Course on Free Electron Lasers

Peter Schmüser
University of Hamburg

Part 1

1. Undulator Radiation

- 1.1 Magnetic field of undulator
- 1.2 Electron motion in undulator, undulator parameter K
- 1.3 Motion in second order
- 1.4 Lorentz transformation to moving coordinate system
- 1.5 Transformation of radiation into laboratory system
- 1.6 Line shape of undulator radiation

2. Low-Gain Free Electron Laser

- 2.1 Energy transfer from electron to light wave
- 2.2 Quantitative treatment
- 2.3 FEL with optical resonator, pendulum equation
- 2.4 Computation of gain in FEL (low-gain case), Madey theorem

1.1 Magnetic Field of Undulator

Beam along z direction, magnetic field in y direction (vertical) λ_{u} period of the magnet arrangement

Assume width of pole shoes larger than $\lambda_{u} \quad \Rightarrow x$ dependence of field can be neglected Field on the axis approximately harmonic

$$
\begin{equation*}
B_{y}(0,0, z)=B_{0} \cos \left(k_{u} z\right) \quad \text { with } \quad k_{u}=2 \pi / \lambda_{u} \tag{1}
\end{equation*}
$$

In vacuum we have $\vec{\nabla} \times \vec{B}=0$, hence magnetic field can be written as gradient of scalar magnetic potential

$$
\vec{B}=\nabla \varphi
$$

Ansatz

$$
\varphi(y, z)=f(y) \cos \left(k_{u} z\right)
$$

potential φ fulfills Laplace equation

$$
\nabla^{2} \varphi=0 \quad \Rightarrow \quad \frac{d^{2} f}{d y^{2}}-k_{u}^{2} f=0
$$

General solution

$$
\begin{gathered}
f(y)=c_{1} \sinh (y)+c_{2} \cosh (y) \\
B_{y}(y, z)=\frac{\partial \varphi}{\partial \varphi}=k_{u}\left(c_{1} \cosh (y)+c_{2} \sinh (y)\right) \cos \left(k_{u} z\right)
\end{gathered}
$$

B_{y} is symmetric with respect to the plane $y=0 \quad \Rightarrow \quad c_{2}=0$ and $k_{u} c_{1}=B_{0}$

$$
\begin{equation*}
\varphi(x, y, z)=\frac{B_{0}}{k_{u}} \sinh \left(k_{u} y\right) \cos \left(k_{u} z\right) \tag{2}
\end{equation*}
$$

For $y \neq 0$: field has also a z component

$$
\begin{align*}
B_{x} & =0 \\
B_{y} & =B_{0} \cosh \left(k_{u} y\right) \cos \left(k_{u} z\right) \tag{3}\\
B_{z} & =-B_{0} \sinh \left(k_{u} y\right) \sin \left(k_{u} z\right)
\end{align*}
$$

In the following we restrict ourselves to the symmetry plane $y=0$.

1.2 Electron Motion in Undulator

Call $W=E_{k i n}+m_{e} c^{2}$ the total relativistic energy of the electron. The transverse acceleration by the Lorentz force is

$$
\begin{equation*}
\gamma m_{e} \dot{\vec{v}}=-e \vec{v} \times \vec{B} \quad \text { with } \quad \gamma=\frac{W}{m_{e} c^{2}} \tag{4}
\end{equation*}
$$

Two coupled equations in symmetry plane $y=0$

$$
\begin{equation*}
\ddot{x}=\frac{e}{\gamma m_{e}} B_{y} \dot{z} \quad \ddot{z}=-\frac{e}{\gamma m_{e}} B_{y} \dot{x} \tag{5}
\end{equation*}
$$

First-order solution: $v_{z}=\dot{z} \approx \beta c=$ const, $v_{x} \ll v_{z}$

$$
\begin{equation*}
x(t) \approx-\frac{e B_{0}}{\gamma m_{e} \beta c k_{u}^{2}} \cos \left(k_{u} \beta c t\right) \quad z(t) \approx \beta c t \tag{6}
\end{equation*}
$$

Cosinelike trajectory $x(z)$ as a function of longitudinal position

$$
x(z)=-A \cos \left(k_{u} z\right) \quad \text { with } \quad A=\frac{e B_{0}}{\gamma m_{e} \beta c k_{u}^{2}}
$$

Maximum divergence angle

$$
\theta \max \approx\left[\frac{d x}{d z}\right]_{\max }=\frac{e B_{0}}{\gamma m_{e} \beta c k_{u}}=\frac{K}{\beta \gamma}
$$

Definition of undulator parameter

$$
\begin{equation*}
K=\frac{e B_{0}}{m_{e} c k_{u}}=\frac{e B_{0} \lambda_{u}}{2 \pi m_{e} c} \tag{7}
\end{equation*}
$$

The emission of synchrotron radiation is inside a cone with opening angle $1 / \gamma$
Undulator: $K \leq 1$, electron trajectory inside radiation cone Wiggler: $K>1$
Note: $\beta=v / c$ is very close to 1

Figure 2.1.: Emission of radiation in an undulator.

1.3 Motion in second order

$$
\dot{z}=\sqrt{\beta^{2} c^{2}-\dot{x}^{2}} \approx c\left(1-\frac{1}{2 \gamma^{2}}\left(1+\gamma^{2} \dot{x}^{2} / c^{2}\right)\right)
$$

insert for $\dot{x}(t)$ first order solution, then average z velocity is

$$
\begin{equation*}
\bar{v}_{z}=c\left(1-\frac{1}{2 \gamma^{2}}\left(1+K^{2} / 2\right)\right) \equiv \bar{\beta} c \tag{8}
\end{equation*}
$$

z velocity oscillates

$$
\dot{z}(t)=\bar{\beta} c+\frac{c K^{2}}{4 \gamma^{2}} \cos \left(2 \omega_{u} t\right) \quad \text { with } \quad \omega_{u}=\bar{\beta} c k_{u}
$$

trajectory in second order

$$
\begin{equation*}
x(t)=-\frac{c K}{\gamma \omega_{u}} \cos \left(\omega_{u} t\right) \quad z(t)=\bar{\beta} c t+\frac{c K^{2}}{8 \gamma^{2} \omega_{u}} \sin \left(2 \omega_{u} t\right) \tag{9}
\end{equation*}
$$

1.4 Lorentz transformation to moving coordinate system

Consider coordinate system $\left(x^{*}, y^{*}, z^{*}\right)$ moving with the average z velocity of electron: $v=\bar{v}_{z}=\bar{\beta} c, \quad \bar{\gamma} \approx \gamma=W /\left(m_{e} c^{2}\right)$. The Lorentz transformation reads

$$
\begin{aligned}
t^{*} & =\bar{\gamma}(t-\bar{\beta} z / c)=\bar{\gamma} t\left(1-\bar{\beta}^{2}\right) \approx t / \gamma \\
x^{*} & =x=-\frac{c K}{\gamma \omega_{u}} \cos \left(\omega_{u} t\right) \\
z^{*} & =\bar{\gamma}(z-\bar{\beta} c t) \approx \frac{c K^{2}}{8 \gamma \omega_{u}} \sin \left(2 \omega_{u} t\right)
\end{aligned}
$$

The orbit in moving system (we introduce $\omega^{*}=\gamma \omega_{u}$, then $\omega_{u} t=\omega^{*} t^{*}$) is:

$$
\begin{equation*}
x^{*}\left(t^{*}\right)=-\frac{c K}{\gamma \omega_{u}} \cos \left(\omega^{*} t^{*}\right) \quad z^{*}\left(t^{*}\right)=\frac{c K^{2}}{8 \gamma \omega_{u}} \sin \left(2 \omega^{*} t^{*}\right) \tag{10}
\end{equation*}
$$

This is mainly a transverse harmonic oscillation with the frequency $\omega^{*}=\gamma \omega_{u}$. Superimposed is a small longitudinal oscillation. This will be ignored here, it leads to higher harmonics in the radiation.

oscillation of electron in co-moving coordinate system

In co-moving system: electron emits dipole radiation: frequency $\omega^{*}=\gamma \omega_{u}$ and wavelength $\lambda^{*}=\lambda_{u} / \gamma$
Remember: λ_{u} is the undulator period, i.e. the distance between two north poles. Typical value: $\lambda_{u}=25 \mathrm{~mm}$.

1.5 Transformation of radiation into laboratory system

Angular distribution of dipole radiation for a moving dipole (computed by Sven Reiche)

We are interested in the light wavelength as function of the angle θ with respect to the beam axis Lorentz transformation of the photon energy

$$
\hbar \omega^{*}=\bar{\gamma} \hbar \omega_{\ell}(1-\bar{\beta} \cos \theta)
$$

$$
\Rightarrow \quad \lambda_{\ell}=\frac{2 \pi c}{\omega_{\ell}}=\frac{2 \pi c \bar{\gamma}}{\omega^{*}}(1-\bar{\beta} \cos \theta)=\lambda_{u}(1-\bar{\beta} \cos \theta)
$$

Use $\bar{\gamma} \approx \gamma, \bar{\beta}=\left(1-\frac{1}{2 \gamma^{2}}\left(1+K^{2} / 2\right)\right)$ and $\cos \theta \approx 1-\theta^{2} / 2$
we obtain for the wavelength of undulator radiation

$$
\begin{equation*}
\lambda_{\ell}=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+K^{2} / 2+\gamma^{2} \theta^{2}\right) \tag{11}
\end{equation*}
$$

1.6 Line shape of undulator radiation

An electron passing an undulator with N_{u} periods produces a wavetrain with N_{u} oscillations. Electric field of light wave:

$$
\Rightarrow \quad E_{\ell}(t)= \begin{cases}E_{0} \mathrm{e}^{i \omega_{\ell} t} & \text { if }-T / 2<t<T / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Finite wave train
(here with 10 periods)

Time duration of wave train $T=N_{u} \lambda_{\ell} / c$
The wave train contains a frequency spectrum which is obtained by Fourier transformation

$$
\begin{aligned}
A(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} E_{L}(t) e^{-i \omega t} d t=\frac{E_{0}}{\sqrt{2 \pi}} \int_{-T / 2}^{+T / 2} e^{i\left(\omega_{\ell}-\omega\right) t} d t \\
& =\frac{2 E_{0}}{\sqrt{2 \pi}} \cdot \frac{\sin (\Delta \omega T / 2)}{\Delta \omega} \text { with } \Delta \omega=\omega-\omega_{\ell}
\end{aligned}
$$

The spectral intensity is

$$
I(\omega) \propto\left(\frac{\sin \xi}{\xi}\right)^{2} \quad \text { with } \quad \xi=\Delta \omega T / 2=\frac{\pi N_{u}\left(\omega-\omega_{\ell}\right)}{\omega_{\ell}}
$$

It has a maximum at $\omega=\omega_{\ell}$ and a width proportional to $1 / N_{u}$.

Spectral intensity for a wave train with $N_{u}=100$ periods

2. Low-Gain FEL

2.1 Energy transfer from electron to light wave

Consider light wave co-propagating with relativistic electron beam (provided for instance by "seed laser") plane electromagnetic wave polarised in x direction

$$
E_{x}(z, t)=E_{0} \cos \left(k_{\ell} z-\omega_{\ell} t\right) \quad \text { with } \quad k_{\ell}=\omega_{\ell} / c
$$

Question: can there by continuous energy transfer from electron beam to light wave? Electron energy is $W=\gamma m_{e} c^{2}$, it changes in time $d t$ by

$$
d W=\vec{v} \cdot \vec{F}=-e v_{x}(t) E_{x}(t) d t
$$

The average electron speed in z direction is $\bar{v}_{z}=c\left(1-\frac{1}{2 \gamma^{2}}\left(1+K^{2} / 2\right)\right)<c$
electron and light travel times for half period of undulator:

$$
t_{e l}=\lambda_{u} /\left(2 \bar{v}_{z}\right), \quad t_{\text {light }}=\lambda_{u} /(2 c)
$$

Continuous energy transfer happens if $\omega\left(t_{e l}-t_{\text {light }}\right)=\pi$
(Remark: also $3 \pi, 5 \pi \ldots$ are possible, leading to higher harmonics of the radiation)

Using

$$
1 / \bar{v}_{z}-1 / c \approx 1 /\left(2 \gamma^{2}\right)\left(1+K^{2} / 2\right)
$$

ones finds for the light wavelength

$$
\begin{equation*}
\lambda_{\ell}=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right) \tag{12}
\end{equation*}
$$

This is equal to the undulator radition wavelength at $\theta=0$.

2.2 Quantitative treatment

Energy transfer from electron to light wave ($W=\gamma m_{e} c^{2}$ total energy of electron):

$$
\begin{aligned}
\frac{d W}{d t} & =-e v_{x}(t) E_{x}(t) \\
& =-e \frac{c K}{\gamma} \sin \left(k_{u} z\right) E_{0} \cos \left(k_{\ell} z-\omega_{\ell} t\right) \\
& =-\frac{e c K E_{0}}{2 \gamma}\left[\sin \left(\left(k_{\ell}+k_{u}\right) z-\omega_{\ell} t\right)-\sin \left(\left(k_{\ell}-k_{u}\right) z-\omega_{\ell} t\right)\right]
\end{aligned}
$$

The argument of first sine function is called the ponderomotive phase:

$$
\begin{equation*}
\psi \equiv\left(k_{\ell}+k_{u}\right) z-\omega_{\ell} t \tag{13}
\end{equation*}
$$

One can show that the second sine term oscillates rapidly, it will be neglected here.

$$
\begin{equation*}
\Longrightarrow \quad m_{e} c^{2} \frac{d \gamma}{d t} \equiv \frac{d W}{d t}=-\frac{e c E_{0} K}{2 \gamma} \sin \psi \tag{14}
\end{equation*}
$$

If $d W / d t<0 \quad \Leftrightarrow 0<\psi<\pi$: energy is transferred from the electron to the radiation field, the light wave is amplified

If we keep the phase ψ constant during the passage through undulator, then we get continuous energy transfer

$$
\psi=\mathrm{const} \quad \Leftrightarrow \quad \frac{d \psi}{d t}=\left(k_{\ell}+k_{u}\right) \bar{v}_{z}-k_{\ell} c=0
$$

Insertion of \bar{v}_{z} yields for the light wavelength

$$
\lambda_{\ell}=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

Consequence: the condition for resonant energy transfer yields the same light wavelength as in undulator radiation at $\theta=0$.

2.3 FEL with optical resonator

"Seeding" by external light source with wavelength λ_{ℓ}

Resonant energy $\gamma_{r} m_{e} c^{2}$ defined by

$$
\begin{equation*}
\lambda_{\ell}=\frac{\lambda_{u}}{2 \gamma_{r}^{2}}\left(1+\frac{K^{2}}{2}\right) \tag{15}
\end{equation*}
$$

Let electron energy be slightly larger, $\gamma>\gamma_{r}$

$$
0<\frac{\Delta \gamma}{\gamma_{r}}=\frac{\gamma-\gamma_{r}}{\gamma_{r}} \ll 1
$$

Energy deviation $\Delta \gamma$ and ponderomotive phase ψ will both change due to the interaction with the radiation field
Remark: in Low-gain FEL: field amplitude $E_{0} \approx$ const during one passage of undulator

The time derivative of the ponderomotive phase is no longer zero for $\gamma>\gamma_{r}$ $\dot{\psi}=k_{u} c-k_{\ell} c \frac{1+K^{2} / 2}{2 \gamma^{2}}, \quad$ subtract $\quad 0=k_{u} c-k_{\ell} c \frac{1+K^{2} / 2}{2 \gamma_{r}^{2}}$ (see eq. (12))

$$
\Rightarrow \quad \frac{d \psi}{d t}=\frac{k_{\ell} c}{2}\left(1+\frac{K^{2}}{2}\right)\left(\frac{1}{\gamma_{r}^{2}}-\frac{1}{\gamma^{2}}\right)
$$

It follows

$$
\begin{equation*}
\frac{d \psi}{d t} \approx 2 k_{u} c \frac{\Delta \gamma}{\gamma_{r}} \tag{16}
\end{equation*}
$$

The time derivative of gamma is

$$
\begin{equation*}
\frac{d \gamma}{d t}=-\frac{e E_{0} K}{2 m_{e} c \gamma_{r}^{2}} \sin \psi \tag{17}
\end{equation*}
$$

Combination of eq. (16) and (17) yields the "Pendulum Equation" of the low-gain FEL

$$
\begin{equation*}
\ddot{\psi}+\Omega^{2} \sin \psi=0 \quad \text { with } \quad \Omega^{2}=\frac{e E_{0} K k_{u}}{m_{e} \gamma_{r}^{2}} \tag{18}
\end{equation*}
$$

Phase space representation

There is a complete analogy with the motion of a mathematical pendulum. At small amplitude we get a harmonic oscillation. With increasing angular momentum the motion becomes unharmonic. At very large angular momentum one gets a rotation (unbounded motion).

Phase space trajectories for many electrons with $\gamma=\gamma_{r}$ and with $\gamma>\gamma_{r}$

In the next chapter we will show that for $\gamma>\gamma_{r}$ energy is transferred from the electron beam to the light wave.

2.4 Computation of Gain in FEL (Low-Gain Case)

The energy (per unit volume) of the laser field is

$$
W_{\ell}=\frac{\varepsilon_{0}}{2} E_{0}^{2}
$$

The energy increase and relative gain caused by 1 electron is

$$
\Delta W_{\ell}=-m_{e} c^{2} \Delta \gamma \quad G_{1}=\frac{\Delta W_{\ell}}{W_{\ell}}=-\frac{2 m_{e} c^{2}}{\varepsilon_{0} E_{0}^{2}} \Delta \gamma
$$

Considering all electrons in bunch and using eq. (16) the total gain becomes

$$
\begin{equation*}
G=-\frac{m_{e} c^{2} \gamma_{r} n_{e}}{\varepsilon_{0} E_{0}^{2} k_{u}} \cdot<\dot{\psi}> \tag{19}
\end{equation*}
$$

So we have to compute the quantity $\langle\dot{\psi}\rangle$.

Phase change in undulator

Multiply pendulum equation $\ddot{\psi}+\Omega^{2} \sin \psi=0$ with $2 \dot{\psi}$ and integrate over time

$$
\dot{\psi}^{2}-2 \Omega^{2} \cos \psi=\text { const } \Rightarrow \quad \dot{\psi}(t)^{2}=\dot{\psi}_{0}^{2}+2 \Omega^{2}\left[\cos \psi(t)-\cos \psi_{0}\right]
$$

From eq. (16)

$$
\begin{gather*}
\dot{\psi}_{0}=\dot{\psi}(0)=2 c k_{u} \frac{\gamma_{0}-\gamma_{r}}{\gamma_{r}}=\omega \\
\dot{\psi}(t)=\omega \sqrt{1+2(\Omega / \omega)^{2}\left[\cos \psi(t)-\cos \psi_{0}\right]} \tag{20}
\end{gather*}
$$

For weak laser field one has $(\Omega / \omega)^{2} E_{0} \ll 1$, expand square root up to second order $\sqrt{1+x}=1+x / 2-x^{2} / 8 \ldots$

$$
\begin{equation*}
\dot{\psi}(t)=\omega+\left(\Omega^{2} / \omega\right)\left[\cos \psi(t)-\cos \psi_{0}\right]-\Omega^{4} /\left(2 \omega^{3}\right)\left[\cos \psi(t)-\cos \psi_{0}\right]^{2} \tag{21}
\end{equation*}
$$

This equation is solved iteratively

Zeroth order: $\psi_{0}(t)=\psi_{0}=$ const $\quad \dot{\psi}_{0}=\omega$

First order: get phase $\psi(t)$ in first order by integrating $\dot{\psi}_{0}$:

$$
\psi_{1}(t)=\psi_{0}+\dot{\psi}_{0} \cdot t=\psi_{0}+\omega \cdot t
$$

Insert this in eq. (21) to get $\dot{\psi}$ in first order

$$
\begin{equation*}
\dot{\psi}_{1}(t)=\omega+\left(\Omega^{2} / \omega\right)\left[\cos \left(\psi_{0}+\omega t\right)-\cos \psi_{0}\right] \tag{22}
\end{equation*}
$$

According to eq. (19) the gain is obtained by averaging $\dot{\psi}$ over all particles in the bunch, i.e. by averaging over all initial phases ψ_{0}. This yields

$$
<\dot{\psi}_{1}>=0
$$

$\Longrightarrow \quad$ FEL gain is zero in first order
Reason: the phase space distribution is almost symmetric

Second order: integrate (22) to get ψ in second order

$$
\begin{equation*}
\psi_{2}(t)=\underbrace{\psi_{0}+\omega \cdot t}_{\psi_{1}(t)}+\underbrace{(\Omega / \omega)^{2}\left[\sin \left(\psi_{0}+\omega t\right)-\sin \psi_{0}-\omega t \cos \psi_{0}\right]}_{\delta \psi_{2}(t)} \tag{23}
\end{equation*}
$$

Insert in eq. (21) to get $\dot{\psi}$ in second order

$$
\begin{align*}
& \dot{\psi}_{2}(t)=\omega+\left(\Omega^{2} / \omega\right)\left[\cos \left(\psi_{0}+\omega t+\delta \psi_{2}\right)-\cos \psi_{0}\right] \\
&-\Omega^{4} /\left(2 \omega^{3}\right)\left[\cos \left(\psi_{0}+\omega t+\delta \psi_{2}\right)-\cos \psi_{0}\right]^{2} \tag{24}\\
& \delta \psi_{2} \ll 1 \Rightarrow \cos \left(\psi_{0}+\omega t+\delta \psi_{2}\right) \approx \cos \left(\psi_{0}+\omega t\right)-\delta \psi_{2} \sin \left(\psi_{0}+\omega t\right) \\
& \cos \left(\psi_{0}+\omega t+\delta \psi_{2}\right) \approx \cos \left(\psi_{0}+\omega t\right) \\
&-(\Omega / \omega)^{2} \sin \left(\psi_{0}+\omega t\right)\left[\sin \left(\psi_{0}+\omega t\right)-\sin \psi_{0}-\omega t \cos \psi_{0}\right]
\end{align*}
$$

Averaging over all start phases ψ_{0} yields

$$
<\cos \left(\psi_{0}+\omega t+\delta \psi_{2}\right)>=(1 / 2)(1-\cos (\omega t)-\omega t \sin (\omega t))
$$

$$
<\dot{\psi}_{2}>=-\left(\Omega^{4} / \omega^{3}\right)[1-\cos (\omega t)-(\omega t / 2) \sin (\omega t)]
$$

Remember $T=N_{u} \lambda_{u} / c$ flight time through undulator and $\xi=\Delta \omega T / 2$ then

$$
\begin{aligned}
<\dot{\psi}_{2}(T)> & =-\frac{\Omega^{4}}{\omega^{3}}[1-\cos (\omega T)-(\omega T / 2) \sin (\omega T)] \\
& =-\frac{\Omega^{4}}{\omega^{3}}[1-\cos (2 \xi)-\xi \sin (2 \xi)] \\
& =\frac{N_{u}^{3} \lambda_{u}^{3} \Omega^{4}}{8 c^{3}} \cdot \frac{d}{d \xi}\left(\frac{\sin \xi}{\xi}\right)^{2}
\end{aligned}
$$

FEL gain function (19) is hence

$$
\begin{equation*}
G(\xi)=-\frac{\pi e^{2} K^{2} N_{u}^{3} \lambda_{u}^{2} n_{e}}{4 \varepsilon_{0} m_{e} c^{2} \gamma_{r}^{3}} \cdot \frac{d}{d \xi}\left(\frac{\sin ^{2} \xi}{\xi^{2}}\right) \tag{25}
\end{equation*}
$$

Madey Theorem

The FEL gain curve is obtained by taking the negative derivative of the line-shape curve of undulator radiation.
spectral line of undulator

gain of FEL

$$
\xi=\pi N_{u} \frac{\omega-\omega_{\ell}}{\omega_{\ell}}
$$

