

CERN Accelerator School – FELs and ERLs

Case Study: Case 1 / Group 2

Goal: Design a high repetition FEL at a wavelength of 13.5 nm with an average power of more than 2 kW

Case Study Group 2

Group 2		
Birkhan	Jonny	TU Darmstadt
Domont-Yankulova	Dilyana	TU Darmstadt
Dorda	Ulrich	DESY
Englisch	Uwe	European XFEL GmbH
Karabekyan	Suren	European XFEL GmbH
Kostin	Denis	DESY
Zhao	Quantang	PITZ, DESY

Introduction

- Background: To generate the fine structures in micro chips with lithorgraphy it requires a coherent light source and a mask for the fabrication of wafers. More average power results in faster fabrication. It should be at least above 1 kW because otherwise alternative solution exists.
- The VUV FEL at a wavelength of 13.5 nm with an average power of more than 2 kW requires around 1 MW of average CW electron beam power (ρ_{FEL} ~ 0.2%).
- 3. Because of high required average electron beam power and CW operation an ERL based FEL with superconducting LINAC is proposed to reduce the dumped beam energy to an acceptable level.
- 4. The FEL undulator is chosen to be planar type vriable (20 mm) gap and 30 mm period, close by design to LCLS and FLASH/E-XFEL ones.
- 5. The ERL design is mainly based on bERLinPro and JAEA projects.

The Name

Multi-kW Advanced EUV Radiation Source project "MARS"

CERN Accelerator School – FELs and ERLs, June 9, 2016

FEL Parameters

Power gain model used: Xie **Beam parameters:** Beam Energy [GeV] : 0.60 Bunch charge [nC] : 0.2 Beam size [mu] : 50.413 **Undulator parameters:** Type : Period [mm] : 30 Peak field [T] : 0.246 FODO period [m] : 1 Quadrupole focal length [m] : 1.332 **Radiation parameters:** Radiation wavelength [nm] : 13.507 finalize 1D rho parameter (Bonifacio) : 0.0025 3D rho parameter : 0.0020 Shotnoise power [W]: 34.935 Electrons per wavelength: 562792 Spotsize at exit (FWHM) [mu] : 118.71 Pulse duration (FWHM) [fs] : 47 Peak Flux [#/sec] : 2.098E Average Flux [#/sec] : 0.493E SR Energy loss [MeV] : 0.0002

	*	Input data s
	Norm. Emittance [mm mrad]:	1.0
	Peak Current [kA] :	2
	bunch length [mu] :	11.968
	Hybrid with NdFeB	Geometry :
	K-rms parameter :	0.487
	Gap [mm] :	20.059
	Quadrupole gradient [T/m] :	10
	Average beta-function [m] :	2.979
,	Photon Energy [eV] :	91.825
98	1D gain length [m] :	0.53
42	3D gain length [m] :	0.675
	Saturation power [GW] :	3.082
2	Effective Energy spread :	0.021
	Divergence (FWHM) [murad]	: 50.21
	Photons per Pulse :	0.105E14
26	Peak Brilliance* :	4.6E30
18	Average Brilliance* :	10.81E21
	SR Energy spread [MeV] :	0

set:

FLASH1

	Energy Spread [MeV] :	0.15
	Beam Power [TW] :	1.2
	#Bunches/sec. :	50000
ry :	planar 🝷	
	Length [m] :	15
	Bessel factor J0-J1 :	0.95
	Quadrupole Length [m] :	0.15
	beta_max/beta_min :	1.38

-

Saturation length [m] :	13.83
Power at undulator exit [GW]	: 3.071
Diffraction parameter :	4.1
Bandwidth (FWHM) [%] :	0.48
Autocorrelation time [fs] :	6.22
Pulse Energy [mJ] :	0.154

3 × 5 m long undulators

Undulator Parameters

LCLS-II type undulator D. Arbelaez, LBNL

parameter	value
geometry	planar
type	hybrid / variable gap
permanent magnets type	NdFeB / SmCo optional*
period [mm]	30
gap [mm]	20
peak magnetic field [T]	0.246
K-rms parameter	0.487
ρ parameter (3D)	0.002
saturation length [m]	13.8
length [m]	3 × 5 = 15
beam energy [MeV]	600
radiation wavelength [nm]	13.5
average FEL radiation power [kW]	112

*to consider for increased life time with the radiation expose.

CERN Accelerator School – FELs and ERLs, June 9, 2016

7

ERL Parameters

single pass recirculation layout

parameter	value
beam energy [MeV]	600
beam current [mA]	110
bunch charge [pC]	20200
beam average power [MW]	0.66.0
repetition rate [MHz]	50
normalized emittance [µm·rad]	1.0
bunch transversal size at undulator [µm]	50
bunch length at undulator [µm]	12
DC-gun energy [MeV]	0.35
booster energy [MeV]	6.0
main linac energy [MeV]	600
SRF module energy [MeV]	120
SRF modules number	5 + 1 spare
IOT RF power [kW]	80
converted FEL radiation [kW]	112

ERL Injector

CW operation needs a DC-gun, as a proven technology. Needed parameters reached at Cornell and KEK.

Cornell / bERLinPro SRF booster 4 x 2cell SRF cavities 6MeV

ERL main linac

- accelerating module: 8 cavities / 120 MeV
- main LINAC: 5 (+ 1 spare) modules / 600 MeV
- accelerating cavity: bERLinPro type 7-cell
- RF power source: 80 kW IOT per module
- cryogenics: 1 kW at 1.8 K (LHe)
- LINAC length: 6 × 10 = 60 m

7-cell SRF cavity 20 MV/m, 17 MeV, operating temperature: 1.8 K strong HOM damping design to cope with a BBU effect.

ERL Recirculator Arcs

CERN Accelerator School – FELs and ERLs, June 9, 2016

ERL Merger

Layout from bERLinPro Project: dog-leg type, needs 6 / 600 MeV merging

ERL Diagnostics

Left berlin berlin Berlin

Layout from bERLinPro Project

FEL-ERL Diagnostics Summary

electron beam	photon beam
Farady Cup	Wave Length Monitor
Current Transformer	Pulse Energy Monitor
Beam Position Monitor	Screen Monitor
Laser Wire Scanner	Gas Monitor Detector
Screen	
Electro-Optical Sampling	
Optical Transition Radiation	
Synchrotron Light Monitor	
Beam Arrival Monitor	

Wave Length Monitor

Pulse Energy Monitor

Electro-Optical Sampling

Cost Estimation

position	cost [M€]
Building 150×50×15 m ³	20
shielding iron/concrete 104 t	1.2
air conditioning facility	1.0
water cooling facility	1.0
primary & indoor substation facility	1.3
He gas refrigerator facility 1.8 K 1 kW	14
SRF accelerator module	1.0
Undulators	1.5
accelerator facility 10 mA 600 MeV	30
EUV FEL facility (EUVL)	5
Total Construction Cost	76
Operation Cost (1 year)	
electricity 0.25€/kWh	6

Summary

- 1. Extreme ultraviolet lithography (also known as EUV or EUVL) is a nextgeneration lithography technology using an extreme ultraviolet (EUV) wavelength, currently expected to be 13.5 nm.
- 2. 13.5 nm 10 kW average power range 600 MeV 10 mA ERL based high repetition FEL EUV radiation source "**MARS**" is proposed.
- 3. Proposed facility design is mainly based on proved and already available and tested solutions with accent on the reliability.
- 4. Facility upgrade options may include the energy upgrade up to 750 MeV using the spare SRF accelerating module and up to 1.5 GeV with a possible double-pass ERL layout, which would allow to reach 10 and 1 nm radiation wavelength ranges respectively, with some undulators adjustments or upgrades. An average current upgrade up to 50 .. 100 mA is another option, implemented technology cutting edge is 100 mA and this is being currenly tested in several labs.

References

- 1. "Design Optimization For An X-ray Free Electron Laser Driven by SLAC Linac", Ming Xie, LBL, in Proceedings of the 1995 Particle Accelerator Conference, PAC95, p.183-185.
- 2. <u>http://adweb.desy.de/home/faatz/www/parms/parms.html</u>
- 3. ***A Multi-kW EUV Light Source Driven by Energy-Recovery Linac**", Ryoichi Hajima, Nobuyuki Nishimori and Eisuke Minehara, JAEA ERL group, EUV Source Workshop, October 19, 2006, Barcelona, Spain.
- 4. <u>http://www.helmholtz-berlin.de/projects/berlinpro/index_en.html</u>
- 5. "Update On SRF Cavity Design, Production and Testing for bERLinPro", A. Neumann, et al., Proceedings of SRF2015, Whistler, BC, Canada.
- 6. "**bERLinPro. A demonstration Energy Recovery LINAC**", Jens Knobloch for the bERLinPro Project Team, Proceedings of ERL2015, Stony Brook, NY, USA.
- 7. **"Compact 13.5-nm free-electron laser for extreme ultraviolet lithography**", Y. Socol, et al, PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 040702 (2011).
- 8. "Design Work of The ERL-FEL as the High Intense EUV Light Source", N. Nakamura, et al, Proceedings of ERL2015, Stony Brook, NY, USA
- 9. **"The Conceptual Design of 4GLS at Daresbury Laboratory**", J. A. Clarke, et al, Proceedings of EPAC'06, Edinburgh, UK.
- 10. "Optics Issues for The 4GLS High-current ERL", H. L. Owen, et al., Proceedings of ERL07, Daresbury, UK.
- 11. "Bunch Compressors", John Byrd, Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010.
- 12. "High Current and High Brightness Electron Sources", F. Loehl, et al, Proceedings of IPAC'10, Kyoto, Japan.
- 13. "DC Photoemission Gun Upgrade at The Compact ERL", N. Nishimori, et al., Proceedings of IPAC2016, Busan, Korea.
- 14. "High Brightness, HVDC, Photoemission Electron Gun Development at Cornell", C. Sinclair, ICFA FLS2010 Workshop.
- 15. "Undulator Demagnetization due to Radiation Losses at FLASH", J. Skupin, et al, Proceedings of EPACo8, Genoa, Italy.