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Outline

Ø Radiation Units and Types
Ø Interaction of Radiation with materials
Ø Classification of Plastics Materials

Ø Thermoplastics and Thermosets
Ø Structure and Materials Selection 
Ø Effects of Radiation

Ø Mechanical, gas evolution, dimensional changes?
Ø Irradiation Under Load 
Ø Electrical properties
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Radiation Units

Ø The S.I. unit of absorbed dose is the Gray (Gy)
Ø An energy equivalent of one Joule absorbed in one 

Kilogram 
Ø Non SI Unit – Rad;  1 Rad = 10-5 J/g = 10-2 Gy 
Ø 1 eV = 1.602 x 10-19 Joules ; 1 MeV = 1.602 x 10-13

Joules

Ø barn: Unit of area (10-28 m2 ) used in measurement of 
nuclear cross-sections
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Radiation Types

ØNeutrons - particles with energy 
but no charge

ØElectromagnetic radiation such as g
-rays

ØCharged particles - such as 
protons, electrons and a-particles 
(He2+)
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Interaction of Radiation 
With Polymers

High energy particles lose energy and transfer it to 
polymer by:

Ø Ionisation - breaking chemical bonds
Ø Excitation -Separation of orbital electrons
Ø Nuclear Displacement Reactions - mainly fast 

neutrons - leads also to ionisation
Ø Nuclear Transformation  - Mainly slow neutrons
Ø Scattering and Emission

Ø Absorbed energy is degraded and appears as heat
Ø Energy deposition is characterised by LET
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Linear Energy Transfer

Ø Rate of energy loss of a particle depends only on it's 
speed and charge and not on it's mass. 

Ø Protons and alpha particles will react in a similar 
manner to electrons of the same velocity and charge. 

Ø Difference in mass means that the penetration of a 
20 MeV proton is comparable with that of a 10 keV 
electron. 

Ø Since the LET is increased as the particle is slowed, 
uniform radiation conditions, apply only if the 
specimen is considerably thinner than the range of 
the incident particle.

Ø
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Fast Neutrons - 1

Ø Fast Neutrons are intensely damaging

Ø Major result is production of fast protons

Ø Energy transfer to other atoms may break chemical 
bonds

Ø Re-coiled neutron may still have sufficient energy to 
break more bonds
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Fast Neutrons 2

Ø Ø Deposit Energy by collisions
Ø Et =   4 x M (E Cos 2 q) 

(M+1)2

Nucleus Mass
Energy

Transfer (%)
Hydrogen 1 100

Carbon 12 28
Nitrogen 14 25
Oxygen 16 22
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Slow Neutrons

Ø Most elements have larger capture x - section for 
slow neutrons than for fast - result is nuclear 
transformation reactions:

Ø After capture nucleus may be unstable: (capture X-
section of hydrogen 80 barns)
H(1) (n,g)D(2) N(14) (n,p) C(14)
2.2 MeV g 0.66 MeV proton

B(10) (n,a) Li(7) (B capture X-Section 700 barns)
Boron gains 1 amu and loses 4 (a high energy alpha 

particle) - a net loss 3 amu
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Methane – A Special Case

Ø Hydrogen rich compound most efficient way to “slow” 
neutrons

Ø Methane (CH4) often used as a ‘moderator’; fast neutron 
irradiation leads to hydrogen gas and ‘wax’ like substance –
eventually carbon!

Ø Hydrogen gas from hydrogen abstraction
Ø ESR measurements show H* & C*H3 in solid methane at 4K 

after irradiation at that temperature
Ø Under similar conditions H* NOT detected in PE or other 

polymers
Ø Activated atoms lead to polymer formation and ultimately 

carbonization

11



Neutron Fluence and Dose Conversion –
Energy Deposited (1st Collision)
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Polymer Structures
(radiation Resistance is related to 

structure & Composition)
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Relative  atomic Sizes 
(Approximately)!

Hydrogen Carbon Oxygen
Methyl 
Group

Chlorine

Benzene 
nucleus
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Some Thermoplastics

Ø Poly(ethylene) Poly(propylene)

Ø Poly(vinyl chloride)
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Another Common Thermoplastics 
Material
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More Complex Plastics Materials
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Di-Functional Resins

Ø Typical commercial DGEBA, average value for n = 0.15
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Epoxy Novolak Resins
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Commercial EPN Resin (n= 0.4 avg) when n = 0, Resin is 
(pure) DGEBF
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Tri-Functional Epoxy Resins
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Tetra Functional Resins

H

H

N C

CH2-CH-CH2

O

CH2-CH-CH2

O

N

CH2-CH-CH2

O

CH2-CH-CH2

O

DETGDM

TGDM

H

H

C2H5

C2H5

N C

CH2-CH-CH2

O

CH2-CH-CH2

O

N

CH2-CH-CH2

O

CH2-CH-CH2

O

21



Cyanate Ester ResinTwo Reactive Groups
(Di-Functional)
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Cyanate Ester Monomer (AroCy L-10)

DGEBA shown pure for 
clarity
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Cyanate Ester – Ring Formation
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Solid Aromatic Amines

CH NH2NH2 2 DDM  (MDA) 
(Suspected carcinogen)
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Aromatic Amines - Liquids
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Anhydride Hardeners
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Results & Test Methodology

Mechanical Changes in Materials 
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Radiation Stability of Various 
Plastics Materials
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Radiation Effects in Resins

Ø Changes in Mechanical properties

Ø Particularly matrix dependent properties such as 
flexural strength and shear strength

Ø Classification of “Damage”

Ø Radiation induced gas evolution / swelling

Ø Effect of Temperature
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Mechanical Changes 
1. Flexural Strength
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Radiation Effects in Materials (1)
(Flexural Strength – Gamma Radiation – RT)
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Radiation Effects in Materials (2)
(Flexural Strength – Gamma Radiation – RT)
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Radiation Stability and 
Resin Structure
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Shear Testing
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Stressful  (Working)
Lunch
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Shear Strength Evaluation

Ø Many methods – each has it’s own problems
Ø Major Techniques are :

Ø Guillotine – bending & stress concentrations

Ø Short beam shear – variation of 3-point bending test 
but short span – compression on one face tension on 
the other

Ø Shear / compression – said to be free of stress 
concentations – mainly used for adhesive properties
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ILSS– G10
Guillotine Method
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Reactor Irradiation at 5K
(Short Beam Shear)
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SBS With and Without Kapton
(R.P. Reed  et al – US ITER Radiation program  - sponsored by US Office of Fusion Energy)
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Tests in Shear Compression

Ø Test is ‘free” of stress concentrations
Ø Many tests carried out RT and at 4K
Ø Little data on radiation stable materials
Ø No comparison between 4k and RT irradiation (except 

for samples with mica barrier) ???
Ø For DGEBA cured with Acid Anhydride:

Ø Test at 4K – no irradiation (45 angle) 190 Mpa
Ø Test at 4K irradiated at 4K* (45 angle) 26 MPa
* Reactor irradiated 1.8 x 1022 n/m2 (~67 MGy)
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Gas Evolution & Swelling
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Radiation – Effect
of Temperature
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Gas Evolution & Reactor Irradiation
(Evans & Reed, Adv. Cry. Eng. Vol 42, 29 – 35)

Resin Hardener Gas
(cc/g/MGy)

DGEBF DETD 0.58
DGEBF DMTD 2.32
TGPAP DETD 0.58
DETGDM DETD 0.91
DETGDM DMTD 2.78
DGEBA DDM 0.30

For Reference: DGEBF/MTHPA 1.08cc/g/MGy from Reactor 
Irradiation – polyethylene dosimeter 
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Composition of Radiation 
Induced Gasses

(Generalised and approximating)

Ø Amine Cured (aliphatic or aromatic):
90% hydrogen, 10% carbon monoxide

Ø Acid Anhydride cured:
20% hydrogen, 20% carbon monoxide, 60% 

carbon dioxide
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Is Gas Trapped in Bulk Specimens?
(Evans & Reed, Adv. Cry. Eng. Vol 42, 29 – 35)

Ø Bulk means ~ 7 mm cube

Material Gas Production Rate 
Cc’s / g/MGy 

True *          Bulk** 

% Gas  
Trapped 
 

DGEBF/MTHPA 1.03 0.47 53 
DGEBF / DETD 0.58 0.44 24 
TGPAP / MTHPA 1.10 0.64 42 
TGPAP / DETD 0.58 0.64 0 

 
* Rate from powdered sample  ** Rate from 7 x 7 x 7 cubes
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Swelling & Reactor Irradiation at 5K
(Humer et al - Cryogenics, 40 , pp 295-301)

DGEBF / Anhydride
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Swelling and Mass Loss (20 MGy)
Reactor Irradiation at 5K – Unfilled Resin

(Evans & Reed, Adv. Cry. Eng. , Vol. 46, pp 211 - 218)

Resin Hardener Change in Properties (%) 
Diam     Length   Mass   

Mass Change 
 % / MGy 

DGEBF MTHPA -0.1 0.0 -0.8 -0.04 
EPN MTHPA 0.3 0.0 -1.0 -0.05 
DGEBF DETD 0.1 0.2 -0.1 < -0.01 
DGEBA DETD 0.0 0.2 -0.1 < -0.01 
TGDM DDS 0.0 0.3 -0.1 < -0.01 
TGPAP DETD 0.3 0.3 0.0 <-0.01 
DGEBA MTHPA -0.1 -0.2 -0.8 -0.04 
TGPAP MTHPA 0.5 -0.1 -0.7 -0.04 

 
No Change in Young’s Modulus (compression) after Irradiation

10 mm diam x 10 mm long cast and machined resin samples
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The Last Word on Swelling

Ø Available data is very confusing – my viewis that   
swelling doesn’t occur in epoxies or CE at  dose levels 
reported’

Ø WHY – what happens to gas?
Ø No new material created – gas is from atoms already 

present
Ø Molecules possibly ‘trapped’ in area of formation (‘cage 

effect’)
Ø Gas is ‘in solution’ – does not occupy a separate volume 

within resin
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Creep and Radiation
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The Real World

“---- that some discussion be focussed on integrating 
the insulation materials results with magnet design 
and operation issues. In other words, cover more than 
just insulation properties but also how these impinge 
on coil fabrication or operation. 
How do properties measured on small samples relate 
to properties in large scale impregnated coil cross-
sections under multi-dimensional loads, including 
combined mechanical, thermal and radiation loads ---
“      Joe Minervini

(Assistant Director, MIT Plasma Fusion Center) 
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Irradiation at 5K – DGEBF / Anhydride
(Evans & Reed Adv. Cry. Eng. Vol 44, 183 - 190 )

Neutron  
Fluence 
(E.0.1 MeV 

Stress During 
Irradiation 
(MPa) 

Failure  
Stress 
(MPa) 

0 (control) 0 172 
5 x 1021 0 124 
5 x 1021 30 105 
1 x 1022 30 92 
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Irradiation at 5K – TGDM / Aromatic Amine
(Evans & Reed Adv. Cry. Eng. Vol 44, 183 - 190 )

Neutron  
Fluence 
(E.0.1 MeV 

Stress During 
Irradiation 
(MPa) 

Failure  
Stress 
(MPa) 

0 (control) 0 162 
5 x 1021 0 157 
5 x 1021 30 139 
1 x 1022 30 122 
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Creep at 77K of Irradiated Material
(Nishiura T et al - Cryogenics, Vol. 35, No. 11,  pp 747 – 749)

Creep of Irradiated GRP (5 MGy)
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Creep During Irradiation at 77K
(Nishiura T, et al - Cryogenics, Vol. 35, No. 11,  pp 747 – 749)
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Creep Rates

Irradiation 
Conditions 

Stress 
Level 
(MPa) 

Creep Rate 
(mm/minute) 

Pre-Irrad* 278 <5 x 10-5 
Pre-Irrad* 403 ~9 x 10-5 

During Irrad** 125 1.5 x 10-4 

During Irrad** 204 4.5 x 10-4 

During Irrad** 370 9.0 x 10-4 

 

* Pre-Irradiated 5 MGY, ** Total during irradiation ~ 
6MGy
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A Quick Look at Electrical 
Properties
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Electrical Properties 
and Radiation 
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Summary

Ø High functionality promotes radiation stability 
Ø Aromaticity (resin or hardener) also promotes 

stability
Ø Best Epoxies  -up to 200 MGy – CE even more
Ø Some synergism between irradiation under stress
Ø Gas volumes and composition related to structure
Ø Results on swelling are scattered and confusing – on 

balance no swelling up to 100 MGy
Ø No significant change in electrical properties – up to 

~ 100 MGy – no apparent relationship with structure 
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