

Transverse Phase Space Emittance Diagnostics

B. Walasek-Höhne, Kay Wittenburg, Gero Kube

GSI (Darmstadt) & DESY (Hamburg)

Accelerator Key Parameters

- light source: spectral brilliance
 - > measure for phase space density of photon flux

 $B = \frac{\text{Number of photons}}{[\text{sec}][\text{mm}^2][\text{mrad}^2][0.1\% \text{ bandwidth}]}$

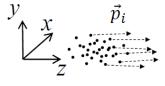
- user requirement: high brightness
 - \rightarrow lot of monochromatic photons on sample
- connection to machine parameters

$$B \propto \frac{N_{\gamma}}{\sigma_x \sigma_{x'} \sigma_z \sigma_{z'}} \propto \frac{I}{\varepsilon_x \varepsilon_z}$$

- requirements
 - design of small emittance machine
 - \rightarrow proper choice of magnet lattice
 - > preserve small emittance
 - \rightarrow question of stability
 - \rightarrow require active feedback systems / careful design considerations

- collider: luminosity
 - > measure for the collider performance

$$\dot{N} = \mathfrak{L} \cdot \sigma$$


relativistic invariant proportionality factor between cross section σ (property of interaction) and number of interactions per second

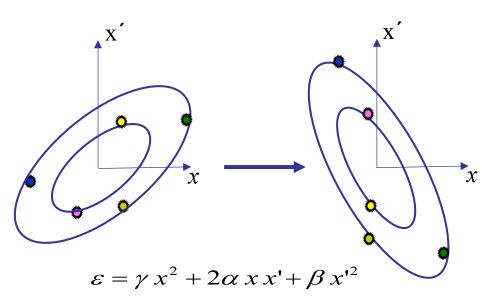
- user requirement: high luminosity
 - \rightarrow lot of interactions in reaction channel
- connection to machine parameters

$$\mathfrak{L} = \frac{I_1 \cdot I_2}{\varepsilon}$$

for two identical beams with emittances $\varepsilon_x = \varepsilon_z = \varepsilon$

bunch of particles

low emittance beam

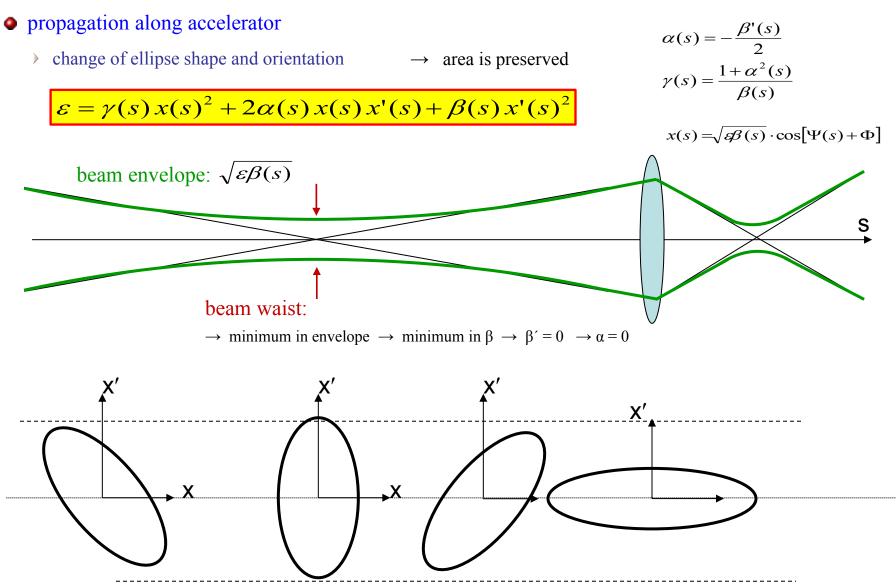

high emittance beam

Transverse Emittance

- projection of phase space volume
 - separate horizontal, vertical and longitudinal plane
- accelerator key parameter
 - defines luminosity / brilliance
- linear forces
 - any particle moves on an ellipse in trace space (x,x')
 - > ellipse rotates in magnets and shears along drifts
 - \rightarrow but area is preserved: **emittance**
- transformation along accelerator
 - ▶ knowledge of the magnet structure (beam optics) \rightarrow
 - \rightarrow single particle transformation

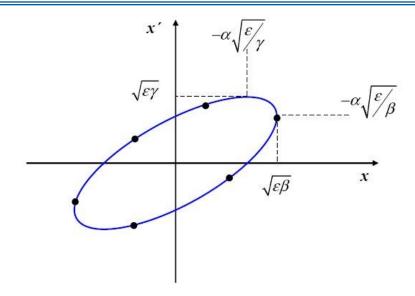
$$\binom{x}{x'}_{f} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \cdot \binom{x}{x'}_{i}$$

($\alpha,\,\beta,\,\gamma$: Courant-Snyder or Twiss parameters)


- transformation from initial (i) to final (f) location
 - → transformation of Courant-Snyder/Twiss parameters

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{f} = \begin{pmatrix} m_{11}^{2} & -2m_{11}m_{12} & m_{12}^{2} \\ -m_{11}m_{21} & 1+m_{12}m_{21} & -m_{12}m_{22} \\ m_{21}^{2} & -2m_{21}m_{22} & m_{22}^{2} \end{pmatrix} \cdot \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{i}$$

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018


Transverse Emittance Ellipse

Emittance and Beam Matrix

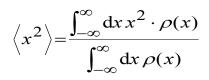
• beam matrix

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} = \varepsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$
$$\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$$

transformation of beam matrix

$$\Sigma^{1} = \mathbf{M}\Sigma^{0}\mathbf{M}^{T} \qquad M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

• via Twiss parameters

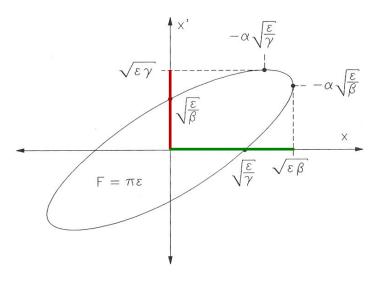

$$\varepsilon = \gamma x^2 + 2\alpha x x' + \beta x'^2$$

statistical definition

P.M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, No.3 (1971) 1101

$$\varepsilon_{rms} = \sqrt{\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2}$$

 2^{nd} moment of beam distribution $\rho(x)$


- ϵ_{rms} is measure of spread in phase space
- > root-mean-square (rms) of distribution $\sigma_x = \left\langle x^2 \right\rangle^{1/2}$
- > ϵ_{rms} useful definition for non-linear beams
 - \rightarrow usually restriction to certain range

(c.f. 90% of particles instead of $[-\infty, +\infty]$)

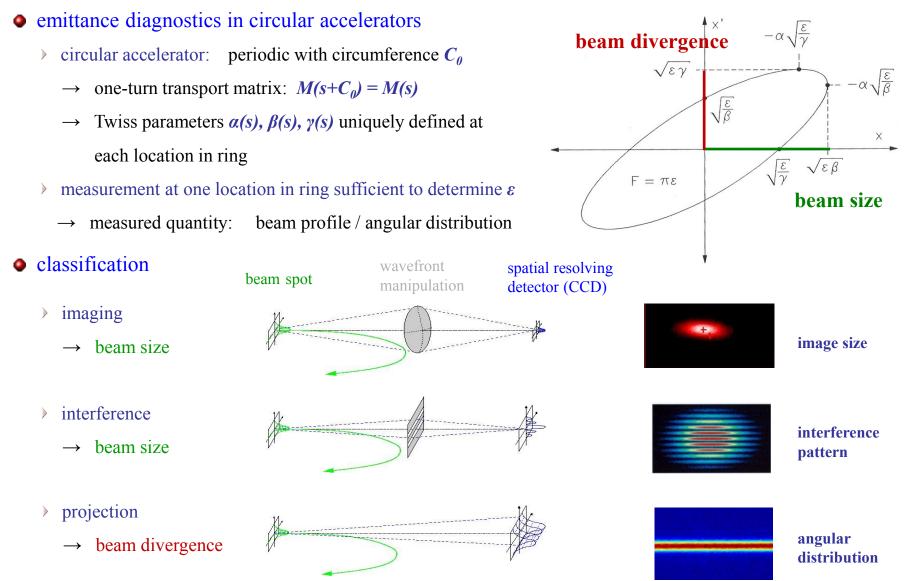
Emittance Measurement: Principle

- emittance: projected area of transverse phase space volume
- not directly accessible for beam diagnostics

- measurement schemes
 - beam matrix based measurements
 - \rightarrow determination of beam matrix elements:

mapping of phase space

 \rightarrow restrict to (infenitesimal) element in space coordinate, convert angles x' in position


- measured quantity
 - beam size $\sqrt{\Sigma_{11}} = \sqrt{\langle x^2 \rangle} = \sqrt{\varepsilon \beta}$
 - → beam divergence $\sqrt{}$

$$\overline{\Sigma_{22}} = \sqrt{\langle x'^2 \rangle} = \sqrt{\varepsilon \gamma}$$

$$\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$$

Circular Accelerators

Gero Kube, DESY / MDI

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

Gero Kube, DESY / MDI

Beam Matrix based Measurements

- starting point: beam matrix
- emittance determination
 - measurement of **3** matrix elements Σ_{11} , Σ_{12} , Σ_{22}
 - > remember: beam matrix Σ depends on location, i.e. $\Sigma(s)$
 - \rightarrow determination of matrix elements at same location required
- access to matrix elements
 - > profile monitor determines only $\sigma = \sqrt{\Sigma_{11}}$
 - > other matrix elements can be inferred from beam profiles taken under various transport conditions
 - \rightarrow knowledge of transport matrix M required
- measurement of at least 3 profiles for 3 matrix elements

$$\Sigma_{11}^{a} = m_{11}^{2} \cdot \Sigma_{11}^{a} + 2m_{11}m_{12} \cdot \Sigma_{12}^{a} + m_{12}^{2} \cdot \Sigma_{22}^{a}$$

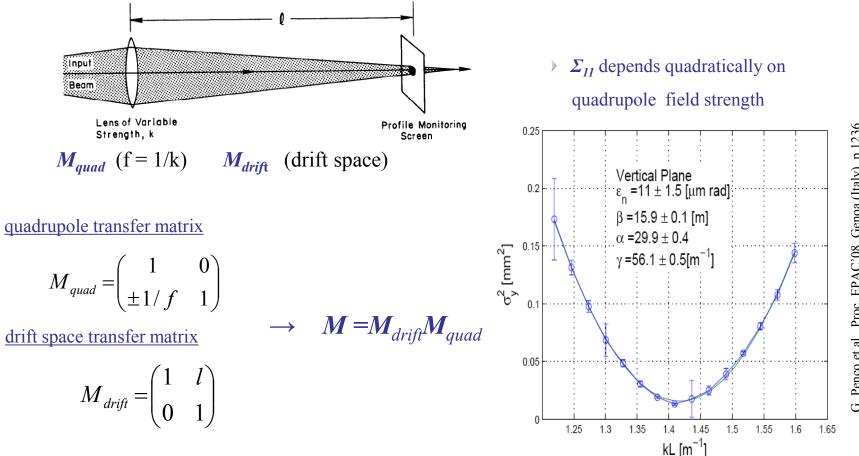
$$\sum_{11}^{c} = \overline{m_{11}}^{2} \cdot \Sigma_{11}^{a} + 2\overline{m_{11}}\overline{m_{12}} \cdot \Sigma_{12}^{a} + \overline{m_{12}}^{2} \cdot \Sigma_{22}^{a}$$

$$known: transport optics$$

$$M, \overline{M}$$

 \rightarrow more than 3 profile measurements favourable, data subjected to least-square analysis

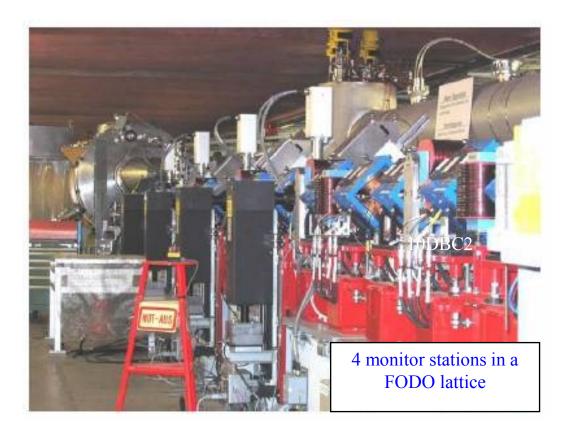
$$\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$$


 $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} = \varepsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$

$$\Sigma^{b} = M \cdot \Sigma^{a} \cdot M^{T} \qquad M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

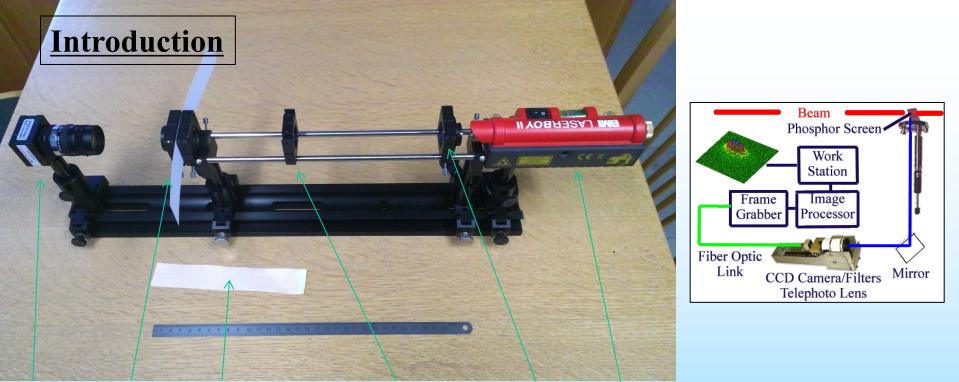
Beam Matrix based Measurements

- "quadrupole scan" method
 - use of variable quadrupole strengths
 - \rightarrow change quadrupole settings and measure beam size in profile monitor located downstream


Beam Matrix based Measurements

- "multi profile monitor" method
 - fixed particle beam optics
 - \rightarrow measure beam sizes using multiple profile monitors at different locations

emittance measurement setup at FLASH injector (DESY)


courtesy: K. Honkavaara (DESY)

• task

beam profile measurement

Camera Screen Calibration Screen Moveable Lens Aperture Laser

By moving the lens one can take pictures from the camera in the focus (not preferred due to limited resolution of the optic system) and on other positions. The distance of the lens to various screen positions can be measured by a simple ruler*. The camera is connected to a Computer where the readout software is installed. The pictures (.jpg) can be saved and can be loaded into a free software called "ImageJ" where a profile of an area can be displayed and the curser position and the value is displayed (8 bit). The σ of the profile have to be found for each screen (camera) position and the emittance have to be calculated.

* Move the lens to simulate different screen positions

Parameters

• CCD

Phytec USB-CAM 051H

Resolution	2592 x 1944 (5 MPix) , 2048 x 1536 (3,1MPix), 1600 x 1200 (2MPix), 1280 x 960 (1,2MPix) 1024 x 768 (0,8MPix), 640 x 480 (VGA)			
Model	USB- CAM- 051H	USB- CAM- 151H	USB- CAM- 052H	USB-CAM-152H
color / monochrom	monochrom color			
Sensor Format	1/2,5"			
Image Sensor	Aptina MT9P031, CMOS			
Pixel Size	2,2 μm x 2,2 μm			
Color format	Y8		RGB32, RGGB (Raw)	
Lens Holder	C / CS – Mount			
fps	6 fps to 52 fps			
Dynamic Range	8 bit			
Shutter	Rolling			
Light sensitivity	1,4 V/lux-sec			
Interface	USB 2.0 High Speed			
Exposure time	1/10.000 s to 30 s			
Gain	0 dB to 18 dB			
White Balance	6 dB bis +6 dB			
Power supply	4,5 V bis 5,5V DC			
Power Consumption	Circa 250 mA bei 5V			
Feature (optional)	-	ext. Trigger, Digital- Output	-	ext. Trigger, Digital-Output
Temperature range	-5°C bis +45°C			
Dimensions (B x L x H)	36 mm x 36 mm x 25 mm			
Fixing	1/4" and M6x8 on all sides			
Weight	70 g			
Connection	USB Mini-B			
Feature- Connection	-	Hirose HR10A- 7R-4P	-	Hirose HR10A-7R-4P

screen

- Material: white paper
- grid target
 - spacing: 1 mm
- Laser: LaserBoyII

BMI Bayerische Laserboy II Wasserwaage 649 015

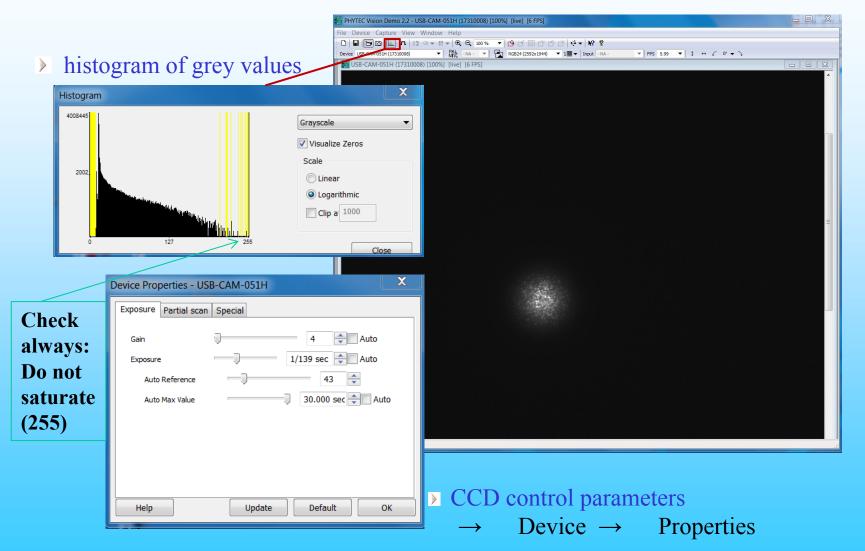
Allgemeine Informationen
Artikelnummer
EAN
Hersteller
Hersteller-ArtNr
Hersteller-Typ
Verpackungseinheit
Artikelklasse

Technische Informationen Länge der Signalstrecke

Sichtbare Signalstrecke Rotierende Signalstrecke

Laserklasse

ET1117000 4007368050049 BMI Bayerische 649 015 649 015 1 Stück Messlaser

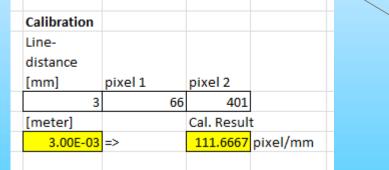


BMI Bayerische Laserboy II Wasserwaage 649 015 Länge der Signalstrecke 30m, Laserklasse 2, Sichtbare Signalstrecke,

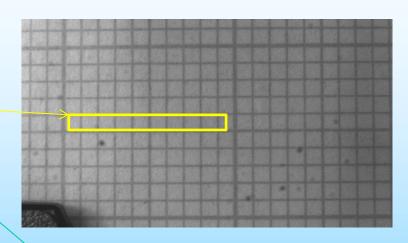
30m

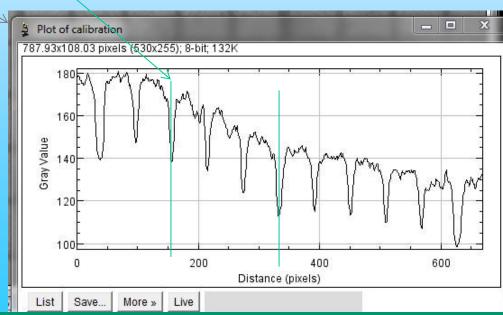
CCD Readout: Introduction

readout program PHYTEC Vision Demo 2.2

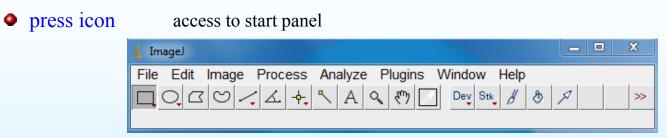


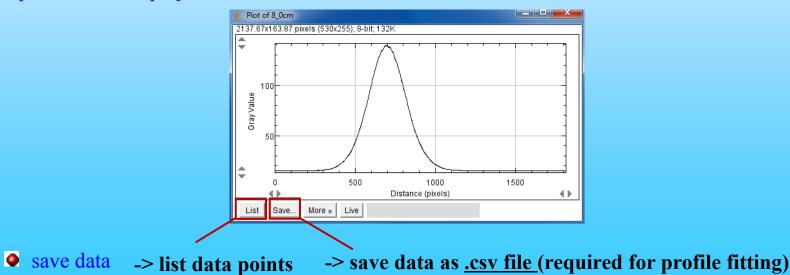
Your tasks in green frames


Calibration

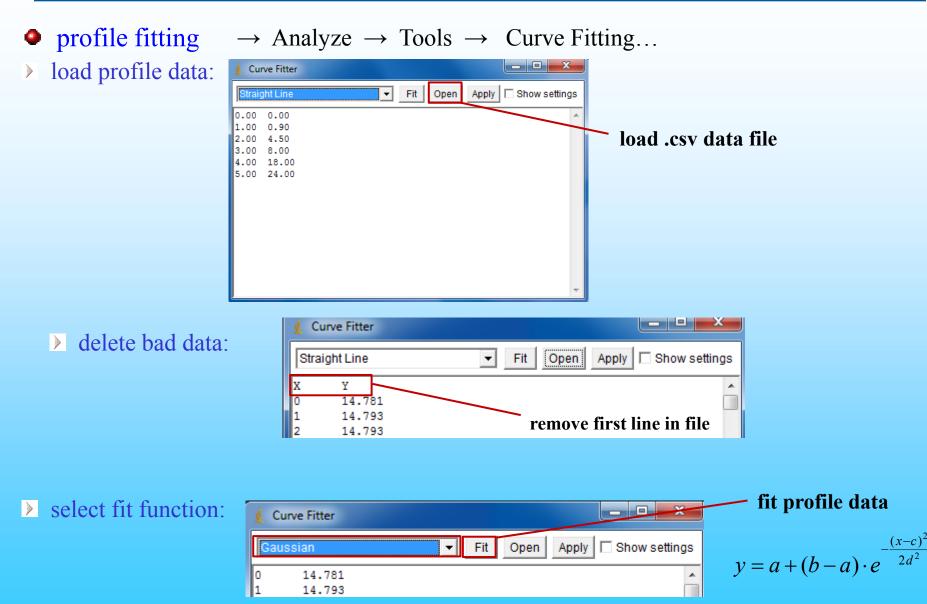

Use mm-grid to calibrate the readout setup.

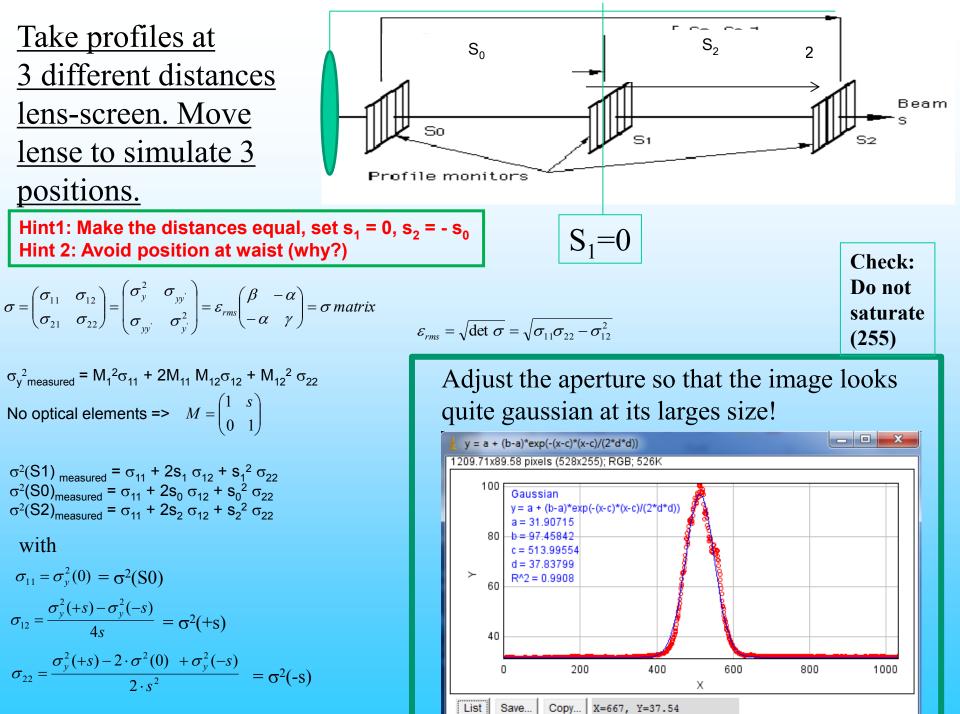
Select ROI (where beam image will appear), plot profile, use cursor and enter measurement into pre-prepared Excel sheet "Laser emittance.xlsx"

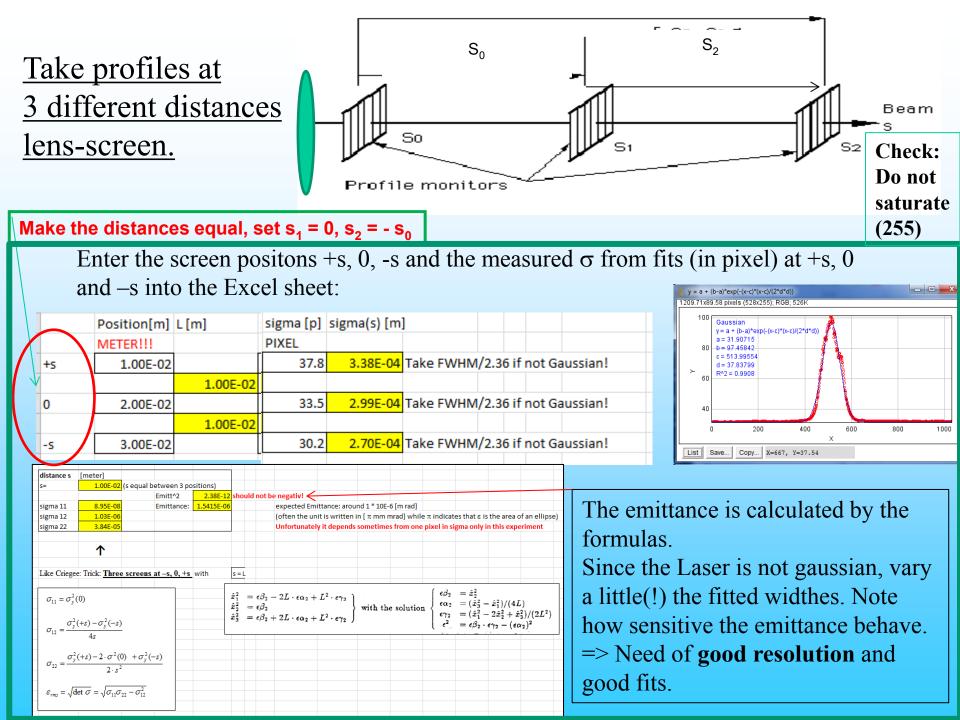

All yellow cells will be calculated automatically



Check: Do not saturate (255)


ImageJ: Introduction




- load image file \rightarrow File \rightarrow Open (Shortcut: Ctrl + O)
- select ROI: in start panel: select left button (below "File"), usually already pre-selected then with left mouse button: draw rectangular ROI
- plot horizontal projection \rightarrow Analyze \rightarrow Plot Profile (Shortcut: Ctrl + k)

ImageJ: Introduction

