Secondary Beams

Dan Faircloth Rutherford Appleton Laboratory

CERN Accelerator School, Introduction to Accelerator Physics Vysoke-Tatry, Slovakia Saturday 14th September 2019

Rutherford Appleton Laboratory Oxfordshire, UK

Harwell Campus

Diamond Light Source-

Secondary Beams?

ISIS Neutron and Muon Source

A world leading centre for condensed matter physics-Neutrons are used to see where atoms are and what atoms do

ISIS is used to study everything!

ISIS -making neutron and muon beams since 1984

Spallation neutron source 800 MeV 50 Hz proton beam 31 neutron instruments 7 muon instruments 2000 users/yr ~800 experiments/yr ~500 publications/yr

Science & Technology Facilities Council

ISIS -making neutron and muon beams since 1984

10 Hz neutrons

40 Hz muons

TS2

40 Hz neutrons

800 MeV 50 Hz proton synchrotron

70 MeV Hminus LINAC

TS1

Science & Technology Facilities Council 8

A A - S - Mark

ISIS has many different types of neutron and muon instruments:

20 neutron instruments7 muon instruments

11 neutron instruments (room for more)

... some are very big

...some are smaller and movable

Each instrument is unique and complex...

HRPD Diffractometer

Target Station 1

COLUMN TO A

11.1.1.1.1

-

15

Target Station 2

Neutron Instruments

Section view of ISIS TS1 target

Tungsten Block

ISIS target and bottom moderator and reflector assembly (top reflector assembly removed)

800 MeV protons

slow neutrons

20

ISIS TS1 target and moderators with reflector assembly removed

Water moderators

heat load 380 W 25 litres/min 30°C demin water Moderator depth defined by Al clad Gadolinium poisoning layer

Cryogenic moderators

decoupled liquid CH₄ moderator 110 K methane @ 3 Bar heat load 200 W

Coupled liquid H₂ moderator

heat load 200 W 20 K hydrogen @ 8 Bar

ISIS Target Station 2 TRAM with the edge cooled beryllium reflector open in maintenance mode

TS2 Cryogenic Moderators

coupled moderator: liquid H₂ @ 20 K 4 Bar

decoupled moderator: solid $CH_4 @ 45 K$

Choppers- spinning shielding

slotted shielding

magnetically levitating bearings

precise

timing

Choppers- spinning shielding

Fermi (17)

7.3 kg Payload 36,000 rpm ±0.05° Phase Control

Disk (56)

30 kg Payload 20,000 rpm ±0.05° Phase Control T-Zero (4)

68 kg Payload 10,800 rpm ±0.43° Phase Control

The services trolley moves to position the TRAM for operation or maintenance

TS1 Services Trolley Cooling Plant

TS2 Services Trolley Cooling Plant

The main remote handling task carried out is CH4 moderator replacement Every 3-4 cycles

Targets also need to be replaced every 4-5 years

TS1 Tungsten Target #4 on flow test rig

remote manipulator set in TS1

HINNEL

remote manipulator set in TS2 Iouch NTo

remote manipulator sets on both sides of the remote handling cell

No unauthorized persons to use

AVDID ALL UND WITH THE WIND DO NOT DIREC LIGHT SOURCE

Crews in contact with other areas by headset
View through 1 m thick lead glass window into the empty remote handling cell

Underground Tunnel for Removal of Active Components in Transport Flask

Active components are removed using the tunnel system under the RHC

View of the TS1 TRAM withdrawn into the RHC

This view is from the north side of the RHC

The reflector top section is rolled forward to expose the Tungsten Target

The target has been disconnected and is being lifted away from its working position

The target being lifted over to the disposal can on the south side of the RHC

Target and can being lowered into the transport flask

Shield plug is lowered onto flask. After the plug is fitted personnel can approach the loaded flask.

The loaded flask is checked by ISIS Health Physics for external radiation and contamination

Storage flask total weight is 9 Tonnes

Flask is moved on 'MasterMover' powered pallet truck

The loaded flask is lifted out of the tunnel

The loaded flask is transported back to R40 for storage

After work in the RHC is complete the area must be cleared and checked

Personnel can enter the RHC when the TRAM is in the forward position

Full suit, gloves, overshoes and respirator are required for this work

For final disposal the target is transferred to a registered and licenced Type B package and transported to Sellafield the UK's nuclear waste storage facility

More power!

- ISIS 160 kW on target
- More power = more neutrons
- The power must be removed somehow
- SNS Oakridge USA = 1.4 MW

1.4 MW liquid mercury target

Close-up of Damage to Target Inner Window (center of beam entrance area)

Cavitation bubble collapse causes serious damage

> solution: fizzy mercury with helium

EUROPEAN SPALLATION SOURCE

ESS currently under construction 3 MW on target!

A rotating wheel of ISIS targets!

EUROPEAN SPALLATION SOURCE 2.6 m diameter stainless steel disk containing tungsten bricks 5000 kg helium cooled 23.3 rpm

> A solution for SNS TS2

protons

Tungsten powder handling system developed at RAL

Science & Technology Facilities Council

suctio

Pressurned

0.5 to +3ber

Vented to atmosphere

Chute

action Hopper -0.5 bar

3

Receiver

Vessel

0 bar

Tests at CERN

10-100 MW!

Muons at ISIS

Target Station 1

EC muon facility:

- +ve muons
- Three spectrometers for materials studies

RIKEN-RAL muon facility:

- +ve or -ve muons
- Variable momentum
- Two spectrometers for materials studies
- Low energy muon development
- Other fundamental muon physics experiments

7 muon instruments

ISIS Muon Target

10 mm thick graphite target at 45° to the 800 MeV proton beam

About 5% beam lost.

Diffusion bonded to copper to maximise thermal contact

10 kW maximum heat load

The EC Muon Facility

Radiation Levels

Radiation Hard Magnets

Radiation Hard Magnet Design

- In house concrete magnet design
- Coils Potted in concrete
- Water Cooled

CERN Neutrinos to Gran Sasso (CNGS)

732 km

Magnetic Horn

10 CM

Simon van der Meer

1960s "current sheet lens" originally for neutrino beams then for antiprotons 1.4 mm Al 400 kA 15 μs (half-sine)

Magnetic Horn

Beam Separation

FAIR — Facility for Antiproton and Ion Research in Europe

Beam Separation

Research in Europe

Shielding Required

Radioactive Ion Beams

A powerful way of studying the atomic nucleus

ISOL vs In Flight Fragmentation

Isotope Separation On Line (ISOL): A production line

Very complicated chains of acceleration and separation have been created

In Flight Fragmentation: Filtering an explosion

ISOL produces very pure beams with "long" half life

ISOLDE source

connections for resistive heating

quartz tube

transfer tube

primary beam

Ta tube with target material

In Flight Fragmentation: common components

In flight fragmentation suitable for very short half life beams

Facility for Rare Isotope Beams at Michigan State University

Future Colliders

cic Compact Linear Collider

The Next Linear Collider

Higgs Factory

- China Electron Positron Collider (CEPC)
- 100 km underground circular tunnel
- 240 GeV
- \$6bn
- More than million Higgs bosons in 7 years
- \$6000 per Higgs and one Higgs every 3 mins!

Summary

- Secondary beams are incredibly fascinating
- The work they do moves forward our understanding of the universe
- They are at the extreme limit of our: Knowledge of physics
 Engineering capability
 Financial and Political ability
- We have only scratched the surface

Thank you for listening Questions?