Kationale	Cocation O O	OO OO O O	Facility 000 0 0	Investment Plan O O O	O O O
The CERN Acceler				CERNY	
			A		

Centro Radiológico de Aplicações Protônicas A CAS MEDICAL 2015 Case Study

Group 10

・ロ・ ・四・ ・ヨ・ ・ ヨ・

= 900

			Planning
	00	000	

э

Overview

- 1 Rationale
- 2 Location
 - Country
 - City
- 3 Technical details
 - Accelerator
 - Beam Transport Line-Selector
 - Beam Delivery System

4 Facility

- Facility
- Operation Schedule
- Human Resources
- 5 Investment Plan
 - Installation Budget
 - Operation Budget
 - Budget Summary
- 6 Planning
 - Commissioning
 - Strategy/Limitations

Group 10 CRAP

Rationale			Planning
	00	000	

Business Model

- Commercially available Cyclotron System
- High Beam availability and current
- High number of treatment rooms
- Use "down time" between treatments for radioisotope production/radiography
- Relative low investment \rightarrow High revenue
- Aim for "New Continent" without other hadron facilities competitors

	Location			Planning
	•	00	000	
Country				

Brazil

- 1 Population $\gtrsim 200M$ (2014) 5th 2 GDP (PPP) total ≈ 3.3 trillion \$ 7th
- 3 HDI = 0.744 high

worldwide

South America

- \blacksquare Total Population \gtrsim 385M (2011)
- "Relatively" high political/social stability
- Absence of competitors

Group 10 CRAP

A lot of potential patients!!

Figure: Brazil's location in SA

	Location ○ ●		
City			
São Pa	ulo		

- Metropolitan population 200M (2014), largest in the continent.
- Offers multiple synergetical possibilities:
 - 217 Hospitals, largest health care hub in Latin America (e.g. AEIH, the best in Latin America)
 - Many universities (e.g. USP, the best in Latin America)
 - Multiple Infrastructures (Intl. Airport, heliports, highways, etc)

	Technical details		Planning
	O	000	
Accelerator			

Accelerator

Superconducting Isochronous Cyclotron 250 MeV

- Continuous Beam (72 MHz)
- External high current Ion Source
- Over 1 µA Extracted Current
- Low Activation

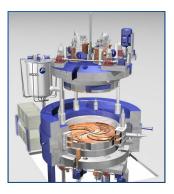
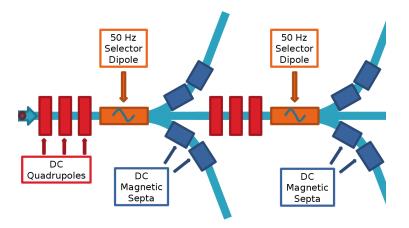


Figure: Varian SC 250 MeV

	Technical details		Planning
	00	000	
Accelerator			

Isochronous Cyclotron


Characteristic	Value	Unit
Energy	250	MeV
Extracted Current	1000	nA
Emittance	3–5	$\pi \ \mu m$ rad
Extraction Efficiency	80	%
Estat. Intensity Modulation	100	μ s
Weight	90	tons
Central & Max B–field	2.4 & 4.0	Т
Cryocooler Power	40	kW
Radio Frequency (h=2)	72.8	MHz
RF Power	115	kW

_

	Technical details		Planning
	00	000	
	•		

Beam Transport Line-Selector

Beam Transport Line–Selector

	Technical details		Planning
	00	000	
	•		

Beam Delivery System

Beam Delivery System

$2 \times$ Trifold Dipole Selector for Rooms 1–5

- 50 Hz Selector Magnets (Bipolar)
- Permanent Magnetic "Septa" on both outer sides

Each Room equipped with rotating degrader:

- Collimator (Beamsize)
- Degrader Rotator (Energy)
- Collimator (divergence)
- Intensity Quad (Intensity)
- Collimator (Intensity)
- Scanning Magnets (continuous)

		Facility	Planning
	00	000	
Facility			

Therapy Center

Continuous Beam Cyclotron

Fast Beam Switching (50 Hz)

- No scheduling between rooms necessary!
- No waiting for another room to be ready!

4 Treatment rooms

- 3 Gantries
- 1 Horizontal Treatment Line

1 Isotope production/Radiography line

Group 10

		Facility	Planning
	00	000	

Facility

Experimental/Production Room

Default Beam Line

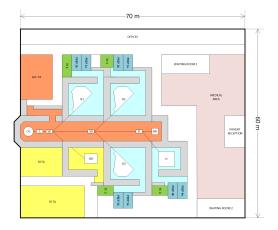
Degrader System, no Energy Selection

Isotope Production focus on:

⁸⁹Y, Rb, Kr
$$ightarrow$$
 ⁹²Sr

⁸²Sr
$$\rightarrow$$
 ⁸²Rb – PET/SPECT (24 days)

■ ²³²Th(n, γ)²³³Th(β^-) \rightarrow ²³³Pa(β^-) \rightarrow ²³³U(α) \rightarrow ²²⁹Th(α) \rightarrow ²²⁵Ra(β^-)²²⁵Ac(α) – Carrier Molecules, Leukemia (10 days)


Neutron target for radiography

Tungsten/Uranium Target

Group 10

		Facility	Planning
	00	000	
Facility			

Building Layout

			Facility	Planning
		00	000	
			•	
Operation Sche	dule			

・ロン ・四 と ・ ヨ と ・ ヨ と …

3

Operation Schedule

- 2×8h Medical Shifts (including 2h QA) 5 days a week
- Bi-weekly Maintenance Intervention on the weekend
- Research Beam time bi-weekly on the weekend
- Parasitic Isotope Production

Patient Schedule

- 15 minutes in Irradiation room
- 20–30 minutes in Preparation room

			Facility 000 0	
Human Resourc	es			
Techn	ical Staff			23
	Operators & T	echnicians		18
	External Servio	e Personnel		3
	Accelerator Su	pervisor		2

Medical Staff	43
Nurses	20
 RTT 	10
Medical Physicists	8
 Medical Doctors 	5

Administration	10

Total	76	
	◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ 三 ♪ ◆ ○ ○	٢
Group 10		
		-

				Investment Plan	Planning
		00	000	•	
Installation Bud	get				

Initial Cost

1 Cyclotron	15M€	
3 Gantry	21M€	
4 Patient Positioning System	1M€	
1 Experimental Room Equipment	1M€	
5 Degrading System+Collimators	1M€	
1 Room Selector System	0.75M€	
1 Beam Lines from Cyclotron to Irradiation rooms	10M€	
5 $DDS/(x,y)$ chamber/I counter/scanning system	7.5M€	
- Building	50M€	
- Software	1M€	
- IT external Service Contracts	2M€	
SubTotal	≈ 111.25M€	C

			Investment Plan o o o	
Operation Budge	et			

	SubTotal	≈ 13M€
-	TPS Licenses	1M€
-	IT Software Licenses	0.25M€
76	HR (earning an average 80k€)	≈ 6M€
-	Spare Parts	2M€
-	Facility	0.5M€
-	Electricity	0.78M€
3	Gantries	0.5M€
-	Cyclotron	2M€

				Investment Plan	Planning
		00	000		
				•	
Budget Summa	rv				

Financial Viability

Safety Budget	2M€
Revenue/patient	15k€
ightarrow Revenue/Year	24M€
Isotope Income	≈ 150k€
Operation Cost/year	13M€

pprox 15 Years to pay back investment

Patient estimation data

minutes per treatment: 5 hours/day for treatment: 14 treatments a day: 168 assuming 80% outcome: 134 treatment days: 240 treatments per year: 32160 fractions/patient: 20 **patients/year** \approx **1600**

Group 10

			Planning O
Commissioning			
··			

Timeline

Y1		Y2		Y3		Y4		Y5	
S1	S2	S 3	S4	S5	S6	S7	S8	59	
Production & Development									
			Installation				•		
						Commissioning			
								Medical Verification	

Group 10

				Planning	
		00	000		
Strategy/Limita	itions				

Strategical Advantages

- High Patient throughput
- Simultaneous Patient treatment
- No Room scheduling needed

Drawbacks

- Protons Only
- Low Energy (research)
- Low intensities at low Energies (Isotope)