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Learning Objectives

e By the end of this lecture you should

— be familiar with basic concepts of laser propagation in vacuum
— be able to describe the non-linear refractive index of plasmas

— be able to use the non-linear refractive index to study key phenomena
iIncluding:

» self-focussing; guiding, pulse-compression, photon “deceleration”

» self-modulation instability; hosing; wakefield evolution



Laser propagation in vacuum

e Gaussian beam approximation

— Electric field of propagating laser pulse in vacuum:
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— Rayleigh range — transverse beam size
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— wavefront curvature
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Laser propagation in vacuum

e [ he f-number T#

— Ratio of focal length to (collimated) beam diameter

e controls how tightly focussed the laser is
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e controls distance over which laser stays intense
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Laser propagation in vacuum
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oNB real high power lasers are not gaussian!!

— near field beam is closer to flat top

— wavefront curvature and intensity profile are not perfect

— spatio-temporal couplings: errors in chirped pulse amplification system

» all affect the propagation of lasers, especially due to non-linear
effects in plasma



Laser propagation in plasma
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Non-linear refractive index in plasma

e High intensity laser modifies the refractive index

e Depends on
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Wave frame
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Self-focusing
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Self-focusing

eEnergy flows perpendicular to the wavefront

— rate of energy flow inwards (or outwards) is equal to rate of change of spot
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Relativistic self-focussing

e High laser intensity on axis creates focusing effect through the
relativistic (ap) term in the non-linear refractive index

e [0 get self-focusing need rate of focussing to be faster than the
rate of defocussing from diffraction
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Relativistic self-focusing

e [ he diffraction term can be found from gaussian waist equation
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— near focus (z < zr), can differentiate this to get
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Relativistic self-focusing

e [ he relativistic term from plasma refractive index becomes
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Relativistic self-focusing
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— Balancing the rate of relativistic focusing with diffraction:
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— Noting that wo?ao? is related to the laser power (area x intensity) it can be
shown....
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Plasma channel guiding

oA similar treatment can be applied to estimate the effect of a
parabolic plasma channel;
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— balancing focusing due to the channel with diffraction produces a “matched
spot size”




Self-quiding

e In LWFA we have a lot going on
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— relativistic: variation in ag
— ponderomotive: variation In n. due to laser pulse

— pre-formed: variation in n. due to pre-formed channel



Self-quiding
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— Experimental measurements
of self-guiding

— Laser profile at exit of 2 mm
gas Jet shows guided spot
with 14 TW pulse for
P> P

— guiding over approx 5—7 zr

AGR Thomas PRL 2007



Self-quiding

plasma density x1018 ¢m-3

0.0 2.0

1.0 1.5
— Experimental measurements
& | of self-guiding
— Laser profile at exit of
M Streeter 15 mm gas jet shows guided

images of laser spot at exit 15 mm laser wakefield accelerator SPOt with 180 TW pulse for
P> P.

MJV Streeter PhD Thesis 2013 — guiding over approx 15 zr



Pre-formed plasma channel guiding

e Pre-formed plasma channels very successful at guiding high

power lasers over long distances:
—e.g LBNL successfully guided 0.85 PW laser pulse over 20 cm (15 Zr)

AJ Gonsalves PRL 2019
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Pulse Compression
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elongitudinal variation in group velocity changes shape of pulse
envelope as It propagates

— compression / stretching

WB Mori IEEE J Quantum Elec. 33, 1942 (1997)



Pulse Compression
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— consider point at front, z: and back, z», of laser pulse Initially separated by
distance L

— change in separation in time At: AL = (vga —vg1) At
— relate change in group velocity to gradient in group velocity Awv, = %L
— In wave frame rate of compression Is
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Pulse Compression in the Bubble Regime

e Simple model for compression in the bubble regime

— front of pulse Iin plasma ne = ng; back of pulse ne = 0

— glves rate of compression ny
T = T0

2cn,

— measured rates of compression in non-linear plasma wave very close to this

prediction
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Photon “acceleration”
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e longitudinal variation in refractive index also means phase

velocity varies, leading to a change in the wavelength
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e For refractive index gradient caused by the laser pulse, the rate
of change of frequency In the wave frame Is:
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Photon “deceleration” in the Bubble Regime
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e Refractive index at front of bubble causes red-shifting of photons

— these then slip back inside the pulse (lower group velocity)
2

: oy
— leads to pulse front etching at  veten = —5¢
Wo

— non-linear group velocity 1s approximately
Ug nl — Ug — Vetch
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Photon “deceleration” in the Bubble Regime

e Frequency Resolved
Optical Gating (FROG)
measurements of pulse
shape show red-shifting at
the front of the pulse
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Photon “deceleration” in the Bubble Regime
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ePhoton deceleration / etching determines the pump depletion

length In non-linear wakes
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Propagation instabilities: SM-LWFA
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laser intensity plasma density perturbation

e Self-modulation instability

— laser pulse longer than plasma wavelength cr > A,

—drives a low amplitude plasma wave
» compression / photon “acceleration” in longitudinal direction
» and self focusing In transverse direction
» Increases plasma wave amplitude in positive feedback look

» produces very large amplitude waves



Propagation instabilities: SM-LWFA
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e Signature of SM-LWFA Is appearance of peaks at w = wg = nwy,

e 1995: Modena et al, observed waves driven to breaking point for
first time — self-injection of electrons into a wakefield accelerator

Modena Nature 1995



Propagation instabilities: Hosing

>

laser propagation direction
— Consider a laser pulse with spatio-temporal coupling issue
» back of pulse sits in plasma wave created by front of pulse

» but off-axis so feels focusing “force” due to transverse density
gradient

» back of pulse will overshoot and oscillate - laser “hoses” as 1t
propagates.
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Propagation instabilities: Hosing
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e Hosing has been observed by
imaging the side-scatter/ self
emiIssion

e Hosing wavelength matches the
theory
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Evolution of plasma waves due to non-linear plasma optics
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e Combined effects of non-linear plasma optics lead to co-
evolution of laser pulse and plasma wave

e [his is crucial for injection in many LWFAS



Evolution of plasma waves due to non-linear plasma optics

— ponderomotive + relativistic
self-focusing at back of pulse

%, [jem]

— pulse front etching/
compression

1040 1060 1080 1100 1120

— power amplification leading
to injection (see Streeter
PRL 2018, Savert PRL
2015)
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Summary

e Introduced concepts needed to understand how lasers propagate
inside a LWFA

— self-focussing / guiding
— pulse compression

— photon “deceleration”

e |ntroduced propagation instabilities

— self-modulation
— hosing

e Discussed role of pulse evolution in self-injection
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