

Heating of mirror: ⇒total emitted Power per electron:

 $P = \frac{e^2 c \gamma^4}{2}$ $\overline{6\pi\varepsilon_0\rho^2}$

total Power of 46 mA circulating electrons at 27 GeV (Number of electrons $N_{\rm e}$ = 6 \cdot 10^{12})

$\mathbf{P}_{\rm tot} = \mathbf{6} \cdot \mathbf{10^6} \ \mathbf{W}$

The mirror will get $P_{tot} * \Theta / (2 \pi) = 1600 \text{ W} (Integral over all wavelength!!!)$ => mirror is moveable, mirror has to be cooled => Material with low Z is nearly not visible for short wavelength => Beryllium => Still 100 W on mirror in HERAe

Not the whole truth: 1) Diffraction: a) Ψ_{exact} is larger than the Gauss approximation (e.g. $0.79 \rightarrow 1.08 \text{ mrad}$ at Tristan) b) For a gaussian beam the diffraction width is $\sigma_{diff}\approx 1/\pi * \ \lambda/\Psi$ (Ref: ON OPTICAL RESOLUTION OF BEAM SIZE MEASUREMENTS BY MEANS OF SYNCHROTRON RADIATION. By A. Ogata (KEK, Tsukuba). 1991. Published in Nucl.Instrum.Meth.A301:596-598,1991) $\sigma_{diff} \approx 1/\pi * \lambda/\Psi_{exact} = 218 \ \mu m (\Psi_{exact} = 0.8 \ mrad, \lambda = 550 \ nm)$ vertical et distribution 1.0 0.5 0.6 0.4 0.2 gular distribution of the 500 nm component of the n radiation from the TRISTAN MR bending mag-n bending radius) operated at 30 GeV, and its Gaussian approx mation. 0.6 0.8 77 77 77 8: Fraunhofer diffraction for synchrotron radiation from long r

2) Depth of field: The formula $R_{depth} = 1/2 * 0/2$ describes the radius of the distribution due to the depth of field effect. It is not gaussian and has long tails. The resolution of an image is probably much better than the formula above. A gaussian approximation with the same integral is shown in the figure below resulting in a width of $\sigma_{depth} = 61~\mu m.$

- 1. The smallest measurable beam size is limited by the finite wire diameter of a few microns,
- 2. Higher Order Modes may couple to conductive wires and can destroy them,

3. High beam intensities combined with small beam sizes will destroy the wire due to the high heat load.

4. Emittance blow up

Limitations:

2. Higher Order modes

2. night Order modes An early observation (1972 DORIS) with wire scanners in electron accelerators was, that the wire was always broken, even without moving the scanner into the beam. An explanation was that Higher Order Modes (HOM) were coupled into the cavity of the vacuum chamber extension housing the wire scanner fork. The wire absorbs part of the RF which led to strong RF heating.

Exercise WIRE1: Discuss methods of proving this behavior. What are possible solutions against the RF coupling?

Methods:

- 1. 2. Measurement of wire resistivity
- Measurement of thermo-ionic emission 3.
- Optical observation of glowing wire 4
- Measurement of RF coupling in Laboratory with spectrum analyzer

Hun Tarle Cypes for dispersion on the direct wire-beam interaction only. (From CATTY MODE RELATED WRE BREAKING OF THE SPE WRE SCANNERS AND LOSS MEASUREMENTS OF WRE MATERIALS F Corport, B Dohming, Longen, JJ, Malo, CERN, Granes, Notechand F. Roszenko, CERN University of Lausana, Switzerland, DPACOD)

Solving G: G [g] is the mass of the part of the wire interacting with the beam. The mass G is defined by the beam dimension in the direction of the wire (perpendicular to the measuring direction) and by the wire diameter d':

 $G = wire \ volume \cdot \rho = 2 \cdot \sigma_v \cdot d'^2 \cdot \rho \quad [g]$

Solving N:

The number of particles N hitting the wire during one scan depends on the speed of the scan (\sim 1/v), the revolution frequency ($-f_{rev}$), the wire diameter (\sim d') and the beam current (\sim NB · n_{bunch}):

$$N = \frac{d' \cdot f_{rev}}{(NB \cdot n_{bunch})}$$

The figure shows the a graphical representation of the parameters. The quotient d·f/v is the ratio of the scanned beam area or, in other words, like a grid seen by one bunch, assuming that all bunches are equal. However, the ratio can exceed the value 1 (a foil) if the scanning distance between two bunches is smaller than the wire diameter. Note that N does not depend on the beam widths σ .

Material	dE/dx / c _p	T _h [°C]	T _b /T _m
AL	7.7	$1.1\cdot 10^4$	16.9
w	50.6	7.1 - 104	20.9
с	5.4	0.77 - 104	2.2
Be	4.1	0.58 - 104	4.8
SiO2	12.9	1.8 - 104	10.6
ewires: cal	culated remper		
<u>n Table W</u> ve its melt	/IRE3 follows	, that even the	e best mate
<u>n Table W</u> e its melt	/IRE3 follows	, that even th re.	e best mate

1) Secondary part	ticles emitted fror	n the wire	1) Secondarie
2) Heat transport	along the wire		Some energy
3) Black body rac	liation		secondary partic
4) Change of c _p w	ith temperature		et al.; The mic CERN SPS/86-2
Wire type	Approximation	Monte Carlo	assumed. In Di carbon wire wa years of operati temperature of
10 um graphite	0.140	0.169 ± 0.002	after a scan
10 µm tungsten	1.01	2.19 ± 0.04	Considering the
15 µm tungsten	2.27	4.90 ± 0.05	the temperature
$50\mu\mathrm{m}$ tungsten	25.3	32.0 ± 0.1	point. In practic
			in 2 months. Th
Heat depose ing bunch of 1 nC (1), the "Monte C ulation of an elect	ited in various win 2. The approximation arlo" result is obtained romagnetic show	re types by a pa ated value follo tained by the si er with Fluka.	ss- becomes thinner indicate, that du m- the wire is e interactions or i
	t		close to the
Thermal Load on W	irescanners Beam Dynamics W	orkshop on Future	supports the est has to multiply

Exercise WIRE2a: Discuss cooling mechanisms which will cool the wire.

is lost from the wire by cles. In the work in (J. Bosser ron wire scanner at the SPS, 26 (MS) (1986)) about 70% is 26 (MS) (1986)) about 70% is ESY III (example above) no is broken during more than 10 ion. At HERA, the theoretical f the carbon wire (without ceeds the melting temperature by far (T = 12800 °C). l oss by secondaries of 70%, e reaches nearly the melting e, the wire breaks about once he observation is that the wire e observation is that the wire at the beam center. This may r at the beam center. It is may arring a scan some material of emitted because of nuclear s vaporized because it is very melting temperature. This imate of the 70% loss and one y the factor $\alpha = 0.3$ in the

2) Heat transport: The transport of heat along the wire does not contribute to short time cooling of the wire (P. Lefevre; CERN PS/DL/Note 78-8). However, frequent use of the scanner heats up also the ends of the wire and its connection to the wire holders (fork).

For low repetition rates (LINACs) this is the major cooling mechanism.

3) Black body radiation: The temperature T_{bb} at which the radiated power is equal to the deposited power in the wire during one scan P_{dep} [MeV/s] can be calculated from the Stefan-Bolzmann-law:

$$T_{bb} = \sqrt{\sqrt{\frac{P_{dep}}{s \cdot A}}}$$

where $s = 35.4 \text{ MeV} / (s^1 \text{ cm}^{2} \text{ }^0\text{K}^4)$ is the Stefan-Bolzmann-constant and A is the area of radiating surface. The surface of the heated wire portion A is $2\cdot\sigma_v\cdot d\cdot\pi$ [cm²]. The power can be calculated by:

$$P_{dep \, h, v} = \alpha \cdot dE \, / \, dx \cdot d' \cdot n_{bunch} \cdot \frac{f_{bunch} \cdot d'}{v} \cdot \frac{1}{t_{scan}} \quad [MeV \, / \, s]$$

where $t_{scan}=2\cdot\sigma_{h,v}/v$ is the time for a scan (in the assumpton of 2σ it is neglected that only about 70% of the power is concentrated within 2σ). α is the expected loss from secondaries.

trom secondaries. For the example above $T_{bb}=3900~^{\rm o}C.$ Therefore the black body radiation is only a fraction of cooling in case of fast scans.

Т	emperature o	f the wire	(v=1m/s)	
	Num. of part.	Typ. Beam diam.	Temp. after scan [C]	Eqi Temp [Celsius]
HERAp	1 *10^13	0.7 mm	3900	5100
HERAe	6.5 * 10^12	0.2 mm	4800	4500
PETRAp	4.8*10^12	2 mm	980	3500
PETRAe	1.5*10^12	0.1 mm	4700	6800
DESYIII	1.2*10^12	1 mm	3400	5300
TTF fast	2.8*10^13	0.05 mm	4000	7400
TTF slow	2.8*10^13	0.05 mm	286 000	2900
N T Iu n	Melting temperatu The wire in DESY n HERA we exch normal" use. Unu nuch earlier.	rre = 3500 °C f = 1700 °C f III still exists ange the wires isual frequent	for Carbon for Quartz with 200 mA = 1. s every 2 month af use will destroy th	25·10 ¹² p ter e wires

Parameter	Symbol	Unit			wire mater	ial	
			AL	W	Carbon	Beryllium	Quartz (SiO ₂)
wire diameter	d = 7 · 10 ⁻⁴	cm					
mtan wire dameter	$d' = d/2 \cdot \sqrt{\pi}$ = 5.5 · 10 ⁻⁴	cm					
Conversion	0.239	caldoule					
Conversion factor	C= 3.8 - 10 ⁻¹⁴	MeV/cal					
Speed of wire	v = 100	cm/s					
specific heat capacity*	4	cal/g/*C	0.21	0.036	0.42 (>400°C) 0.17 (< 400°C)	0.43	0.18
Energy loss of nin ion part	dE/dz	MeV cm ² / g	1.62	1.82	2.3	1.78	2.33
(MIPs)	db/dr _m	MeV/cm	4.37	55.13	5.3	3.3	5.3
search	P	g/cm*	27	19.3	2.5	1.85	2.29
neuting temp.	1m	William MC	000	100.160	Ca. 3500	1200	12.1.4
Padatise langth	1.	W/(III K)	0.0	0.25	10.0	24.7	12.2
Musland on II lanoth	1				10.0		
Table WIRE!	: Parameters ameters used i	of wire ma	terials. *:	> 500 °C	34 following tal	30 ble:	25.4
Table WIRE	: Parameters ameters used i	of wire ma	26 terials. *: se are sho	9.6 > 500 °C wn in the	34 following tal	30 ble:	25.4
Table WIRE1 The beam par Parameter	: Parameters ameters used i	of wire ma	terials. *: se are sho Symbo	9.6 > 500 °C wn in the	34 following tal Unit	30 Die: Valu	e
Table WIRE1 The beam par Parameter circumference	: Parameters ameters used i	of wire ma	terials. *: se are sho Symbo circ.	9.6 > 500 °C wn in the	following tal	30 Die: Valu 300	e
Table WIRE1 The beam par Parameter circumference particle	: Parameters ameters used i e of accel.	of wire ma	terials. *: se are sho Symbo circ.	9.6 > 500 °C wn in the	following tal	30 Die: Valu 300	e
Table WIRE1 The beam par Parameter circumference particle Beam partick	: Parameters ameters used i of accel.	of wire ma	26 terials. *: se are sho Symbo circ. D	9.6 > 500 °C wn in the	following tal	30 ble: Valu 300 0.3-	e
Table WIREI The beam par Parameter circumference particle Beam partick Beta function	: Parameters ameters used i e of accel.	of wire ma	terials. * se are sho Symbo circ. P β _h =β	> 500 °C wn in the	following tal Unit m Proton GeV/c m	30 De: Valu 300 0.3- 11.8	e
Table WIRE1 The beam par Parameter circumference particle Beam partick Beta function Emittance	: Parameters ameters used i e of accel. momentum	of wire ma	26 terials. *- se are sho Circ. p β _h =β ε _h =ε	> 500 °C with the ol	following tal Unit m Proton GeV/c m π mm mrad	30 Valu 300 0.3- 11.8 15	e 7
Table WIRE I The beam part Parameter circumference particle Beta function Emittance revolution Fra	e of accel.	of wire ma	26 terials. *- Symbo circ. β _h =β ε _h =ε f _{cer}	> 500 °C wn in the	1 34 following tal Unit m Proton GeV/c m π mm mrad MHz	30 Valu 300 0.3- 11.8 15 0.9:	e 7
Table WIREI The beam par Parameter circumference particle Beam particle Beta function Emittance revolution Frr Bunch spacin	ameters used i c of accel. momentum	of wire ma	terials. * se are sho Symbo circ. P β _h =β ε _h =ε f _{ter} burth	> 500 °C wn in the	J 34 following tal Unit m Proton GeV/c m π mm mrad MHz ns	30 Valu 300 0.3- 11.8 15 0.93 98	e
Table WIRE1 The beam par Parameter circumference particle Beam particle Beam particle	e of accel. momentum equency g	of wire ma	26 terials. *- se are show circ. p β _h =β ε _h =ε f _{cer} l _{such}	> 500 °C wm in the	1 34 following tal m Proton GeV/c m π mm mrad MHz MHz	30 Valu 300 0.3- 11.5 0.9: 98 10.2	e
Table WIRE I The beam part Parameter circumference particle Beam particle Beam particl	ameters used i c of accel. momentum equency g nches in accel	of wire ma in this exerci	$\begin{array}{c c} 26 \\ \text{terials. *} \\ \text{se are show } \\ \text{se are show } \\ \text{se are show } \\ \text{circ.} \\ \hline \\ p_{h} = \beta \\ c_{h} = \varepsilon \\ f_{ere} \\ f_{erent} \\ f_{warch} \\ f_{warch} \\ NB \end{array}$	> 500 °C wm in the ol	i 34 following tal m Proton GeV/c m ∞ mm mrad MHz ns MHz	30 Valu 30 30 30 30 30 30 30 30 30 30	e
Table WIRE I Table WIRE I The beam part circumference particle Beam particle Beam part	e of accel. momentum equency gunches in accel	of wire ma in this exerci	26 terials. * se are sho circ. <u>β_h=β c_h=ε f_{cer} <u>β_b=ε</u> f_{ver} NB</u>	> 500 °C wn in the ol	following tal Unit m Proton GeV/c m π mm mrad MHz ns MHz 1/e	30 Valu 3000 30	e
Table WIRE I The beam part Parameter circumference particle Beam particle Beam particle Beam particle Beam particle Beam particle Beam particle Beam vidth r Bunch charge Beam width r	ameters used i c of accel. momentum equency g nches in accel neasurement 1	of wire main this exerci	$\beta_{\rm burdt}$ $\beta_{\rm b} = \beta_{\rm b}$ $\beta_{\rm b} = \beta_{\rm b}$ $\beta_{\rm b} = \beta_{\rm b}$ $\beta_{\rm b} = \beta_{\rm b}$ $\beta_{\rm burdt}$ $\beta_{\rm burdt}$ $\beta_{\rm burdt}$ $\beta_{\rm burdt}$ $\gamma_{\rm b}$	> 500 °C wm in the ol	following tal Unit m Proton GeV/c m π mm mrad MHz ns MHz 1/e mm	30 Valu 300 300 300 300 300 300 300 30	e

LINACS/Transport Lines Emittance Measurement

In a transfer line, the beam passes once and the shape of the ellipse at the entry to the line determines its shape at the exit. Exactly the *same* transfer line/Linac injected first with one emittance ellipse and then different ellipses has to be accredited with *different* α and β , γ functions to describe the cases. **Thus** α **and** β , γ depend on the input beam and their propagation depends on the structure. Any change in the structure will only change the α and β , γ values downstream of that point. ... The input ellipse must be chosen by the designer and should describe the configuration of all the particles in the beam.

In the following let's assume a transport line or the part of the Linac where no acceleration takes place. What about the emittance?

If no energy is transferred to the beam (Hamiltonian systems), the emittance is conserved.

Explain ways of measuring the emittance of a charged particle beam in a Linear Accelerator or a transport line without knowing the beam optic parameters α , β , γ .

Exercise L1: Which one is the preferable method for a high energy proton transport line (p > 5 GeV)?

Solution: 3 (thin) screens or <u>SEM</u> grids or varying quadrupole which measure the different beam widths σ . For <u>pepper pot or slits</u> one needs a full absorbing aperture.

Seconday Emission Dectectors Introduction When electrically charged particles with sufficient kinetic energy hit the sufface of a solid, the latter emits electrons. The electrical process of the superficient system is a solid process of the superficient system is a solid process of the superficient system is a solid process of the superficient system is charged epieldon's proportional to the local density of the particles, are emitted from the superficient system is charged epieldon's proportional to the local density of the particles, are emitted from the superficient system is charged epieldon's proportional to the local density of the succe impedance, and the collection of unwanted parasitic charges. The main problems encountered with the thinnest possible foils to minimize disturbance to the beam. The main introlems enclose the tire resolution, owing to the firste number and dimension of thes strips, and the overall gain spread from channel to channel. The resolution can be increased in single-short operations by inclining the grid with respect to the beam direction. In a multi pulse measurement, the resolution can be increased by displacing the grid with respect to the beam direction. In a multi pulse measurement, the resolution can be increased by displacing the grid with respect to the beam direction. In a multi pulse measurement, the resolution can be increased by displacing the grid with respect to the beam direction. In a multi pulse measurement, the resolution can be increased by displacing the grid with respect to the beam direction. In a multi pulse measurement, the resolution can be increased by displacing the grid between measurements.

Resolution

The overall resolution is limited by: Depth of Field, Camera (H and V) and lens resolution. Phosphor screen grain size, air waves and mechanical vibration, a factor in measuring beams of tens of micron size, <u>are not</u> significant for beam sizes in the Millimeter range. Depth of field is a factor because the screen is tilted at 45° with the top at a different distance from the lens than the bottom. This matters if the beam is well off center or large. In the latter case, however, finer resolution isn't required. Camera resolution is limited by the number of pixels in the array and the readout electronics bandwidth. The overall resolution can be calculated using the manufacturer's data for the cameras and lenses and the parameters

of the beam and optical path for each location.

Ref: Design of the Beam Profile Monitor System for the RHIC Injection Line * R. L. Witkover PACO5 https://www.com/www.com/www.com/www.akt/ICLES/TPD/TPD/0/PDF

