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Mathematical tools for modelling nonlinear dynamics

B Introducing aspects of non-linear dynamics

B Power series (Taylor) maps and symplectic maps.

Effects of nonlinear perturbations
B Resonances, tune shifts, dynamic aperture.

Analysis methods:
B Normal forms, frequency map analysis.
B Employ two types of accelerator systems for
illustrating the methods and tools
Bunch compressor (a single-pass system)
A storage ring (a multi-turn system).
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B Describe some of the phenomena
associated with nonlinearities in periodic
beamlines (such as storage rings)

B Explain significance of symplectic maps,
and describe some of the challenges in
calculating and applying symplectic maps

B Outline some of the analysis methods that

can be used to characterise nonlinear beam
dynamics in periodic beamlines.
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B As example, consider the transverse dynamics in a
simple storage ring, assuming:
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The storage ring is constructed from some number of
identical cells consisting of dipoles, quadrupoles
and sextupoles.

The phase advance per cell can be tuned from close
to zero, up to about 0.5 X 2r11.

There is one sextupole per cell, which is located at
a point where the horizontal beta function is 1 m,
and the alpha function is zero.

B Usually, storage rings will contain (at least) two
sextupoles per cell, to correct horizontal and
vertical chromaticity. To keep things simple, we will
use only one sextupole per cell.
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B Sextupoles are needed in a storage ring to

=

compensate for the fact that quadrupoles have
lower focusing strength for particles of higher

| ,
,

B The change in focusing strength with particle

energy:

energy has undesirable consequences, especially in
storage rings: it can lead to particle motion
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B A sextupole can be regarded as a quadrupole with
focusing strength that increases with horizontal
offset from the axis.

B If sextupoles are located where there is non-zero
dispersion, they can be used to control the
chromaticity in a storage ring.

2

trajectory
trajectory with without
sextupole sextupole
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quadrupole sextupole
provides
additional 7
focusing « x
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B The chromaticity, and hence the sextupole strength,
will normally be a function of the phase advance
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B However, just to investigate the nonlinear effects of the
sextupoles, we shall keep the sextupole strength koL
fixed, and change only the phase advance

B We can assume that the map from one sextupole to
the next is linear, and corresponds to a rotation in
phase space through an angle equal to the phase

advance:
X . COS [y  SIN [l X

B Again to keep things simple, we shall consider only
horizontal motion, and assume that the vertical co-
ordinate y = 0 ;
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. Recall that the vertical field component in a
sextupole magnet is:

& _ lk 2
Bp 2
with B p the beam rigidity and the normalized sextupole
gradient is
1 0°B

Bp 0x?

B [n the “thin lens” approximation, the deflection of a
particle passing through the sextupole of length L is

/—yds — ——kng

k2 =
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B The map for a particle moving through a short
sextupole can be represented by a “kick” in the
horizontal momentum:

r = T,

1
Pxr = px_§k2[4x2

B Let us choose a fixed value ko, = —600 m ™2 , and look

at the effects of the maps for different phase advances.

B For each case, we construct a phase space portrait by
plotting the values of the dynamical variables after
repeated application of the map (rotation + sextupole)
for a range of initial conditions.

B First, let us look at the phase space portraits for a
range of phase advances from 0.2 X 2 to 0.5 X 2n
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B For small amplitudes, particles
trace out closed loops around
the origin: this is what we pe = 0.202 x 27
expect for a purely linear map 31 ’

B As the amplitude is increased,
there appear “islands” in phase
space. The phase advance (for
the linear map) is often close to
m/p, where m is an integer £ ol
and p is the number of islands

B Larger number of islands
appears at larger amplitude

Non-linear Dynamics, CERN Accelerator School, September 2019
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B Usually, there is a closed
curve that divides a region
of stable from a region of
chaotic motion.

B Outside that curve, the
amplitude of particles
increases without limit

B The area of the stable
region depends strongly on
the phase advance
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=
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B Usually, there is a closed
curve that divides a region
of stable from a region of
chaotic motion.

Outside that curve, the
amplitude of particles
increases without limit

B The area of the stable £ 4 G e
region depends strongly on ~
the phase advance

e = 0.330 x 27

For phase advance close to
2n/3, it appears that the |
stable region almost 3 0o 3
vanishes altogether
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] Usually, there is a closed
curve that divides a region
of stable from a region of
chaotic motion.

Outside that curve, the
amplitude of particles
increases without limit

B The area of the stable
region depends strongly on
the phase advance

B When phase advance
approaches n, the stable
area becomes large, and
distortions from the linear
ellipse become less evident
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e = 0.402 x 27
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] Usually, there is a closed
curve that divides a region
of stable from a region of
chaotic motion.

Outside that curve, the
amplitude of particles
increases without limit

B The area of the stable
region depends strongly on
the phase advance

When phase advance
approaches n, the stable
area becomes large, and
distortions from the linear
ellipse become less evident
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B An important observation is that the
effect of the sextupole in the periodic cell
depends strongly on the phase advance
across the cell

B We can start to understand the
significance of the phase advance by
considering two special cases:

Phase advance equal to an integer times 2m

Phase advance equal to a half integer times
211

Non-linear Dynamics, CERN Accelerator School, September 2019
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B Let us consider first a phase advance equal to an
integer. In that case, the linear part of the map is just

the identity
r — T,

Pz 2 Pz
B So the combined effect of the linear map and the
sextupole kick is:

r = T,

1
Pz pm_§k2Lx2

B Clearly, the horizontal momentum will increase
without limit

B There are no stable regions of phase space, apart from
the line x = (

Non-linear Dynamics, CERN Accelerator School, September 2019
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B Now consider what happens if the phase advance of a
cell is a half integer times 211, so the linear part of the
map is just a rotation through 1.

B [f a particle starts at the entrance of a sextupole with
r = xg and Pz — Pz0, then at the exit of that
sextupole: r1 = X,

1
2
Px1 — Pz0 — §k2Lx0
B Then, after passing to the entrance of the next
sextupole, the co-ordinates will be:

Lo = COS(7T)£IZ1 — —I1 = —Xo ,

1
De2 = COS(T)Pr1 = —Pz1 = —Pzo + ik’gLaﬁg

Non-linear Dynamics, CERN Accelerator School, September 2019
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B Finally, on passing through the second

sextupole:
3 = T2 = —Lo,
1 2
Pz3 = Dz2 — §k2L$2 = —Px0

B In other words, the momentum kicks from the
two sextupoles cancel each other exactly

B The resulting map is a purely linear phase
space rotation by 1.

B In this situation, we expect the motion to be
stable (and periodic), no matter what the
amplitude

Non-linear Dynamics, CERN Accelerator School, September 2019
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B The effect of the phase advance on the
sextupole “kicks” is similar to the effect on

perturbations arising from dipole and
quadrupole errors in a storage ring
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B In the case of dipole errors, the kicks add up if
the phase advance is an integer, and cancel if
the phase advance is a half integer
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add up if the phase advance is a half integer.
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B In the case of quadrupole errors, the kicks

B Higher-order multipoles drive higher-order
resonances but the effects are less easily

@ [ ] [ ]
= illustrated on a phase space diagram.
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Resonances
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B If we include vertical as well as horizontal motion, then we
find that resonances occur when the tunes satisfy

an:c + nyQy — T

where n,, n, and r are integers and resonance is of order |n, |

+ | ny|
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B If we include vertical as well as horizontal motion, then we
find that resonances occur when the tunes satisfy

de'e Reson
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an:c + nyQy — T

where n,, n, and r are integers and resonance is of order |n,|
+ ny|

Resonances up to order 3
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normal resonances
(= even n,)

skew resonances
(= odd ny)
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B If we include vertical as well as horizontal motion, then we
find that resonances occur when the tunes satisfy

)

anx + nyQy — T

Resonances up to order 4
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B If we include vertical as well as horizontal motion, then we
find that resonances occur when the tunes satisfy

anx + nyQy — T

where n,, n, and r are integers and resonance is of order |n,|
+ ny|

Resonances up to order 5

~T
y S z y
1.0 - 3
NS =2 I ”"‘\s\ W\ th4="=
ARNONSE L/ 11|\ ! s L=~/
\ C b
[ \ ~ T 1 . 14
L R\ - N - 71 w
(0 \) A ; 2/ N ’ ," \
-4 — S - o g - 1
0.8 > A= 1IN ] normal resonances
7\ 7 \ —
LI D L ~ = even n
He Y- = LYo =) 3 = ks Yy
*\N A \ 7 S \ A l‘ Ea
0.6 4 - XL TS Iy 2 XX -
\ \
> L ’ 1 V! \
> \I sy 2 -~ - N ad
c SN TG R skew resonances
e
0.4 | 4 =\ A4/~ SIS 1 ::—“ DN - -
MRS Y L XA (= odd ny)
O A S i, L i &
iy \ D i’ vy
~ \ ! 1 4
0.2 -lr £\ = < IR X X2 -
| s \ s /et N/ 4 “‘\ !
Y \ M. Ao
‘Q wi// . (! Y 7 ~ ~ \\* )
AY \\
/T Ay \\\‘ V) 21 \ul! SN y
0.0
- 'I‘ (] P74 N (] ’L__ = Z,
0.0 0.2 0.4 0.6 0.8 1.0 27



The CERN Accelerator School EAI

B Resonances are associated with chaotic motion for
particles in storage rings.

B However, the number of resonance lines in tune space
is infinite: any point in tune space will be close to a
resonance of some order.

B This observation raises two questions:

How do we know what the real effect of any given resonance
line will be?

How can we design a storage ring to minimise the adverse
effects of resonances?

B These are not easy questions to answer and usually
necessitate numerical integration of the equations of
motion

B We shall discuss some of the issues in the remaining
parts of this lecture.

Non-linear Dynamics, CERN Accelerator School, September 2019
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B By imposing a periodicity P in the lattice (i.e. building a
machine from P identical cells) the resonance condition

becomes 12Qs T 1yQy =P

B Resonances for which rX Pis integer = systematic

)

B [f rX Pis NOT integer the resonance cancels = non-

systematic
periodicity P=1

periodicity P=2 periodicity P=3
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solid lines: normal resonances
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Advanced Light Source design lattice periodicity: 12

Measurement of beam Synchrotron light beam spot
loss as function of tune Uncorrected optics Corrected optics
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B SPS (hadron machine) has design lattice periodicity of 6

)

B Some indication for the strength of individual resonance lines can
be inferred from the beam loss rate during dynamic tune scans,
i.e. the derivative of the beam intensity at the moment of
resonance crossing

B Sextupole resonances can be clearly identified although they
should be suppressed by lattice periodicity ... but SPS has no
individual quadrupoles to restore optics functions distortions
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physics: perturbation theory and normal form analysis.
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B There are two approaches widely used in accelerator

B In both these techniques, the goal is to construct a quantity
that is invariant under application of the single-turn
transfer map. Unfortunately, in both cases the mathematics
is complicated and fairly cumbersome

In the case of a single sextupole in a storage ring, we find
from normal form analysis the following expression for the
betatron action as a function of the betatron phase (angle
variable):

J. a2 o — @ (28,1 )3/2 cos(3pty /2 + 2¢5) + cos(piq/2)
v 8 0 sin (3 /2)

where Ijis a constant (an invariant of the motion), @z is the
angle variable, and Uz is the phase advance per cell.

+ O(I7)

B The second term becomes very large whenl, is close to
third integer

Non-linear Dynamics, CERN Accelerator School, September 2019
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phase advance u; = 0.30 X 27
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B Close inspection of the plots on the previous slides reveals
another effect, in addition to the obvious distortion of the
phase space ellipses: the phase advance per turn (i.e. the
tune) varies with increasing betatron amplitude

B Normal form analysis (and perturbation theory) can be used
to obtain estimates for the tune shift with amplitude

B [n the case of a sextupole, the tune shift is higher-order in
the sextupole strength

B An octupole, however, does have a first-order in the
octupole strength tune shift with amplitude, given by:

k3L 3°

Non-linear Dynamics, CERN Accelerator School, September 2019
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B Simulation of simple storage ring with a single octupole

close to 4t order resonance

B Detuning with amplitude (linear in action)

B Particles in the stable islands have tune locked to
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B Simulation of simple storage ring with a sextupole and an
octupole close to 3" order resonance

B The amplitude detuning induced by the octupole can
create stable islands even for the 3™ order resonance

B The tune of particles in islands is locked to the resonance
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B For any dynamical variable Zjthe Taylor map up to 3™
order can be ertten as

=

Snew Z ngzk + S‘ S‘Tjklzkzl -+ S‘ S‘ S‘ nglmszlZm

k=1 [l=1 k=1 [l=1 m=1

B Taylor series provide a convenient way of systematically
representing transfer maps for beamline components, or
sections of beamline

B The main drawback of Taylor series is that in general,
transfer maps can only be represented exactly by series with
an infinite number of terms

In practice, we have to truncate a Taylor map at some
order, and we then lose certain desirable properties of the
map

In particular, a truncated map will be usually be non-
symplectic.

Non-linear Dynamics, CERN Accelerator School, September 2019
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B Consider two sets of canonical variables Z N/ which

may be even considered as the evolution of the system
between two points in phase space

B A transformation from the one to the other set can be
constructed through amap M : z — Z

B The Jacobian matrix of the map M/ = M (z,1t) is

0Zi

0z

B The map is symplectic if M TIM = J, withJ = (—(I) (I))
B It can be shown that det(M) =1

B Physically, a symplectic transfer map conserves
phase space volumes when the map is applied

composed by the elements M;; =

B This is Liouville’s theorem, and is a property of
charged particles moving in electromagnetic fields, in
the absence of radiation. -

Non-linear Dynamics, CERN Accelerator School, September 2019
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B The effect of losing symplecticity becomes apparent if
we compare phase space portraits constructed using
symplectic (below, left) and non-symplectic (below, right)
transfer maps.

2nd order implicit 2nd order power series in x

W ogr

Non-linear Dynamics, CERN Accelerator School, September 2019
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B Consider a sextupole with equations of motion:

dx dpz 1 5
— = — = ——kox~.
ds b, ds 2 2t

B Exact solutions using some elementary functions do
not exist

B By splitting integration into three steps, it is possible to
write an explicit and symplectic approximate solution

0<s<L/2: r1 = TQ + Pr0, Pzl = Pz0>
1 2
s=1LJ/2: To = x71, Pr2 = Pyl — §k2Lm1,
L/2<5§L: 333:372"']93327 Pxr3 — Px2-

B This an example of a symplectic integrator known as a
“drift-kick-drift” approximation.

drift kick drift

NN

Non-linear Dynamics, CERN Accelerator School, September 2019
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B The most direct way to evaluate the non-linear dynamics
performance of a ring is the computation of Dynamic Aperture
(short: DA)

B Particle motion due to multi-pole errors is generally non-bounded,
so chaotic particles can escape to infinity. This is not true for all
non-linearities (e.g. the beam-beam force)

B Need a symplectic tracking code to follow particle trajectories (a
lot of initial conditions) for a number of turns (depending on the
given problem) until the particles start getting lost. This boundary
defines the Dynamic aperture

B As multi-pole errors may not be completely known, one has to
track through several machine models built by random
distribution of these errors

B One could start with 4D (only transverse) tracking but certainly
needs to simulate SD (constant energy deviation) and finally 6D

Non-linear Dynamics, CERN Accelerator School, September 2019
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B Dynamic aperture plots show the maximum initial values

of stable trajectories in x-y coordinate space at a

particular point in the lattice, for a range of energy errors

B The beam size can be shown on the same plot

B Generally, the goal is to allow some significant margin i
the design — the measured dynamic aperture is often
smaller than the predicted dynamic aperture
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Numerical methods:
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. Frequency map analysis
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- Choose coordinates (x;, y;) with p,=p,=0

)

0 Numerically integrate the phase trajectories through the lattice for

sufficient number of turns

0 Compute through advanced Fourier methods (NAFF algorithm) Q.

and Q, after sufficient number of turns

2 Plot them in the tune diagram
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)

B All dynamics represented in two plots (Frequency Map / Diffusion
Map)
B Regular motion represented by blue colors

B Resonances appear as distorted lines in frequency space (or

curves in initial condition space)

B Chaotic motion is represented by red scattered particles and
defines dynamic aperture of the machine
B FMA shows also nicely the detuning with amplitude
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B Frequency map analysis for HL-LHC in collision

Large tune footprint
and DA reduction
due to “long range
beam-beam” forces
(electromagnetic field
of other beam in
interaction region)

DA clearly improved
when compensating
long range beam-
beam with a wire

S. Fartoukh et al.,
PRSTAB, 2015
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Experim

B Frequency analysis of turn-by-turn data of beam
oscillations produced by a fast kicker magnet and
recorded on a Beam Position Monitor

B Reproduction of the non-linear model of the Advanced

)

Light Source storage ring and working point optimization

for increasing beam lifetime
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B Nonlinear dynamics appear in a wide variety of
accelerator systems, including single-pass systems
(such as bunch compressors) and multi-turn
systems (such as storage rings)

B [t is possible to model nonlinear dynamics in a
given component or section of beamline by
representing the transfer map as a power series

B Conservation of phase space volumes is an
important feature of the beam dynamics in many
systems. To conserve phase space volumes, transfer
maps must be symplectic

B [n general, (truncated) power series maps are not
symplectic.
: @ To construct a symplectic transfer map, the
equations of motion in a given accelerator
component must be solved using a symplectic
integrator (e.g. the “drift-kick—drift” approximation
for a multipole magnet). 54
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B Common features of nonlinear dynamics in
accelerators include phase space distortion, tune
shifts with amplitude, resonances, and chaotic
particle trajectories at large amplitudes (dynamic
aperture limits)

= B Analytical methods such as perturbation theory
and normal form analysis can be used to estimate
the impact of nonlinear perturbations in terms of
quantities such as resonance strengths and tune
shifts with amplitude

H Frequency map analysis provides a useful
numerical tool for characterising tune shifts and
resonance strengths from tracking data.

= B This can give some insight into limitations on the
dynamic aperture
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