CERN Accelerator School Accelerators for Medical Applications 2015

Case Study the **KingRing** facility

Group 7: Jarno Alaraudanjoki JYFL Mohammed Almalki GSI Christoph Kurfuerst MedAustron Jorge Giner Navarro CERN Adriana Rossi CERN Luca Sabato UniSannio

1

CAS 2015

Location and Motivation.

→ Patient Workflow Estimation.

→ Main parameters.

- → Layout of the KingRing facility
 - Ion sources.
 - Linac Injector.
 - Synchrotronility.
 - Extraction and delivery

Outline

Location and Motivation.

→ Patient Workflow Estimation.

→ Main parameters.

- → Layout of the KingRing facility
 - Ion sources.
 - Linac Injector.
 - Synchrotronility.
 - Extraction and delivery

Location and Motivation

4

Location and Motivation

Saudi Arabia (Dammam)

Netherlands

 Founding: Saudi Arabia government
 + a special contribution from local universities.

Poland

Belarus

 Goal: Developing expertise in accelerators for medical applications and physics research.

Population: 30 M

Burkina

Faso

Ireland

1 % cancer to be treated per y;
20 % treated with radiotherapy;
15 % radio-resistance.

Long prospective: treating 9 k patients/y.

→ Location and Motivation.

→ Patient Workflow Estimation.

→ Main parameters.

- → Layout of the KingRing facility
 - Ion sources.
 - Linac Injector.
 - Synchrotronility.
 - Extraction and delivery

→ Assuming:

- 8 to 20 h = 12 working hours for patients;
- 5 days/wk treatment + 1 day/wk maintenance + 1 day/wk + daily QA and nights for study and development;
- 3 wk/y + 2wk/y holidays for Ramadam and Pilgrim season (used also for maintenance + 1 wk/y maintenance;
- 30 min/irradiation fraction;
- 20 fractions/patient;
- 3 rooms (2 Gantries) + 1 for experiment.

7

→ Location and Motivation.

→ Patient Workflow Estimation.

→ Main parameters.

- → Layout of the KingRing facility
 - Ion sources.
 - Linac Injector.
 - Synchrotronility.
 - Extraction and delivery

→ Proton beam:

- In the range of 1E10 p/spill to patient and 10 times to experimental room.
- 250 MeV
- → Carbon beam:
 - In the range of 5E8 C/spill to patient
 - 400 MeV/u
 - Pencil beam with scanning magnets $(20x20 \text{ cm}^2)$
 - About 1 mm characteristic size at patient
- \rightarrow 2 Gantries (one for proton and one for carbon ions)
- → No superconductive magnets (limited access to LHe).

9

→ Location and Motivation.

→ Patient Workflow Estimation.

→ Main parameters.

→ Layout of the KingRing facility

- Ion sources.
- Linac Injector.
- Synchrotronility.
- Extraction and delivery

Layout of the KingRing facility

→ Ion source 1:

- Supernanogun (ECR) 14,5 GHz
- mostly for proton
- in reserve for carbon ions

 \rightarrow Ion source 2 (similar than no. 1)

- Supernanogun 14,5 GHz
- mostly carbon ions
- in reserve for proton
- \rightarrow Ion source 3
 - Experimental ECR-ionsource for research purposes.
- \rightarrow Ion source 4
 - One free space to install and test new ion sources.

4 June 2015

Linac Injector

- → Magnetic Rigidity:
 - 250 MeV protons: 2.5 T m
 - 400 MeV/u C⁶⁺ ions: 6.6 T m
 - 250 MeV/u He²⁺ ions: 5 T m

→ Dimensions:

given by carbon ions requirements, since they are more rigid;

- Max bending radius at 2 T: 3.3 m
- Dipole magnets consist of 50 % of the synchrotron, therefore
 - $R = 6.6 \text{ m} \rightarrow 41 \text{ m of circumference}$

Synchrotron

Synchrotron

Components

- 2 T dipoles: bending magnets
- Quadrupoles: in FODO lattices for beam focusing
- Magnet correctors (sextupoles, octupoles)
- Septum magnets: injection/extraction
- RF tank: 1 acceleration point per turn

Particle

- Beam diagnostics

Acceleration parameters Energy [MeV/u] Magnetic field [T] RF frequency [kHz] 7 0.12 860

	- 07 L - 7-1		
p+	7	0.12	860
	250	0.75	4390
C6+	7	0.24	860
	400	2	5120
He2+	7	0.24	860
	250	1.5	4390

Extraction and delivery

KingRing

→ Extraction:

- To start with: slow extraction (1 to 10s) with 3rd resonance excitation.
- RF KO with energy modulations and intensity adaptation will be developed with the aim of delivering the whole dose with one extraction. We should gain in stability and in time.

→ Delivery with on-line monitoring:

- Besides standard delivery dose monitoring
- X-rays
- PET (PET + CT during preparation)

→ Location and Motivation.

→ Patient Workflow Estimation.

→ Main parameters.

- → Layout of the KingRing facility
 - Ion sources.
 - Linac Injector.
 - Synchrotronility.
 - Extraction and delivery

- → KingRing will be located in Saudi Arabia.
- → It will serve the whole country and Middle East regions.
- → Costs covered by SA government (estimated in the order of 500 M€).
- \rightarrow Construction time 3 to 4 y.
- \rightarrow Commissioning 2 y (training necessary) + 1 y for clinical trials.
- → Full reimbursement by state based health assistance.

18

Thank you - the KingRing team

19

CAS 2015

Layout of the KingRing facility

CAS 2015

23

Location

KingRing

Saudi Arabia (Dammam) with government money plus a special contribution from South Arabia for developing expertise in accelerators for medical Iran applications and physics research. We have to account for <u>30M</u> people. With the rsian Gul assumptions of 1% cancer to be treated per y, of GulfofOman which 20% treated with radiotherapy and 15% radio-Saludi Arabia United Arab Emirates 9k patients/y خليج تاروت القطيف Tarout Bay أندو ال Al Qatif Oman **Red Sea** Saihat لدمام Dammam Yemen المنامة Eritrea Al Khobar Manama الهملة Hamala صلاصا Gulf of Aden

