ib

• Ig: Generator current

• It: Total current

• V: Net voltage seen by beam

Ib
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• Vector diagram for passage of continuous bunch train 

• Ig: Generator current

• It: Total current

• V: Net voltage seen by beam

Steady state: minimum generator current

Generator current, Ig

Lowest power (current Ig)

 Generator current, Ig in 
phase with voltage 

 Resistive load with beam
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• Vector diagram for passage of continuous bunch train



• Ig: Generator current

• It: Total current

• V: Net voltage seen by beam

Steady state: minimum generator current

fS

Ig

It

V

Ib

fc
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• Voltage descent with beam:

 Tuning loop recovers
cavity resonance frequency

 Dephasing at low RF voltage

A
m

p
li

fi
e

r

Df

Low-level RF

Phase

Voltage

Example: Cavity dephasing in PS

Voltage and phase vs. time

Phase versus voltage

Cavity driven 
by amplifier

Cavity driven 
by beam
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• Minimum power:

1. Optimum detuning:

 Cavity and beam appear as resistive load to generator

 Automatically adjusted by cavity tuning loop

2. Optimum coupling:

 Usually mechanically fixed by construction

Steady state: minimum generator current

Resistive losses 
in cavity

Power delivered
to beam
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• Control of both cavity resonance frequency and coupling

• Optimize quality through Qext for injection and storage

Example: LHC power coupler

R
F

 p
o

w
e

r

Cavity side

M
o

va
b

le
 a

n
te

n
n

a
Mode QL,  Qext Comment

Injection ~2∙ 104 Suppress
transients

Collision ~6∙ 104 Maximum
voltage

Loaded quality factor:

~o
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Filling pattern
with gaps
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Why leaving a gap and not filling full ring?

 Electron storage rings: Clear ions attracted by electron beam

 Hadron accelerator: Leave gap for kicker magnets at
injection/ejection 

Dt1 Dt2 Dt3 Dt4

72 bunches

Dt1 8 SPS injection kickers

Dt2 38 SPS ejection and LHC 
ejection kickersDt3 39

Dt4 119 Abort kicker gap

1 turn

ESRF: 7/8 + 1 filling mode LHC: original nominal

868 23 uA/b 200 mA in 7/8 train

2 1 mA/b Marker bunches

1 2 mA Single bunch

262 <2 pA/b Gap
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• Phase change due to cavity detuning:

• Phase change due to induced voltage: with

 Total phase advance:

Beam loading with gaps

• Limitations:                , no acceleration, lossless cavity 
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 Periodicity condition                         to get average detuning

 and phase along the circumference

 Phase changes linearly for Ib(t) = const. during beam region

Beam loading with gaps
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• Maximum phase excursion

 Displaces timing of synchrotron radiation pulses

 Longitudinally moves collision point in collider

 Compromise between RF power and collision point

Maximum phase excursion
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Example: Electron storage ring

• Transient beam loading in electron storage ring BESSY II

 Synchrotron radiation light pulses slightly shifted in time

Bunch current

~13°

Bunch displacement with respect to reference

240 m

96 m

Bunch number

Bunch number
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http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/tupri072.pdf
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Example: FCC-hh (hadron-hadron)

• Proposed future circular collider

• Machine protection requires

 Four batches per turn

 Gaps of ~1.5 ms

 Full-detuning causes a bunch 
phase modulation of ~2°

 Position of collision point 
modulated I.

 K
ar
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Batch of 2600 
bunches with 

short gaps

Gap of ~60 
empty bunch 

positions



58

• Triple splitting of LHC-type beams in CERN PS requires 
three RF systems (h = 7, 14 and 21) in phase at degree level

 Transient beam loading: relative phases different for 1st bunch

 Bunch-by-bunch intensity variations in LHC

Transient beam loading between RF systems

First bunch Last bunch6 bunches split, one empty bucket
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 Fast phase measurement to directly observe relative changes

• Cavity detuning not an option

 Would even enhance phase modulation along batch

• Feedback systems

 Counteract beam loading with additional RF power

 Stabilize phase

Relative phase of 10 MHz and 20 MHz

Effect on bunch shape

Transient beam loading between RF systems
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Beam loading in
microwave oven?
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Beam loading in microwave oven?

• Microwave ovens use magnetrons as RF power source

• Anode block consists of ring of cavity
resonators

• Electrons from the cathode accelerated
toward anode (cavities)

• Perpendicular magnetic field causes
cyclotron motion

+-

C
a

th
o

d
e

Anode
block

RF outputB

Ch. Wolff, http://www.radartutorial.eu/08.transmitters/Magnetron.en.html

http://www.radartutorial.eu/08.transmitters/Magnetron.en.html
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Beam loading in microwave oven?

• Magnetron as RF power source

 Electron flow from cathode to anode self-bunched under 
influence of oscillating fields in anode resonators

 Bunched electrons excite RF fields  beam loading!

 Food gets heated C
h
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http://www.radartutorial.eu/08.transmitters/Magnetron.en.html


63

Summary

• RF cavity parameters

System of cavity, coupling and amplifier

• Single and multi-passage of bunches through a cavity

Bunch experiences half of its induced voltage

Multiple passages limiting case of steady state

• Steady state beam loading

Minimize RF power by detuning and coupling

• Partial filling

Modulation of bunch phase and RF voltage

• Magnetron principle

Heating food with beam loading 
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 2nd order Taylor expansion for

Approximations
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Approximations: F1

 Simplification of real part F1(b,fc) for
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Approximations: F2

 Simplification of real part F2(b,fc) for
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Frequency and wavelength ranges

100 kHz
3 km

1 MHz
300 m

10 MHz
30 m

100 MHz
3 m

1 GHz
30 cm

10 GHz
3 cm

100 GHz
3 mm

SPS 200 MHz

PS main RF 
system

PS longitudi-
nal damper

CLIC 12 GHz

Long wave

Medium/ 
short wave

VHF

Microwave 
links


